Phylogeny of the Taxon Paralaophontodes Lang

Total Page:16

File Type:pdf, Size:1020Kb

Phylogeny of the Taxon Paralaophontodes Lang Zoosyst. Evol. 93 (2) 2017, 211–241 | DOI 10.3897/zse.93.11314 museum für naturkunde Phylogeny of the taxon Paralaophontodes Lang (Copepoda, Harpacticoida, Laophontodinae), including species descriptions, chorological remarks, and a key to species Kai Horst George1 1 Senckenberg am Meer, Abt. Deutsches Zentrum für Marine Biodiversitätsforschung DZMB, Südstrand 44, D-26382 Wilhelmshaven, Germany http://zoobank.org/32051770-28D6-4A10-8321-BF82758AA0D6 Corresponding author: Kai Horst George ([email protected]) Abstract Received 24 November 2016 A detailed phylogenetic analysis of the taxon Paralaophontodes Lang (Copepoda, Har- Accepted 8 March 2017 pacticoida, Laophontodinae Lang) based on morphological characters is presented. The Published 22 March 2017 monophylum Paralaophontodes is supported by 16 unambiguous autapomorphies such as the presence of characteristic dorsal processes on cephalothorax and body somites, Academic editor: a 5-segmented male antennule, the loss of the syncoxal seta on the maxilliped, and the Michael Ohl endopodal strengthening of the first swimming leg. The corresponding extensive phy- logenetic evaluation includes the description of Paralaophontodes anjae sp. n. from a Key Words beach on Chiloé Island (Chile), the re-description of Laophontodes armatus Lang, and the re-establishment of Paralaophontodes robustus (Bŏzić), the displacement of Laop- Crustacea hontodes armatus, L. hedgpethi Lang and L. psammophilus Soyer to Paralaophontodes, Meiofauna a discussion on relationships within that taxon, remarks on its geographical distribution, Ancorabolidae and a key to the species. systematics taxonomy geographical distribution Introduction Laophontodinae, relocating L. echinata into the new ge- nus as Paralaophontodes echinatus (Willey, 1930) while Lang (1936) erroneously synonymized Laophonte ech- retaining L. armatus within Laophontodes T. Scott, 1894. inata Willey, 1930 (Laophontidae T. Scott, 1905) with Lang (1965) transferred Laophontodes robustus Bŏzić, Laophontodes armatus Lang, 1936 (Laophontodinae 1964 from the Island La Reunión, Indian Ocean, to his Lang, 1944 in the paraphylum Ancorabolidae Sars, newly created genus Paralaophontodes. However, Lang 1909), owing to peculiar shared derived features such (1965) doubted the distinct specific status of P. robustus, as two lateral extensions and moderately long hairy el- pointing to its strong similarity with P. echinatus. Wells ements mid-dorsally on the cephalothorax, and a par- and Rao (1987) formally synonymized P. robustus with P. ticular dorsal armature of the body somites (Lang 1936). echinatus. At present the taxon Paralaophontodes contains Obvious differences between L. echinata and L. armatus three species, namely P. echinatus, P. elegans Baldari and were according to Lang (1936) due to misinterpretations Cottarelli, 1986, and P. exopoditus Mielke, 1981. by Willey (1930). Particularly noticeable differences in- When describing Laophontodes hedgpethi Lang, 1965, clude: the P1 exp being 2-segmented in L. echinata and Lang (1965) noted a strong similarity of that species with 3-segmented in L. armatus, and; the P1 enp-2 carrying L. armatus and Paralaophontodes echinatus. However, 1 terminal claw in L. echinata, but a terminal claw and he did not carry out the consequent step by unifying all an additional long seta in L. armatus. Twenty-nine years corresponding species, which remain therefore in the later Lang (1965) himself recognized his error and estab- laophontodin genera Laophontodes and Paralaophon- lished the taxon Paralaophontodes Lang, 1965 within todes, respectively. The objective of this contribution is Copyright Kai Horst George. