Nourishing and Health Benefits of Coenzyme Q10 – a Review

Total Page:16

File Type:pdf, Size:1020Kb

Nourishing and Health Benefits of Coenzyme Q10 – a Review Czech J. Food Sci. Vol. 26, No. 4: 229–241 Nourishing and Health Benefits of Coenzyme Q10 – a Review Martina BOREKOVÁ1, Jarmila HOJEROVÁ1, Vasiľ KOPRDA1 and Katarína BAUEROVÁ2 1Institute of Biotechnology and Food Science, Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, Slovak Republic; 2Institute of Experimental Pharmacology, Slovak Academy of Sciences, Bratislava, Slovak Republic Abstract Boreková M., Hojerová J., Koprda V., Bauerová K. (2008): Nourishing and health benefits of coen- zyme Q10 – a review. Czech J. Food Sci., 26: 229–241. Coenzyme Q10 is an important mitochondrial redox component and endogenously produced lipid-soluble antioxidant of the human organism. It plays a crucial role in the generation of cellular energy, enhances the immune system, and acts as a free radical scavenger. Ageing, poor eating habits, stress, and infection – they all affect the organism’s ability to provide adequate amounts of CoQ10. After the age of about 35, the organism begins to lose the ability to synthesise CoQ10 from food and its deficiency develops. Many researches suggest that using CoQ10 supplements alone or in com- bination with other nutritional supplements may help maintain health of elderly people or treat some of the health problems or diseases. Due to these functions, CoQ10 finds its application in different commercial branches such as food, cosmetic, or pharmaceutical industries. This review article gives a survey of the history, chemical and physical properties, biochemistry and antioxidant activity of CoQ10 in the human organism. It discusses levels of CoQ10 in the organisms of healthy people, stressed people, and patients with various diseases. This paper shows the distribution and contents of two ubiquinones in foods, especially in several kinds of grapes, the benefits of CoQ10 as nutritional and topical supplements and its therapeutic applications in various diseases. Keywords: coenzyme Q10; ubiquinone; food; grape; wine; nourishing; nutritional supplement; diseases; health benefits; ageing; skin HISTORY distributed in animal tissues, Morton named it ubiquinone (ubiquitous quinone – everywhere In 1955, Festenstein et al. (1955), the scientists present quinone). Two years later in David Green’s in Morton’s Laboratory in Liverpool (England) Laboratory at the University of Wisconsin (USA), isolated an unsaponifiable lipid with a striking Crane et al. (1957) observed a novel quinone in ultraviolet absorption at 272 nm from the intestinal the lipid extracts of mitochondria and named it mucosa of horses. Because the new substance was coenzyme Q because of its participation in the identified as a quinone and was found to be widely electron transport chain. Supported by the Scientific Grant Agency (VEGA) of the Ministry of Education of the Slovak Republic and the Slovak Academy of Sciences (Grants No. 1/0438/08, 2/0090/08 and 1/ 0746/08) and by the Slovak Research and Development Agency (Contract No. APVV-51-017905). 229 Vol. 26, No. 4: 229–241 Czech J. Food Sci. One year later, the chemical structure of coen- O zyme Q (CoQ ) was reported by Wolf (Olson CH3O CH3 10 10 CH 2001), under Dr. Folkers at Merck Laboratories. 3 CH O CH CH C CH H Later on the Folkers’ laboratory became a centre 3 2 2 10 for the purification, structural determination and O synthesis of a large number of nourishing factors, Figure 1. Chemical structure of coenzyme Q (2, 3- besides CoQ10, for example, also vitamin B6, pan- 10 dimethoxy-5-methyl-6-ten-isoprene parabenzoquinone) tothenic acid, biotin, vitamin B12, and mevalonic acid (Olson 2001). In 1963, Professor Yamamura from Japan was is not very stable and deteriorates at temperatures the first to use coenzyme Q7 in the treatment of a of about 46°C (US Patent 2005). It is a biologically