Vitamin K Intake in Chronic Stroke: Implications for Dietary Recommendations
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Routine Administration of Vitamin K1 Prophylaxis to the Newborn
Routine Administration of Vitamin K1 Prophylaxis to the Newborn Practice Resource for Health Care Providers July 2016 Practice Resource Guide: ROUTINE ADMINISTRATION OF VITAMIN K1 PROPHYLAXIS TO THE NEWBORN The information attached is the summary of the position statement and the recommendations from the recent CPS evidence-based guideline for routine intramuscular administration of Vitamin K1 prophylaxis to the newborn*: www.cps.ca/documents/position/administration-vitamin-K-newborns Summary Vitamin K deficiency bleeding or VKDB (formerly known as hemorrhagic disease of the newborn or HDNB) is significant bleeding which results from the newborn’s inability to sufficiently activate vitamin K-dependent coagulation factors because of a relative endogenous and exogenous deficiency of vitamin K.1 There are three types of VKDB: 1. Early onset VKDB, which appears within the first 24 hours of life, is associated with maternal medications that interfere with vitamin K metabolism. These include some anticonvulsants, cephalosporins, tuberculostatics and anticoagulants. 2. Classic VKDB appears within the first week of life, but is rarely seen after the administration of vitamin K. 3. Late VKDB appears within three to eight weeks of age and is associated with inadequate intake of vitamin K (exclusive breastfeeding without vitamin K prophylaxis) or malabsorption. The incidence of late VKDB has increased in countries that implemented oral vitamin K rather than intramuscular administration. There are three methods of Vitamin K1 administration: intramuscular, oral and intravenous. The Canadian Paediatric Society (2016)2 and the American Academy of Pediatrics (2009)3 recommend the intramuscular route of vitamin K administration. The intramuscular route of Vitamin K1 has been the preferred method in North America due to its efficacy and high compliance rate. -
Dispensing of Vitamin Products by Retail Pharmacies in South Africa: Implications for Dietitians
South African Journal of Clinical Nutrition 2016; 29(4):133–138 http://dx.doi.org/10.1080/16070658.2016.1219468 SAJCN ISSN 1607-0658 EISSN 2221-1268 Open Access article distributed under the terms of the © 2016 The Author(s) Creative Commons License [CC BY-NC 3.0] http://creativecommons.org/licenses/by-nc/3.0 RESEARCH Dispensing of vitamin products by retail pharmacies in South Africa: Implications for dietitians Ilse Trutera* and Liana Steenkampb a Department of Pharmacy, Drug Utilisation Research Unit (DURU), Nelson Mandela Metropolitan University, Port Elizabeth, South Africa b HIV & AIDS Research Unit, Nelson Mandela Metropolitan University, Port Elizabeth, South Africa *Corresponding author, email: [email protected] Objective: The objective of this study was to analyse the dispensing patterns of vitamins (Anatomical Therapeutic Chemical (ATC) group A11) over a one-year period in a group of community pharmacies in South Africa. Design and setting: A retrospective drug utilisation study was conducted on community pharmacy electronic dispensing records in South Africa recorded in 2013. Outcome measures: All products for ATC subgroup A11 were extracted and analysed. Results: A total of 164 233 vitamin products were dispensed to 84 805 patients (62.64% female patients). Males received on average 2.09 (SD = 2.63) vitamin products per year, compared to 1.84 (SD = 2.13) products for females. Ergocalciferol (A11CC01) was the most often dispensed (37.48% of all vitamin products), followed by plain Vitamin B-complex products (A11EA00) accounting for 32.77%. Ergocalciferol (vitamin D2) is only available on prescription (50 000 IU tablets or 50 000 IU/ml oily drops) in South Africa. -