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. 212 George, K.H.: The taxon Paralaophontodes reconsidered to update the systematics of Paralaophontodes by the disposal by Mrs Karin Sindemark Kronestedt, Swedish Mu- inclusion of all respective species hitherto assigned to seum of Natural History, Department of Invertebrate Zool- Laophontodes. To support this synonymisation, a detailed ogy, Stockholm, Sweden. It consists of eight individuals: phylogenetic analysis based on all available morpholog- six females and two males are complete and of moderate ical characters is presented. In that context, a re-descrip- condition but covered with compact detritus. Moreover, tion of Laophontodes armatus is given, along with the de- four fragments are included: SMNH 2158(a): one female scription of a new Paralaophontodes species, P. anjae sp. cephalothorax and thorax (until swimming leg P3); SMNH n., from Chiloé Island (Chile). Moreover, P. robustus is 2158(b): one female thorax (P2–P4); SMNH 2158(c): two re-established, new records of known Paralaophontodes female urosomes. As neither a holotype nor any paratypes species are documented, and a key to the known species have been designated, the above named specimens are of Paralaophontodes is provided. henceforth declared as syntypes. Additional material was collected in the Magellan Straits, Chile; one female (coll. no. SMF 37111/1) was sampled by the author on 27.05.1996 Material and methods from Bahía Catalina in the north of Punta Arenas (Chile) (53°7.008’S, 70°52.323’W, 0m depth), and one female and Paralaophontodes anjae sp. n.: one single female was one male (coll. nos. SMF 37112/1 and SMF 37113/1–7, collected by the author on 27.03.1994 in Puente Quilo respectively) were kindly provided by Dr Matthias Gorny (Gulf of Quetalmahue), Chiloé Island, Chile. The mate- (Santiago de Chile, Chile) from sampling at Punta Yar- rial was sampled at low tide at station #Q4 directly at tou, Canal Whiteside, Tierra del Fuego (53°53.723’S, the waterline (Fig. 1). The substrate consists of medi- 70°09.132’W, 15m depth) on 15.02.2003. The Patagonian um-sized sand, the measured temperature was 12°C, and specimens are kept in the collection of Senckenberg For- the salinity was 32.3. Material was immediately fixed schungsinstitut und Naturmuseum Frankfurt, Germany. with 4% non-buffered formalin and later on sorted under Species identification and drawings were made with a binocular in the laboratories of the Instituto de Biología the use of a camera lucida on a Leica DMR compound Marina “Dr Jürgen Winter” at the Universidad Austral de microscope equipped with differential interference con- Chile, Valdivia, Chile. trast. General terminology follows Lang (1948) and Huys and Boxshall (1991). Terminology referring to phyloge- Additional Paralaophontodes material netic aspects follows Ax (1984); the terms “telson” and Paralaophontodes echinatus (Willey, 1930): two females “furca” are adopted from Schminke (1976). and one male were collected by Mr Johannes Dürbaum Abbreviations used in the text: A1 = antennule, A2 = (Jülich, Germany) from an intertidal mangrove-mudflat antenna, aes = aesthetasc, benp = baseoendopod, cphth = at Bering Point village, south-east of Andros Island, Ba- cephalothorax, DP I–DP IX = dorsal processes I–IX, enp hamas, in July 1993 (cf. Seifried and Dürbaum 2000) = endopod, enp-1–enp-3 = endopodal segments 1–3, exp and kindly put to the author’s disposal. The material is = exopod, exp-1–exp-3 = exopodal segments 1–3, FR = kept in the collection of Senckenberg Forschungsinstitut furcal rami, GF = genital field, P1–P6 = swimming legs und Naturmuseum Frankfurt, Germany, coll. nos. SMF 1–6, R = rostrum, T = telson. 