human disease: congestive heart failure. Mellors active quinone; it comprises a benzoquinone ring and Tappel (1966a, b) showed that reduced CoQ6 with an isoprenoid side chain, related in structure was an effective antioxidant. In 1972 Littarru along to vitamin K and vitamin E. with Folkers documented a deficiency of CoQ10 in CoQ10 is the most prevalent form in humans and human heart disease (Littarru et al. 1972). most mammals. It has been found also in other Ernster (1977) from Sweden enlarged upon animals, microorganisms, and plants. CoQ9 is the the importance of CoQ10 as an antioxidant and primary form found in rats and mice (Ramasar- free radical scavenger. Peter D. Mitchell, a Brit- ma 1985). Coenzymes Q6, Q7, and Q8 (6, 7 or 8 iso- ish biochemist, received the Nobel Prize in 1978 prenoid units, respectively), are found in yeasts for his contribution to the understanding of the and bacteria (Overvad et al. 1999). biological energy transfer through the formulation The main chemical characteristic of CoQ10, re- of the chemiosmotic theory, which includes the sponsible for its various functions, is its existence ; vital protonmotive role of CoQ10 in the energy in three alternate redox states (Battino et al. 1990 transfer systems (Mitchell 1961, 1966). Ernster & Dallner 1995; James et al. 2004): In the early 1980’s, there was a considerable (1) The fully oxidisedubiquinone form which, upon acceleration in the number and size of clinical two sequential additions of hydrogen atoms, trials. Folkers received the Priestly Medal from converts first into a partially reduced; the American Chemical Society in 1986 and the (2) Semiquinone – free radical form; National Medal of Science from President Bush (3) The fully reduced ubiquinol form (Figure 2). in 1990 for his work with CoQ10 and other nutri- CoQ10 can exist in either the cis or the trans ents (Olson 2001). CoQ10 has become a science forms. Only the trans form is found in nature. subject of many researches. However, both forms can be produced in a mix- ture by means of biofermentation or a chemical - 18 - process (US Patent 2003). Chemical and physical properties of CoQ10 Ubiquinone, chemically 2,3-dimethoxy-5-me- Biochemistry in the human organism thyl-6-polyisoprene parabenzoquinone (Figure 1), is in its natural form an orange lipophile pow- In cells, CoQ10 is located in the middle of the der, without odour and taste. Because CoQ10 has phospholipids bilayer of various membranes; 10 isoprenoid units – its name is coenzyme Q10. however, the relative amount varies in different Molecular weight of CoQ10 is 863.34 g/mol. CoQ10 organelles. CoQ10 is found in the membranes of O O OH + H CO H3CO CH H3CO CH H 3 CH3 3 + 3 H - H - H H H CH H H3CO CH2 H3CO CH2 H3CO 2 OH OH CH O CH3 CH3 3 Ubiquinone Semiquinone radical Ubiquinol Ubiquinone Semiquinone radical Ubiquinol Figure 2. Three redox states of coenzyme Q10 Figure 2. Three redox states of coenzyme Q10 230 Czech J. Food Sci. Vol. 26, No. 4: 229–241 endoplasmatic reticulum, Golgi apparatus, pe- of animals, plastoquinone in the chloroplasts of roxisomes, lysosomes, vesicles and notably the plants, and menaquinone in bacteria (Littarru inner membrane of the mitochondrion in every 1994; Crane 2001). cell in the human body (Crane et al. 1984). It is found in relatively higher concentrations in cells Antioxidant activity with high energy requirements, such as those of the heart, liver, muscles and pancreas. CoQ10 is only endogenously synthesised lipid The biosynthesis of CoQ10 from the amino acid soluble antioxidant, present in all membranes and tyrosine is a 17-step process (Figure 3) requiring surpassing both in the amount and efficiency other at least eight vitamins (riboflavin, pyridoxine, antioxidants. The protective effect is extended niacinamide, ascorbic acid, cobalamin, folic acid, to lipids proteins and DNA mainly because of its tocopherol, and pantothenic acid) and several trace