Vitamin K: Double Bonds Beyond Coagulation Insights Into Differences Between Vitamin K1 and K2 in Health and Disease
International Journal of Molecular Sciences Review Vitamin K: Double Bonds beyond Coagulation Insights into Differences between Vitamin K1 and K2 in Health and Disease Maurice Halder 1,†, Ploingarm Petsophonsakul 2,†, Asim Cengiz Akbulut 2,†, Angelina Pavlic 2,† , Frode Bohan 3, Eric Anderson 3, Katarzyna Maresz 4, Rafael Kramann 1 and Leon Schurgers 1,2,* 1 Division of Nephrology, RWTH Aachen University, 52074 Aachen, Germany; [email protected] (M.H.); [email protected] (R.K.) 2 Department of Biochemistry, Cardiovascular Research Institute Maastricht, 6200MD Maastricht, The Netherlands; [email protected] (P.P.); [email protected] (A.C.A.); [email protected] (A.P.) 3 NattoPharma ASA, 0283 Oslo, Norway; [email protected] (F.B.); [email protected] (E.A.) 4 International Science & Health Foundation, 30-134 Krakow, Poland; [email protected] * Correspondence: [email protected]; Tel.: +31-43-3881680; Fax: +31-43-3884159 † These authors contributed equally to this work. Received: 24 January 2019; Accepted: 16 February 2019; Published: 19 February 2019 Abstract: Vitamin K is an essential bioactive compound required for optimal body function. Vitamin K can be present in various isoforms, distinguishable by two main structures, namely, phylloquinone (K1) and menaquinones (K2). The difference in structure between K1 and K2 is seen in different absorption rates, tissue distribution, and bioavailability. Although differing in structure, both act as cofactor for the enzyme gamma-glutamylcarboxylase, encompassing both hepatic and extrahepatic activity. Only carboxylated proteins are active and promote a health profile like hemostasis. Furthermore, vitamin K2 in the form of MK-7 has been shown to be a bioactive compound in regulating osteoporosis, atherosclerosis, cancer and inflammatory diseases without risk of negative side effects or overdosing. -
An Abstract of the Thesis Of
AN ABSTRACT OF THE THESIS OF Larry Stanford Merrifield for the M.S. in Food Science (Name) (Degree) (Major) Date thesis is presented June 26, 1964 Titie FACTORS AFFECTING THE ANTIMICROBIAL ACTIVITY OF VITAMIN K 5 Abstract approved (M^jor Tp&Sfesso/) Vitamin K, 4-amino-2-methyl- 1-naphthol hydrochloride, a 5 water soluble analog of vitamin K has been shown to possess an anti- microbial activity toward many bacteria, molds, and yeast. Much of the work reported in the literature is on its use as a food preserva- tive, and it was the purpose of this study to investigate some of the factors which might affect the antimicrobial activity of vitamin K in order to add insight into its more effective use as a food preserva- tive. Pure cultures of Escherichia coli, Bacillus subtilis, Proteus vulgaris, Staphlococcus aureus, and Pseudomonas fluorescens were utilized. The effect of the method of application of vitamin K on Escherichia coli; the effect of purity of vitamin K against Escherichia coli; the bactericidal concentrations required for Escherichia coli, Bacillus subtilis, Proteus vulgaris, Staphlococcus aureus, and Pseudomonas fluorescens; the effect of an absence of oxygen; the effect of contact time with Escherichia coli; the effect of initial count/ml of Escherichia coli; and the synergistic action in combination with propylene glycol were studied. The results demonstrated that air oxidation of vitamin K was 5 necessary to obtain maximum inhibitory activity against Escherichia coli. The use of white, crystalline vitamin K synthesized in the laboratory, as compared to partially oxidized commercial prepara- tions, gave better results against Escherichia coli. -