37104/1, SMF 37105/1, and SMF 37106/1. One male and one CI copepodid was sampled by the author on June 29th, 2008 at the port of Golfito (Pacific coast of Costa Rica). Results The material is kept in the collection of Senckenberg For- schungsinstitut und Naturmuseum Frankfurt, Germany, Phylum Arthropoda coll. nos. SMF 37107/1 (male), SMF 37108/1 (CI). Subphylum Crustacea Brünnich, 1772 Paralaophontodes exopoditus Mielke, 1981: one female Superclass Multicrustacea Regier et al., 2010 collected by Dr Gritta Veit-Köhler (Wilhelmshaven, Ger- Class Hexanauplia Oakley et al., 2013 many) at the coastline of Dahab (28°29.0’N, 34°30.0’E, Subclass Copepoda Milne-Edwards, 1840 Gulf of Akaba, Egypt) in summer 1995. The specimen was Order Harpacticoida Sars, 1903 kindly put to the author’s disposal and is kept in the collec- Family “Ancorabolidae” Sars, 1909 tion of Senckenberg Forschungsinstitut und Naturmuseum Subfamily Laophontodinae Lang, 1944 Frankfurt, Germany, coll. no. SMF 37109/1. One male Genus Paralaophontodes Lang, 1944 collected by Prof. Dr Horst Kurt Schminke (Oldenburg, Germany) at station PNG M4, Ednago Island, near Kavi- Type species. P. echinatus (Willey, 1930). Additional spe- eng (2°35’S, 150°5’E, New Ireland, Papua New Guinea, cies: P. anjae sp. n., P. armatus (Lang, 1936) comb. n., P. cf. Seifried 2003), on 11.11.1984, and kindly provided to elegans Baldari and Cottarelli, 1986, P. exopoditus Mielke, the author. The individual is kept in in the collection of 1981, P. hedgpethi (Lang, 1965) comb. n., P. psammophi- Senckenberg Forschungsinstitut und Naturmuseum Frank- lus (Soyer, 1974) comb. n., P. robustus (Bŏzić, 1964). furt, Germany, coll. no. SMF 37110/1. Laophontodes armatus Lang, 1936: The type material Amended generic diagnosis. Laophontodinae. Body (coll. no. Type SMNH 2158) was kindly put to the author’s slender and cylindrical. Cphth with triangular extensions zse.pensoft.net Zoosyst. Evol. 93 (2) 2017, 211–241 213 medio- and postero-laterally
Recommended publications
  • First Molecular Data and Morphological Re-Description of Two
    Journal of King Saud University – Science 33 (2021) 101290 Contents lists available at ScienceDirect Journal of King Saud University – Science journal homepage: www.sciencedirect.com Original article First molecular data and morphological re-description of two copepod species, Hatschekia sargi and Hatschekia leptoscari, as parasites on Parupeneus rubescens in the Arabian Gulf ⇑ Saleh Al-Quraishy a, , Mohamed A. Dkhil a,b, Nawal Al-Hoshani a, Wejdan Alhafidh a, Rewaida Abdel-Gaber a,c a Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia b Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt c Zoology Department, Faculty of Science, Cairo University, Cairo, Egypt article info abstract Article history: Little information is available about the biodiversity of parasitic copepods in the Arabian Gulf. The pre- Received 6 September 2020 sent study aimed to provide new information about different parasitic copepods gathered from Revised 30 November 2020 Parupeneus rubescens caught in the Arabian Gulf (Saudi Arabia). Copepods collected from the infected fish Accepted 9 December 2020 were studied using light microscopy and scanning electron microscopy and then examined using stan- dard staining and measuring techniques. Phylogenetic analyses were conducted based on the partial 28S rRNA gene sequences from other copepod species retrieved from GenBank. Two copepod species, Keywords: Hatschekia sargi Brian, 1902 and Hatschekia leptoscari Yamaguti, 1939, were identified as naturally 28S rRNA gene infected the gills of fish. Here we present a phylogenetic analysis of the recovered copepod species to con- Arabian Gulf Hatschekiidae firm their taxonomic position in the Hatschekiidae family within Siphonostomatoida and suggest the Marine fish monophyletic origin this family.