close localisation to the oxidative events and the elements (Hojerová 2000; Crane 2001). effective regeneration by continuous reduction at Because of this biosynthesis complexity, defects all locations (Bentinger et al. 2007). in some human enzymes or regulatory proteins CoQ10 in its reduced form as a hydroquinone may cause CoQ10 deficiency in infantile and adult (ubiquinol) (Figure 2) is a potent lipophilic anti- organisms (Quinzii et al. 2007). oxidant that has a great importance as a free radi- CoQ10 is the cofactor for at least three mito- cal scavenger. CoQ10 protects the stability of the chondrial enzymes (complexes I, II and III) as well cell membranes, protects DNA from free radical as enzymes in other parts of the cell (Ernster & induced oxidative damage, and is capable of re- Dallner 1995; James et al. 2004). cycling and regenerating other antioxidants, such Mitochondrial enzymes of the oxidative- 19phospho - - as tocopherol and ascorbate (Crane 2001). Other rylation pathway are essential for the production of important functions of CoQ10 as e.g. cell signal- the high-energy phosphate, adenosine triphosphate ling and gene expression have also been described (ATP), upon which all cellular functions depend. (Bhagavan & Chopra 2006). The electron and proton transfer functions of A direct demonstration of the effectiveness of the quinone ring are of fundamental importance coenzyme Q as an antioxidant can be shown with to all life forms; ubiquinone in the mitochondria coenzyme Q deficient yeast. A yeast mutant defi- Acetyl-CoA Acetoacetyl-CoA HMG-CoA Mevalonate Tyrosine (Phenylalanine) Mevalonate-P 4OH-Phenylpyruvate Mevalonate-PP 4OH-Phenyllactate Isopentenyl-PP 4OH-Cinnamate transtrans Geranyl-PP PrenylPhenyl- transferasetransfesase 4OH-Benzoate Decaprenyl-PP Farnesyl-PP Decaprenyl- Squalene synthetase 4OH-benzoate transferase Squalene Decaprenyl- 4OH-benzoate Cholesterol Figure 3. Biosynthesis of ubiquinone Ubiquinone from tyrosine Figure 3. Biosynthesis of ubiquinone from tyrosine 231 Vol. 26, No. 4: 229–241 Czech J. Food Sci. cient in coenzyme Q synthesis shows more lipid ease of the sample collection. There are several peroxide formation than normal yeast (Poon et excellent methods based on HPLC for the analysis al. 1997). Another direct demonstration of the of CoQ10 in plasma or serum (Lang & Parcker elimination of free radicals is shown by coenzyme Q 1987; Grossi et al.
Recommended publications
  • Evolution of Photochemical Reaction Centres
    bioRxiv preprint doi: https://doi.org/10.1101/502450; this version posted December 20, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Evolution of photochemical reaction 2 centres: more twists? 3 4 Tanai Cardona, A. William Rutherford 5 Department of Life Sciences, Imperial College London, London, UK 6 Correspondence to: [email protected] 7 8 Abstract 9 The earliest event recorded in the molecular evolution of photosynthesis is the structural and 10 functional specialisation of Type I (ferredoxin-reducing) and Type II (quinone-reducing) reaction 11 centres. Here we point out that the homodimeric Type I reaction centre of Heliobacteria has a Ca2+- 12 binding site with a number of striking parallels to the Mn4CaO5 cluster of cyanobacterial 13 Photosystem II. This structural parallels indicate that water oxidation chemistry originated at the 14 divergence of Type I and Type II reaction centres. We suggests that this divergence was triggered by 15 a structural rearrangement of a core transmembrane helix resulting in a shift of the redox potential 16 of the electron donor side and electron acceptor side at the same time and in the same redox direction. 17 18 Keywords 19 Photosynthesis, Photosystem, Water oxidation, Oxygenic, Anoxygenic, Reaction centre 20 21 Evolution of Photosystem II 22 There is no consensus on when and how oxygenic photosynthesis originated. Both the timing and the 23 evolutionary mechanism are disputed.