Control of Interstitial Pneumonia by Drip Infusion of Megadose Vitamin C, Dehydroepiandrosterone and Cortisol
in vivo 22 : 263-268 (2008) Short Review Control of Interstitial Pneumonia by Drip Infusion of Megadose Vitamin C, Dehydroepiandrosterone and Cortisol. A Short Review of our Experience MITSUO KODAMA 1, ATSUSHI OYAMA 2 and HIROSHI TAKAGI 3 1Kodama Research Institute of Preventive Medicine, 2Hikarigaoka Clinic, and 3Second Department of Surgery, Nagoya University School of Medicine, Nagoya, Japan Abstract. Interstitial pneumonia can be controlled by the granulatory tissue (1). The interstitial tissues are also combined use of a prophylactic antibiotic system and the drip involved in the site of granulation (1). All these descriptions infusion system including megadose vitamin C, dehydro- are in good agreement with the pathological changes of epiandrosterone (D) and cortisol (F), a fortified substitute of 3 interstitial pneumonia (2). In the treatment section, adrenocortical elements. The response of patients was satisfying Heilmeyer warned of the possible emergence of antibiotic with few side-effects of F. It was shown that an excess of resistance in local bacteria (1). Eventually, cortisone and vitamin C improved the therapeutic efficacy of D-F complex, adrenocorticotropic hormone (ACTH) could be tried under and that D and F improved the immunodeficient state of the the antibiotic protection (1). Above all, attention should be host. The benefit of D as an adrenal androgen in immunology directed to the control of both the heart and the general found another example in the combined use of cyclosporine A circulation system (1). With the use of cortisone and ACTH, (CS) and glucocorticoid (G) in the kidney transplantation Heilmeyer might have been inspired by the opinion of a clinic: CS and G helps improve graft take by creating a state of group of researchers that his chronic pneumonia might androgen excess, as testified in both humans and mice – an respond to a beneficial action of glucocorticoid, as is the alleviation of immune conflict. -
Optimal Foods
Optimal Foods 1. Almonds: high in monounsaturated and polyunsaturated fats, with 20% of calories coming from protein and dietary fiber. Nutrients include potassium, magnesium, calcium, iron, zinc, vitamin E and an antioxidant flavonoid called amygdlin also known as laetrile. 2. Barley: Like oat bran it is high in beta-glucan fiber which helps to lower cholesterol. Nutrients include copper, magnesium, phosphorous and niacin. 3. Berries : The darker the berry the higher in anti-oxidants. Nutritionally they are an excellent source of flavonoids, especially anthocyanidins, vitamin C and both soluble and insoluble fiber. 4. Brussels Sprouts : Similar to broccoli, and a member of the cabbage family, it contains cancer fighting glucosinolates. Nutritionally it is an excellent source of vitamin C and K, the B vitamins, beta-carotene, potassium and dietary fiber. 5. Carrots: It contains the highest source of proviatamin A carotenes as well as vitamin K, biotin, vitamin C, B6, potassium, thiamine and fiber. 6. Dark Chocolate: It is rich in the flavonoids, similar to those found in berries and apples, that are more easily absorbed than in other foods. It also provides an amino acid called arginine that helps blood vessels to dilate hence regulating blood flow and helping to lower blood pressure. Choose high-quality semisweet dark chocolate with the highest cocoa content that appeals to your taste buds. 7. Dark leafy greens : Kale, arugula, spinach, mustard greens, chard, collards, etc: low calorie, anti-oxidant dense food with carotenes, vitamin C, folic acid, manganese, copper, vitamin E, copper, vitamin B6, potassium, calcium, iron and dietary fiber. Kale is a particularly excellent bioavailable source of calcium while spinach is not. -