    [Show full text]
  • A Comparison of Copepoda (Order: Calanoida, Cyclopoida, Poecilostomatoida) Density in the Florida Current Off Fort Lauderdale, Florida
    Nova Southeastern University NSUWorks HCNSO Student Theses and Dissertations HCNSO Student Work 6-1-2010 A Comparison of Copepoda (Order: Calanoida, Cyclopoida, Poecilostomatoida) Density in the Florida Current Off orF t Lauderdale, Florida Jessica L. Bostock Nova Southeastern University, [email protected] Follow this and additional works at: https://nsuworks.nova.edu/occ_stuetd Part of the Marine Biology Commons, and the Oceanography and Atmospheric Sciences and Meteorology Commons Share Feedback About This Item NSUWorks Citation Jessica L. Bostock. 2010. A Comparison of Copepoda (Order: Calanoida, Cyclopoida, Poecilostomatoida) Density in the Florida Current Off Fort Lauderdale, Florida. Master's thesis. Nova Southeastern University. Retrieved from NSUWorks, Oceanographic Center. (92) https://nsuworks.nova.edu/occ_stuetd/92. This Thesis is brought to you by the HCNSO Student Work at NSUWorks. It has been accepted for inclusion in HCNSO Student Theses and Dissertations by an authorized administrator of NSUWorks. For more information, please contact [email protected]. Nova Southeastern University Oceanographic Center A Comparison of Copepoda (Order: Calanoida, Cyclopoida, Poecilostomatoida) Density in the Florida Current off Fort Lauderdale, Florida By Jessica L. Bostock Submitted to the Faculty of Nova Southeastern University Oceanographic Center in partial fulfillment of the requirements for the degree of Master of Science with a specialty in: Marine Biology Nova Southeastern University June 2010 1 Thesis of Jessica L. Bostock Submitted in Partial Fulfillment of the Requirements for the Degree of Masters of Science: Marine Biology Nova Southeastern University Oceanographic Center June 2010 Approved: Thesis Committee Major Professor :______________________________ Amy C. Hirons, Ph.D. Committee Member :___________________________ Alexander Soloviev, Ph.D.
    [Show full text]
  • Biological Structures As a Source of Habitat Heterogeneity and Biodiversity on the Deep Ocean Margins Lene Buhl-Mortensen1, Ann Vanreusel2, Andrew J
    Marine Ecology. ISSN 0173-9565 SPECIAL TOPIC Biological structures as a source of habitat heterogeneity and biodiversity on the deep ocean margins Lene Buhl-Mortensen1, Ann Vanreusel2, Andrew J. Gooday3, Lisa A. Levin4, Imants G. Priede5,Pa˚ l Buhl-Mortensen1, Hendrik Gheerardyn2, Nicola J. King5 & Maarten Raes2 1 Institute of Marine Research, Benthic habitat group, Bergen, Norway 2 Ghent University, Marine Biology research group, Belgium 3 National Oceanography Centre Southampton, Southampton, UK 4 Integrative Oceanography Division, Scripps Institution of Oceanography, University of California, La Jolla, CA, USA 5 Oceanlab, University of Aberdeen, Newburgh, Aberdeenshire, UK Keywords Abstract Biodiversity; biotic structures; commensal; continental slope; deep sea; deep-water coral; Biological structures exert a major influence on species diversity at both local and ecosystem engineering; sponge reefs; regional scales on deep continental margins. Some organisms use other species as xenophyophores. substrates for attachment, shelter, feeding or parasitism, but there may also be mutual benefits from the association. Here, we highlight the structural attributes Correspondence and biotic effects of the habitats that corals, sea pens, sponges and xenophyo- Lene Buhl-Mortensen, Institute of Marine phores offer other organisms. The environmental setting of the biological struc- Research, Benthic habitat group, P.O. Box 1870 Nordnes, N-5817 Bergen, Norway tures influences their species composition. The importance of benthic species as E-mail: [email protected] substrates seems to increase with depth as the complexity of the surrounding geological substrate and food supply decline. There are marked differences in the Accepted: 30 December 2009 degree of mutualistic relationships between habitat-forming taxa. This is espe- cially evident for scleractinian corals, which have high numbers of facultative doi:10.1111/j.1439-0485.2010.00359.x associates (commensals) and few obligate associates (mutualists), and gorgonians, with their few commensals and many obligate associates.