    [Show full text]
  • Protective Effects of Alpha-Lipoic Acid and Coenzyme Q10 on Lipopolysaccharide-Induced Liver Injury in Rats
    Available online a t www.scholarsresearchlibrary.com Scholars Research Library Der Pharmacia Lettre, 2016, 8 (19):176-182 (http://scholarsresearchlibrary.com/archive.html) ISSN 0975-5071 USA CODEN: DPLEB4 Protective effects of alpha-lipoic acid and coenzyme Q10 on lipopolysaccharide-induced liver injury in rats Amr M. Emam 1, Gehan S. Georgy 2, Olfat G. Shaker 3, Hala M. Fawzy 2 and Hala F. Zaki 4 1Department of Pharmacology and Toxicology, Faculty of Pharmacy, Misr University for Science and Technology, 6th of October, El motamaiz, Cairo, Egypt 2Department of Pharmacology, National Organization for Drug Control and Research (NODCAR), Giza, Egypt 3Department of Biochemistry, Faculty of Medicine, Cairo University, Kasr El-Aini Street, Cairo, Egypt 4Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, Egypt _____________________________________________________________________________________________ ABSTRACT Lipopolysaccharide (LPS) is a major cell wall component of gram-negative bacteria known to stimulate the synthesis and secretion of several toxic metabolites, such as reactive oxygen species and cytokines. In this study, the protective effect of alpha-lipoic acid (ALA) and coenzyme Q10 (CoQ10) were evaluated in LPS-induced hepatic injury in rats. To this end, male adult Sprague Dawley rats were divided into five groups; normal control, LPS control where rats were injected with an initial dose of LPS (4 mg/kg; i.p.) on the 1 st day of the experiment followed by a challenging dose (2 mg/kg; i.p.) on the 8 th day, ALA (50 mg/kg), CoQ10 (10 mg/kg) and ALA plus CoQ10. Treatments continued for 15 days and the last three groups also received LPS.
    [Show full text]
  • Chapter 3 the Title and Subtitle of This Chapter Convey a Dual Meaning
    3.1. Introduction Chapter 3 The title and subtitle of this chapter convey a dual meaning. At first reading, the subtitle Photosynthetic Reaction might seem to indicate that the topic of the structure, function and organization of Centers: photosynthetic reaction centers is So little time, so much to do exceedingly complex and that there is simply insufficient time or space in this brief article to cover the details. While this is John H. Golbeck certainly the case, the subtitle is Department of Biochemistry additionally meant to convey the idea that there is precious little time after the and absorption of a photon to accomplish the Molecular Biology task of preserving the energy in the form of The Pennsylvania State University stable charge separation. University Park, PA 16802 USA The difficulty is there exists a fundamental physical limitation in the amount of time available so that a photochemically induced excited state can be utilized before the energy is invariably wasted. Indeed, the entire design philosophy of biological reaction centers is centered on overcoming this physical, rather than chemical or biological, limitation. In this chapter, I will outline the problem of conserving the free energy of light-induced charge separation by focusing on the following topics: 3.2. Definition of the problem: the need to stabilize a charge-separated state. 3.3. The bacterial reaction center: how the cofactors and proteins cope with this problem in a model system. 3.4. Review of Marcus theory: what governs the rate of electron transfer in proteins? 3.5. Photosystem II: a variation on a theme of the bacterial reaction center.