The Potential Protective Role of Vitamin K in Diabetic Neuropathy
VITAMINS The potential protective role of vitamin K in diabetic neuropathy DILIP MEHTA Viridis Biopharma 6/10 Jogani Industrial Complex ew cases of diabetes are symptomatic pain relief (3-5). V. N. Purav Marg, Chunabhatti increasing worldwide at a rapid Mumbai 400022, India The etiopathology of peripheral pace, with the total number of neuropathy is poorly understood and many [email protected] people with diabetes was projected factors, including dietary deficiencies, may www.viridisbiopharma.com Nto rise from 171 million in 2000 to 366 million contribute to the clinical manifestation of the in 2030 – an increase of nearly 200 million in condition. Deficiency of vitamin B12 (also only three decades. There are more cases of known as cobalamin), which results in a lack diabetes in women and urban populations, of a related compound, methylcobalamin, is with diabetes in developing countries projected manifested by megaloblastic anemia, and to double in the coming years (1). has been associated with significant Based on reports from the Centers for neurological pathology, especially peripheral Disease Control and Prevention, type 2 neuropathy (6-8). Vitamin B12 is also diabetes dult onset diabetes affects associated with the onset of diabetic approximately 9.3% of the general neuropathy. In patients with diabetic population in the United States in contrast to neuropathy, vitamin B12 deficiency may be 25.9% among those 65 years or older (2). aggravated by the use of antidiabetic agents Diabetes mellitus accounts for 90% of the such as metformin (9-11). Even short-term cases of diabetes patients (3,4). treatment with metformin causes a decrease The prevalence of type 2 diabetes in serum cobalamin, folic acid and an increases with age, higher then 25 body increase in homocysteine, which leads to mass index and the presence of the disease peripheral neuropathy in patients with in family history. -
The Effect of Vitamin Supplementation on Subclinical
molecules Review The Effect of Vitamin Supplementation on Subclinical Atherosclerosis in Patients without Manifest Cardiovascular Diseases: Never-ending Hope or Underestimated Effect? Ovidiu Mitu 1,2,* , Ioana Alexandra Cirneala 1,*, Andrada Ioana Lupsan 3, Mircea Iurciuc 4 , 5 5 2, Ivona Mitu , Daniela Cristina Dimitriu , Alexandru Dan Costache y , Antoniu Octavian Petris 1,2 and Irina Iuliana Costache 1,2 1 Department of Cardiology, Clinical Emergency Hospital “Sf. Spiridon”, 700111 Iasi, Romania 2 1st Medical Department, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania 3 Department of Cardiology, University of Medicine, Pharmacy, Science and Technology, 540139 Targu Mures, Romania 4 Department of Cardiology, University of Medicine and Pharmacy “Victor Babes”, 300041 Timisoara, Romania 5 2nd Morpho-Functional Department, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania * Correspondence: [email protected] (O.M.); [email protected] (I.A.C.); Tel.: +40-745-279-714 (O.M.) Medical Student, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania. y Academic Editors: Raluca Maria Pop, Ada Popolo and Stefan Cristian Vesa Received: 25 March 2020; Accepted: 7 April 2020; Published: 9 April 2020 Abstract: Micronutrients, especially vitamins, play an important role in the evolution of cardiovascular diseases (CVD). It has been speculated that additional intake of vitamins may reduce the CVD burden by acting on the inflammatory and oxidative response starting from early stages of atherosclerosis, when the vascular impairment might still be reversible or, at least, slowed down. The current review assesses the role of major vitamins on subclinical atherosclerosis process and the potential clinical implications in patients without CVD. -