    [Show full text]
  • Molecular Species Delimitation and Biogeography of Canadian Marine Planktonic Crustaceans
    Molecular Species Delimitation and Biogeography of Canadian Marine Planktonic Crustaceans by Robert George Young A Thesis presented to The University of Guelph In partial fulfilment of requirements for the degree of Doctor of Philosophy in Integrative Biology Guelph, Ontario, Canada © Robert George Young, March, 2016 ABSTRACT MOLECULAR SPECIES DELIMITATION AND BIOGEOGRAPHY OF CANADIAN MARINE PLANKTONIC CRUSTACEANS Robert George Young Advisors: University of Guelph, 2016 Dr. Sarah Adamowicz Dr. Cathryn Abbott Zooplankton are a major component of the marine environment in both diversity and biomass and are a crucial source of nutrients for organisms at higher trophic levels. Unfortunately, marine zooplankton biodiversity is not well known because of difficult morphological identifications and lack of taxonomic experts for many groups. In addition, the large taxonomic diversity present in plankton and low sampling coverage pose challenges in obtaining a better understanding of true zooplankton diversity. Molecular identification tools, like DNA barcoding, have been successfully used to identify marine planktonic specimens to a species. However, the behaviour of methods for specimen identification and species delimitation remain untested for taxonomically diverse and widely-distributed marine zooplanktonic groups. Using Canadian marine planktonic crustacean collections, I generated a multi-gene data set including COI-5P and 18S-V4 molecular markers of morphologically-identified Copepoda and Thecostraca (Multicrustacea: Hexanauplia) species. I used this data set to assess generalities in the genetic divergence patterns and to determine if a barcode gap exists separating interspecific and intraspecific molecular divergences, which can reliably delimit specimens into species. I then used this information to evaluate the North Pacific, Arctic, and North Atlantic biogeography of marine Calanoida (Hexanauplia: Copepoda) plankton.
    [Show full text]
  • Orden POECILOSTOMATOIDA Manual
    Revista IDE@ - SEA, nº 97 (30-06-2015): 1-15. ISSN 2386-7183 1 Ibero Diversidad Entomológica @ccesible www.sea-entomologia.org/IDE@ Clase: Maxillopoda: Copepoda Orden POECILOSTOMATOIDA Manual CLASE MAXILLOPODA: SUBCLASE COPEPODA: Orden Poecilostomatoida Antonio Melic Sociedad Entomológica Aragonesa (SEA). Avda. Francisca Millán Serrano, 37; 50012 Zaragoza [email protected] 1. Breve definición del grupo y principales caracteres diagnósticos El orden Poecilostomatoida Thorell, 1859 tiene una posición sistemática discutida. Tradicionalmente ha sido considerado un orden independiente, dentro de los 10 que conforman la subclase Copepoda; no obstante, algunos autores consideran que no existen diferencias suficientes respeto al orden Cyclopoida, del que vendrían a ser un suborden (Stock, 1986 o Boxshall & Halsey, 2004, entre otros). No obstante, en el presente volumen se ha considerado un orden independiente y válido. Antes de entrar en las singularidades del orden es preciso tratar sucintamente la morfología, ecolo- gía y biología de Copepoda, lo que se realiza en los párrafos siguientes. 1.1. Introducción a Copepoda Los copépodos se encuentran entre los animales más abundantes en número de individuos del planeta. El plancton marino puede alcanzar proporciones de un 90 por ciento de copépodos respecto a la fauna total presente. Precisamente por su número y a pesar de su modesto tamaño (forman parte de la micro y meiofauna) los copépodos representan una papel fundamental en el funcionamiento de los ecosistemas marinos. En su mayor parte son especies herbívoras –u omnívoras– y por lo tanto transformadoras de fito- plancton en proteína animal que, a su vez, sirve de alimento a todo un ejército de especies animales, inclu- yendo gran número de larvas de peces.