    [Show full text]
  • Energy + Coq10, NADH & B12
    Energy + CoQ10, NADH & B12 it is mainly biosynthesized and concentrated in tissues with high energy turnover. Loss of function in mitochondria, the key organelle responsible for cellular energy production, can result in excess fatigue and other symptoms that are common complaints in almost every chronic disease. At the molecular level, a reduction in mitochondrial function occurs because of the following changes: (1) a loss of maintenance of the electrical and chemical transmembrane potential of the inner mitochondrial membrane, (2) alterations in the function of the electron transport chain, or (3) a reduction in the transport of critical metabolites into mitochondria. In turn, these changes result in reduced efficiency of oxidative phosphorylation and a reduction in adenosine-5’-triphosphate (ATP) production. Several components of this system require routine replacement, which can be facilitated with natural supplements. Clinical trials have shown the utility of using oral replacement supplements, such as coenzyme Q10 (CoQ10 [ubiquinone]), reduced nicotinamide adenine dinucleotide (NADH) and other supplements. Combinations of these supplements can significantly reduce fatigue and other symptoms associated with chronic disease and can naturally restore mitochondrial function, even in long-term patients with intractable fatigue.1 NADH is vital for many human body processes including muscle energy production. Skeletal muscle enables posture, breathing, and locomotion. Skeletal muscle also impacts systemic processes such as metabolism, thermoregulation, and immunity. Skeletal muscle is energetically expensive and is a major consumer of glucose and fatty acids. Metabolism INGREDIENTS of fatty acids and glucose requires NADH, which functions as a hydrogen/ Coenzyme Q10 (CoQ10) electron transfer molecule. Therefore, NADH plays a vital role in energy Coenzyme Q10 is a vitamin-like nutrient central to energy production at production.
    [Show full text]
  • Risk Assessment for Coenzyme Q10 (Ubiquinone) ଝ
    Regulatory Toxicology and Pharmacology 45 (2006) 282–288 www.elsevier.com/locate/yrtph Risk assessment for coenzyme Q10 (Ubiquinone) ଝ John N. Hathcock ¤, Andrew Shao Council for Responsible Nutrition, 1828 L Street, NW, Suite 900, Washington, DC 20036-5114, USA Received 24 March 2006 Abstract Coenzyme Q10 (CoQ10) widely occurs in organisms and tissues, and is produced and used as both a drug and dietary supplement. Increasing evidence of health beneWts of orally administered CoQ10 are leading to daily consumption in larger amounts, and this increase justiWes research and risk assessment to evaluate the safety. A large number of clinical trials have been conducted using a range of CoQ10 doses. Reports of nausea and other adverse gastrointestinal eVects of CoQ10 cannot be causally related to the active ingredient because there is no dose–response relationship: the adverse eVects are no more common at daily intakes of 1200 mg than at a 60 mg. Systematic evaluation of the research designs and data do not provide a basis for risk assessment and the usual safe upper level of intake (UL) derived from it unless the newer methods described as the observed safe level (OSL) or highest observed intake (HOI) are utilized. The OSL risk assessment method indicates that the evidence of safety is strong at intakes up to 1200 mg/day, and this level is identiWed as the OSL. Much higher levels have been tested without adverse eVects and may be safe, but the data for intakes above 1200 mg/day are not suYcient for a conWdent conclusion of safety. © 2006 Elsevier Inc.
    [Show full text]
  • The Structure and Antioxidant Properties
    materials Review Recent Developments in Effective Antioxidants: The Structure and Antioxidant Properties Monika Parcheta 1 , Renata Swisłocka´ 1,* , Sylwia Orzechowska 2,3 , Monika Akimowicz 4 , Renata Choi ´nska 4 and Włodzimierz Lewandowski 1 1 Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45E, 15-351 Bialystok, Poland; [email protected] (M.P.); [email protected] (W.L.) 2 Solaris National Synchrotron Radiation Centre, Jagiellonian University, Czerwone Maki 98, 30-392 Krakow, Poland; [email protected] 3 M. Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland 4 Prof. Waclaw Dabrowski Institute of Agriculture and Food Biotechnology–State Research Institute, Rakowiecka 36, 02-532 Warsaw, Poland; [email protected] (M.A.); [email protected] (R.C.) * Correspondence: [email protected] Abstract: Since the last few years, the growing interest in the use of natural and synthetic antioxidants as functional food ingredients and dietary supplements, is observed. The imbalance between the number of antioxidants and free radicals is the cause of oxidative damages of proteins, lipids, and DNA. The aim of the study was the review of recent developments in antioxidants. One of the crucial issues in food technology, medicine, and biotechnology is the excess free radicals reduction to obtain healthy food. The major problem is receiving more effective antioxidants. The study aimed to analyze the properties of efficient antioxidants and a better understanding of the molecular ´ Citation: Parcheta, M.; Swisłocka, R.; mechanism of antioxidant processes. Our researches and sparing literature data prove that the Orzechowska, S.; Akimowicz, M.; ligand antioxidant properties complexed by selected metals may significantly affect the free radical Choi´nska,R.; Lewandowski, W.