Dietary Reference Intakes (Dris): Recommended Dietary Allowances and Adequate Intakes, Vitamins Food and Nutrition Board, Institute of Medicine, National Academies
Dietary Reference Intakes (DRIs): Recommended Dietary Allowances and Adequate Intakes, Vitamins Food and Nutrition Board, Institute of Medicine, National Academies Life Stage Vitamin A Vitamin C Vitamin D Vitamin E Vitamin K Thiamin Riboflavin Niacin Vitamin B6 Folate Vitamin B12 Pantothenic Biotin Choline Group (µg/d)a (mg/d) (µg/d)b,c (mg/d) d (µg/d) (mg/d) (mg/d) (mg/d)e (mg/d) (µg/d)f (µg/d) Acid (mg/d) (µg/d) (mg/d)g Infants 0 to 6 mo 400* 40* 10 4* 2.0* 0.2* 0.3* 2* 0.1* 65* 0.4* 1.7* 5* 125* 6 to 12 mo 500* 50* 10 5* 2.5* 0.3* 0.4* 4* 0.3* 80* 0.5* 1.8* 6* 150* Children 1–3 y 300 15 15 6 30* 0.5 0.5 6 0.5 150 0.9 2* 8* 200* 4–8 y 400 25 15 7 55* 0.6 0.6 8 0.6 200 1.2 3* 12* 250* Males 9–13 y 600 45 15 11 60* 0.9 0.9 12 1.0 300 1.8 4* 20* 375* 14–18 y 900 75 15 15 75* 1.2 1.3 16 1.3 400 2.4 5* 25* 550* 19–30 y 900 90 15 15 120* 1.2 1.3 16 1.3 400 2.4 5* 30* 550* 31–50 y 900 90 15 15 120* 1.2 1.3 16 1.3 400 2.4 5* 30* 550* 51–70 y 900 90 15 15 120* 1.2 1.3 16 1.7 400 2.4h 5* 30* 550* > 70 y 900 90 20 15 120* 1.2 1.3 16 1.7 400 2.4h 5* 30* 550* Females 9–13 y 600 45 15 11 60* 0.9 0.9 12 1.0 300 1.8 4* 20* 375* 14–18 y 700 65 15 15 75* 1.0 1.0 14 1.2 400i 2.4 5* 25* 400* 19–30 y 700 75 15 15 90* 1.1 1.1 14 1.3 400i 2.4 5* 30* 425* 31–50 y 700 75 15 15 90* 1.1 1.1 14 1.3 400i 2.4 5* 30* 425* 51–70 y 700 75 15 15 90* 1.1 1.1 14 1.5 400 2.4h 5* 30* 425* > 70 y 700 75 20 15 90* 1.1 1.1 14 1.5 400 2.4h 5* 30* 425* Pregnancy 14–18 y 750 80 15 15 75* 1.4 1.4 18 1.9 600j 2.6 6* 30* 450* 19–30 y 770 85 15 15 90* 1.4 1.4 18 1.9 600j 2.6 6* 30* 450* 31–50 y 770 85 15 15 90* 1.4 1.4 18 1.9 600j 2.6 6* 30* 450* Lactation 14–18 y 1,200 115 15 19 75* 1.4 1.6 17 2.0 500 2.8 7* 35* 550* 19–30 y 1,300 120 15 19 90* 1.4 1.6 17 2.0 500 2.8 7* 35* 550* 31–50 y 1,300 120 15 19 90* 1.4 1.6 17 2.0 500 2.8 7* 35* 550* NOTE: This table (taken from the DRI reports, see www.nap.edu) presents Recommended Dietary Allowances (RDAs) in bold type and Adequate Intakes (AIs) in ordinary type followed by an asterisk (*). -
Mephyton (Phytonadione Label
7918719 TABLETS MEPHYTON® (PHYTONADIONE) Vitamin K1 DESCRIPTION Phytonadione is a vitamin which is a clear, yellow to amber, viscous, and nearly odorless liquid. It is insoluble in water, soluble in chloroform and slightly soluble in ethanol. It has a molecular weight of 450.70. Phytonadione is 2-methyl-3-phytyl-1, 4-naphthoquinone. Its empirical formula is C31H46O2 and its structural formula is: MEPHYTON* (Phytonadione) tablets containing 5 mg of phytonadione are yellow, compressed tablets, scored on one side. Inactive ingredients are acacia, calcium phosphate, colloidal silicon dioxide, lactose, magnesium stearate, starch, and talc. CLINICAL PHARMACOLOGY MEPHYTON tablets possess the same type and degree of activity as does naturally-occurring vitamin K, which is necessary for the production via the liver of active prothrombin (factor II), proconvertin (factor VII), plasma thromboplastin component (factor IX), and Stuart factor (factor X). The prothrombin test is sensitive to the levels of three of these four factors II, VII, and X. Vitamin K is an essential cofactor for a microsomal enzyme that catalyzes the post-translational carboxylation of multiple, specific, peptide-bound glutamic acid residues in inactive hepatic precursors of factors II, VII, IX, and X. The resulting gamma-carboxyglutamic acid residues convert the precursors into active coagulation factors that are subsequently secreted by liver cells into the blood. Oral phytonadione is adequately absorbed from the gastrointestinal tract only if bile salts are present. After absorption, phytonadione is initially concentrated in the liver, but the concentration declines rapidly. Very little vitamin K accumulates in tissues. Little is known about the metabolic fate of vitamin K. -