    [Show full text]
  • Ivanenko V.N. 2006. Copepoda (Introduction). In: D. DESBRYERES, M
    Ivanenko V.N. 2006. Copepoda (Introduction). In: D. DESBRYERES, M. SEGONZAC & M. BRIGHT (Eds.) Handbook of Deep-Sea Hydrothermal Vent Fauna. Second edition. DENISIA, 18: 316-317 Ivanenko V.N. & Defaye D. 2006. Copepoda. In: D. DESBRYERES, M. SEGONZAC & M. BRIGHT (Eds.) Handbook of Deep-Sea Hydrothermal Vent Fauna. Second edition. DENISIA, 18: 318-355 Viatcheslav N. IVANENKO, Ph.D. Department of Invertebrate Zoology Biological Faculty, Moscow State University Leninskie Gory, 1-12 Moscow 119992, Russia http://www.nature.ok.ru/invertebrates/cv.html Handbook of Deep-Sea Hydrothermal Vent Fauna D. DESBRYÈRES, M. SEGONZAC & M. BRIGHT (Eds.) Denisia 18, 544 pages (27 x 21 cm) ISSN: 1608-8700; ISBN: 10 3-85474-154-5 or ISBN: 13 978-3-85474-154-1 Ordering via e-mail: [email protected] Price: 49 € (excl. shipping) The second extensively expanded edition of the "Handbook of Deep-Sea Hydrothermal Vent Fauna" gives on overview of our current knowledge on the animals living at hydrothermal vents. The discovery of hydrothermal vents and progresses made during almost 30 years are outlined. A brief introduction is given on hydrothermal vent meiofauna and parasites. Geographic maps and a table of mid-ocean ridges and back-arc basins with the major known hydrothermal vent fields, their location and depth range and the most prominent vent sites are provided. Higher taxa are presented individually with information on the current taxonomic and biogeographic status, the number of species described, recommendations for fixation, and schematic drawings, which aim to help non-specialists to identify the animals. 86 authors contributed with their expertise to create a comprehensive database on animals living at hydrothermal vents, which contains information on the morphology, biology, and geographic distribution of more than 500 currently described species belonging to one protist and 12 animal phyla.
    [Show full text]
  • Hydrothermal Vent Periphery Invertebrate Community Habitat Preferences of the Lau Basin
    California State University, Monterey Bay Digital Commons @ CSUMB Capstone Projects and Master's Theses Capstone Projects and Master's Theses Summer 2020 Hydrothermal Vent Periphery Invertebrate Community Habitat Preferences of the Lau Basin Kenji Jordi Soto California State University, Monterey Bay Follow this and additional works at: https://digitalcommons.csumb.edu/caps_thes_all Recommended Citation Soto, Kenji Jordi, "Hydrothermal Vent Periphery Invertebrate Community Habitat Preferences of the Lau Basin" (2020). Capstone Projects and Master's Theses. 892. https://digitalcommons.csumb.edu/caps_thes_all/892 This Master's Thesis (Open Access) is brought to you for free and open access by the Capstone Projects and Master's Theses at Digital Commons @ CSUMB. It has been accepted for inclusion in Capstone Projects and Master's Theses by an authorized administrator of Digital Commons @ CSUMB. For more information, please contact [email protected]. HYDROTEHRMAL VENT PERIPHERY INVERTEBRATE COMMUNITY HABITAT PREFERENCES OF THE LAU BASIN _______________ A Thesis Presented to the Faculty of Moss Landing Marine Laboratories California State University Monterey Bay _______________ In Partial Fulfillment of the Requirements for the Degree Master of Science in Marine Science _______________ by Kenji Jordi Soto Spring 2020 CALIFORNIA STATE UNIVERSITY MONTEREY BAY The Undersigned Faculty Committee Approves the Thesis of Kenji Jordi Soto: HYDROTHERMAL VENT PERIPHERY INVERTEBRATE COMMUNITY HABITAT PREFERENCES OF THE LAU BASIN _____________________________________________
    [Show full text]
  • Describing Species