    [Show full text]
  • Magnesium Ascorbyl Phosphate and Coenzyme Q10 Protect Keratinocytes Against UVA Irradiation by Suppressing Glutathione Depletion
    MOLECULAR MEDICINE REPORTS 6: 375-378, 2012 Magnesium ascorbyl phosphate and coenzyme Q10 protect keratinocytes against UVA irradiation by suppressing glutathione depletion TSANN-LONG HWANG1,2, CHIN-JU TSAI3, JHIH-LONG CHEN3, TZU-TSUNG CHANGCHIEN3, CHEE-CHAN WANG3 and CHI-MING WU3 1Department of Surgery, Chang Gung Memorial Hospital, Tao-Yuan; 2Department of Surgery, School of Medicine, Chang Gung University, Tao-Yuan; 3Department of Cosmetic Science, Vanung University, Tao-Yuan, Taiwan, R.O.C. Received December 17, 2011; Accepted March 14, 2012 DOI: 10.3892/mmr.2012.933 Abstract. The aim of this study was to investigate whether Introduction magnesium ascorbyl phosphate (MAP) and coenzyme Q10 (CoQ10) can protect keratinocytes against ultraviolet (UV)A Ultraviolet (UV) irradiation (200-400 nm) causes a number of irradiation by increasing the levels of glutathione (GSH). The acute and chronic skin effects, which can result in inflammation, cell survival fraction was 89.9% when the keratinocytes were immunosuppression, premature skin aging and the develop- irradiated with UVA at a dose of 4 J/cm2. The cell survival frac- ment of skin malignancies (1). UVA irradiation (320-400 nm), tions were 48.4, 9.1 and 4.8%, at doses of 8, 16 and 32 J/cm2, which is not absorbed in the ozone layer, comprises more than respectively. MAP was added to the cells prior to UVA irradia- 95% of the UV light that reaches the earth. UVA penetrates tion at a dose of 8 J/cm2 and then the cell viability was assayed. the epidermis and affects the epidermal and dermal layers of The cell survival fractions were 51.6, 55.5, 64.8 and 76.7%, when the skin.
    [Show full text]
  • A Review of Dietary (Phyto)Nutrients for Glutathione Support
    nutrients Review A Review of Dietary (Phyto)Nutrients for Glutathione Support Deanna M. Minich 1,* and Benjamin I. Brown 2 1 Human Nutrition and Functional Medicine Graduate Program, University of Western States, 2900 NE 132nd Ave, Portland, OR 97230, USA 2 BCNH College of Nutrition and Health, 116–118 Finchley Road, London NW3 5HT, UK * Correspondence: [email protected] Received: 8 July 2019; Accepted: 23 August 2019; Published: 3 September 2019 Abstract: Glutathione is a tripeptide that plays a pivotal role in critical physiological processes resulting in effects relevant to diverse disease pathophysiology such as maintenance of redox balance, reduction of oxidative stress, enhancement of metabolic detoxification, and regulation of immune system function. The diverse roles of glutathione in physiology are relevant to a considerable body of evidence suggesting that glutathione status may be an important biomarker and treatment target in various chronic, age-related diseases. Yet, proper personalized balance in the individual is key as well as a better understanding of antioxidants and redox balance. Optimizing glutathione levels has been proposed as a strategy for health promotion and disease prevention, although clear, causal relationships between glutathione status and disease risk or treatment remain to be clarified. Nonetheless, human clinical research suggests that nutritional interventions, including amino acids, vitamins, minerals, phytochemicals, and foods can have important effects on circulating glutathione which may translate to clinical benefit. Importantly, genetic variation is a modifier of glutathione status and influences response to nutritional factors that impact glutathione levels. This narrative review explores clinical evidence for nutritional strategies that could be used to improve glutathione status.