All There Is to C • Vitamin C and Health the Vitamin C Essentials • Getting Your Vitamin C
Overview • Journey at C: Vitamin C in the Body All There is to C • Vitamin C and Health The vitamin C essentials • Getting Your Vitamin C Alexander Michels PhD • Vitamin C Myths Linus Pauling Institute Oregon State University May 11th, 2015 Journey at C Journey at C Vitamin C is Ascorbic Acid Vitamin C in the Small Intestine Ascorbic acid is vitamin C by definition: Only sources of ascorbic acid can cure scurvy. Image Source: Wikimedia Commons Extra vitamin C beyond the transport capacity passes through to the large intestine and may be lost Sodium-dependent Vitamin C Journey at C Transporters (SVCTs) Journey at C Vitamin C Intestinal Absorption Absorption and Vitamin C Transporters Ascorbic Acid Dehydroascorbic Acid (Oxidized form of Ascorbic Acid) Glucose Transporters (GLUTs) Remember: There is a limit to vitamin C absorption! 1 Note: Tissue ascorbic acid levels on this slide are hypothetical, but are driven by plasma vitamin C levels. As plasma levels increase, different tissues increase vitamin C Journey at C levels at different rates. The brain is given priority at low Journey at C vitamin C levels, while less essential organs are saturated Vitamin C in Tissues with vitamin C only at higher blood ascorbic acid levels. Vitamin C from Circulation to Tissues Plasma levels peak about 2 hours after a single dose. Vitamin C is transported into tissues when plasma levels rise. From Michels et al. Ann Rev Nutr 33 (2013) Vitamin C levels decline in the Journey at C plasma once kidney reuptake is Journey at C saturated, which also means that Vitamin C Urinary Excretion more passes through to the urine. -
Vitamin K2 Needs an RDI Separate from Vitamin K1
nutrients Review Vitamin K2 Needs an RDI Separate from Vitamin K1 1, 1, 1, Asim Cengiz Akbulut y, Angelina Pavlic y , Ploingarm Petsophonsakul y , 2, 3 2 1,2, Maurice Halder y , Katarzyna Maresz , Rafael Kramann and Leon Schurgers * 1 Department of Biochemistry, Cardiovascular Research Institute Maastricht, 6200MD Maastricht, The Netherlands; [email protected] (A.C.A.); [email protected] (A.P.); [email protected] (P.P.) 2 Division of Nephrology, RWTH Aachen University, 52074 Aachen, Germany; [email protected] (M.H.); [email protected] (R.K.) 3 International Science & Health Foundation, 30-134 Krakow, Poland; [email protected] * Correspondence: [email protected]; Tel.: +31-43-3881680; Fax: +31-43-3884159 These authors contributed equally to this work. y Received: 25 May 2020; Accepted: 17 June 2020; Published: 21 June 2020 Abstract: Vitamin K and its essential role in coagulation (vitamin K [Koagulation]) have been well established and accepted the world over. Many countries have a Recommended Daily Intake (RDI) for vitamin K based on early research, and its necessary role in the activation of vitamin K-dependent coagulation proteins is known. In the past few decades, the role of vitamin K-dependent proteins in processes beyond coagulation has been discovered. Various isoforms of vitamin K have been identified, and vitamin K2 specifically has been highlighted for its long half-life and extrahepatic activity, whereas the dietary form vitamin K1 has a shorter half-life. In this review, we highlight the specific activity of vitamin K2 based upon proposed frameworks necessary for a bioactive substance to be recommended for an RDI.