    [Show full text]
  • The Effect of Glutathione Versus Co-Enzyme Q10 on Male Infertility Original Study
    Medico-legal Update,DOI Number: January-March 10.37506/v20/i1/2020/mlu/194360 2020, Vol.20, No. 1 409 The Effect of Glutathione versus Co-Enzyme Q10 on Male Infertility Original Study Mohanned Hussam Mohammed Saeed Alkumait1, Mohammed Mohsin Abdul-Aziz1, Montadher Hameed Nima1 1Department of Urology, College of Medicine, Tikrit University, Salahdine – Iraq, 2Department of Urology, College of Medicine, Baghdad University, Baghdad – Iraq Abstract Background: Worldwide, numerous people are affected with the infertility problem. Especially married people find it the most stressful problem that can also cause psychological issues. Glutathione is a naturally produced oxidant that is quite useful to preserve other antioxidants. The level of glutathione varies from person to person. It plays a significant role to enhance the sperm motility pattern. Some men who are suffering from infertility problem because of andrological pathologies, the glutathione can eliminate such issues because of therapeutic effect. Men, who have a lower amount of Q 10 in the seminal fluid, experience the slow motion of the sperms. According to various studies, the increase in the quantity of Q 10 automatically enhances the motility of the sperm. Material and Method: The presented prospective randomized placebo-controlled study was conducted in Saladin province of Samarra city (Iraq) between Jan 2016 to Dec 2018. The study deployed 51 infertile male subjects for the administration of oral glutathione (250mg sachets) for tenure of 6-months. Another group of patients 50 received oral Co-enzyme q 10 (200 mg sachets) for 6 months, a third group received a placebo (sugar sachets) for another 6 months.
    [Show full text]
  • A Critical Study on Chemistry and Distribution of Phenolic Compounds in Plants, and Their Role in Human Health
    IOSR Journal of Environmental Science, Toxicology and Food Technology (IOSR-JESTFT) e-ISSN: 2319-2402,p- ISSN: 2319-2399. Volume. 1 Issue. 3, PP 57-60 www.iosrjournals.org A Critical Study on Chemistry and Distribution of Phenolic Compounds in Plants, and Their Role in Human Health Nisreen Husain1, Sunita Gupta2 1 (Department of Zoology, Govt. Dr. W.W. Patankar Girls’ PG. College, Durg (C.G.) 491001,India) email - [email protected] 2 (Department of Chemistry, Govt. Dr. W.W. Patankar Girls’ PG. College, Durg (C.G.) 491001,India) email - [email protected] Abstract: Phytochemicals are the secondary metabolites synthesized in different parts of the plants. They have the remarkable ability to influence various body processes and functions. So they are taken in the form of food supplements, tonics, dietary plants and medicines. Such natural products of the plants attribute to their therapeutic and medicinal values. Phenolic compounds are the most important group of bioactive constituents of the medicinal plants and human diet. Some of the important ones are simple phenols, phenolic acids, flavonoids and phenyl-propanoids. They act as antioxidants and free radical scavengers, and hence function to decrease oxidative stress and their harmful effects. Thus, phenols help in prevention and control of many dreadful diseases and early ageing. Phenols are also responsible for anti-inflammatory, anti-biotic and anti- septic properties. The unique molecular structure of these phytochemicals, with specific position of hydroxyl groups, owes to their powerful bioactivities. The present work reviews the critical study on the chemistry, distribution and role of some phenolic compounds in promoting health-benefits.
    [Show full text]
  • Potential Adverse Effects of Resveratrol: a Literature Review
    International Journal of Molecular Sciences Review Potential Adverse Effects of Resveratrol: A Literature Review Abdullah Shaito 1 , Anna Maria Posadino 2, Nadin Younes 3, Hiba Hasan 4 , Sarah Halabi 5, Dalal Alhababi 3, Anjud Al-Mohannadi 3, Wael M Abdel-Rahman 6 , Ali H. Eid 7,*, Gheyath K. Nasrallah 3,* and Gianfranco Pintus 6,2,* 1 Department of Biological and Chemical Sciences, Lebanese International University, 1105 Beirut, Lebanon; [email protected] 2 Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; [email protected] 3 Department of Biomedical Science, College of Health Sciences, and Biomedical Research Center Qatar University, P.O Box 2713 Doha, Qatar; [email protected] (N.Y.); [email protected] (D.A.); [email protected] (A.A.-M.) 4 Institute of Anatomy and Cell Biology, Justus-Liebig-University Giessen, 35392 Giessen, Germany; [email protected] 5 Biology Department, Faculty of Arts and Sciences, American University of Beirut, 1105 Beirut, Lebanon; [email protected] 6 Department of Medical Laboratory Sciences, College of Health Sciences and Sharjah Institute for Medical Research, University of Sharjah, Sharjah P.O Box: 27272, United Arab Emirates; [email protected] 7 Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236 Beirut, Lebanon * Correspondence: [email protected] (A.H.E.); [email protected] (G.K.N.); [email protected] (G.P.) Received: 13 December 2019; Accepted: 15 March 2020; Published: 18 March 2020 Abstract: Due to its health benefits, resveratrol (RE) is one of the most researched natural polyphenols.
    [Show full text]
  • Alterations of Endogenous Hormones, Antioxidant Metabolism, and Aquaporin Gene Expression in Relation to Γ-Aminobutyric Acid-Regulated Thermotolerance in White Clover
    antioxidants Article Alterations of Endogenous Hormones, Antioxidant Metabolism, and Aquaporin Gene Expression in Relation to γ-Aminobutyric Acid-Regulated Thermotolerance in White Clover Hongyin Qi †, Dingfan Kang †, Weihang Zeng †, Muhammad Jawad Hassan, Yan Peng, Xinquan Zhang , Yan Zhang, Guangyan Feng and Zhou Li * College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; [email protected] (H.Q.); [email protected] (D.K.); [email protected] (W.Z.); [email protected] (M.J.H.); [email protected] (Y.P.); [email protected] (X.Z.); [email protected] (Y.Z.); [email protected] (G.F.) * Correspondence: [email protected] † These authors contributed equally to this work. Abstract: Persistent high temperature decreases the yield and quality of crops, including many important herbs. White clover (Trifolium repens) is a perennial herb with high feeding and medicinal ◦ value, but is sensitive to temperatures above 30 C. The present study was conducted to elucidate the impact of changes in endogenous γ-aminobutyric acid (GABA) level by exogenous GABA Citation: Qi, H.; Kang, D.; Zeng, W.; pretreatment on heat tolerance of white clover, associated with alterations in endogenous hormones, Jawad Hassan, M.; Peng, Y.; Zhang, antioxidant metabolism, and aquaporin-related gene expression in root and leaf of white clover plants X.; Zhang, Y.; Feng, G.; Li, Z. under high-temperature stress. Our results reveal that improvement in endogenous GABA level in Alterations of Endogenous leaf and root by GABA pretreatment could significantly alleviate the damage to white clover during Hormones, Antioxidant Metabolism, high-temperature stress, as demonstrated by enhancements in cell membrane stability, photosynthetic and Aquaporin Gene Expression in capacity, and osmotic adjustment ability, as well as lower oxidative damage and chlorophyll loss.
    [Show full text]