    DESCRIBING SPECIES Practical Taxonomic Procedure for Biologists Judith E. Winston COLUMBIA UNIVERSITY PRESS NEW YORK Columbia University Press Publishers Since 1893 New York Chichester, West Sussex Copyright © 1999 Columbia University Press All rights reserved Library of Congress Cataloging-in-Publication Data © Winston, Judith E. Describing species : practical taxonomic procedure for biologists / Judith E. Winston, p. cm. Includes bibliographical references and index. ISBN 0-231-06824-7 (alk. paper)—0-231-06825-5 (pbk.: alk. paper) 1. Biology—Classification. 2. Species. I. Title. QH83.W57 1999 570'.1'2—dc21 99-14019 Casebound editions of Columbia University Press books are printed on permanent and durable acid-free paper. Printed in the United States of America c 10 98765432 p 10 98765432 The Far Side by Gary Larson "I'm one of those species they describe as 'awkward on land." Gary Larson cartoon celebrates species description, an important and still unfinished aspect of taxonomy. THE FAR SIDE © 1988 FARWORKS, INC. Used by permission. All rights reserved. Universal Press Syndicate DESCRIBING SPECIES For my daughter, Eliza, who has grown up (andput up) with this book Contents List of Illustrations xiii List of Tables xvii Preface xix Part One: Introduction 1 CHAPTER 1. INTRODUCTION 3 Describing the Living World 3 Why Is Species Description Necessary? 4 How New Species Are Described 8 Scope and Organization of This Book 12 The Pleasures of Systematics 14 Sources CHAPTER 2. BIOLOGICAL NOMENCLATURE 19 Humans as Taxonomists 19 Biological Nomenclature 21 Folk Taxonomy 23 Binomial Nomenclature 25 Development of Codes of Nomenclature 26 The Current Codes of Nomenclature 50 Future of the Codes 36 Sources 39 Part Two: Recognizing Species 41 CHAPTER 3.
    [Show full text]
  • King County Zooplankton Monitoring Annual Report 2017
    King County Zooplankton Monitoring Annual Report 2017 31 August 2018 Dr. Julie E. Keister Box 357940 Seattle, WA 98195 (206) 543-7620 [email protected] Prepared by: Dr. Julie E. Keister, Amanda Winans, and BethElLee Herrmann King County Zooplankton Monitoring Annual Report 2017 Project Oversight and Report Preparation The zooplankton analyses reported herein were conducted in Dr. Julie E. Keister’s laboratory at the University of Washington, School of Oceanography. Dr. Keister designed the protocols for the field zooplankton sampling and laboratory analysis. Field sampling was conducted by the King County Department of Natural Resources and Parks, Water and Land Resources Division. Taxonomic analysis was conducted by Amanda Winans, BethElLee Herrmann, and Michelle McCartha at the University of Washington. This report was prepared by Winans and Herrmann, with oversight by Dr. Keister. Acknowledgments We would like to acknowledge the following individuals and organizations for their contributions to the successful 2017 sampling and analysis of the King County zooplankton monitoring in the Puget Sound: From King County, we thank Kimberle Stark, Wendy Eash-Loucks, the King County Environmental Laboratory field scientists, and the captain and crew of the R/V SoundGuardian. We would also like to thank our collaborators Moira Galbraith and Kelly Young from Fisheries and Oceans Canada Institute of Ocean Sciences for their expert guidance in species identification and Cheryl Morgan from Oregon State University for assistance in designing sampling and analysis protocols. King County Water and Land Resources Division provided funding for these analyses, with supplemental funding provided by Long Live the Kings for analysis of oblique tow (bongo net) samples as part of the Salish Sea Marine Survival Project.
    [Show full text]
  • Characterization of Hydrothermal Vent Faunal Assemblages in the Mariana Back-Arc Spreading Centre
    Characterization of hydrothermal vent faunal assemblages in the Mariana Back-Arc Spreading Centre by Thomas Normand Giguère B.Sc., University of Guelph, 2017 A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE in the School of Earth and Ocean Sciences © Thomas Normand Giguère, 2020 University of Victoria All rights reserved. This thesis may not be reproduced in whole or in part, by photocopy or other means, without the permission of the author. ii Supervisory Committee Characterization of hydrothermal vent faunal assemblages in the Mariana Back-Arc Spreading Centre by Thomas Normand Giguère B.Sc. University of Guelph, 2017 Supervisory Committee Dr. Verena Tunnicliffe, School of Earth and Ocean Sciences Supervisor Dr. John Dower, School of Earth and Ocean Sciences Departmental Member Dr. Brian Starzomski, School of Environmental Studies Outside Member iii Abstract Researchers have learned much about the biological assemblages that form around hydrothermal vents. However, identities of species in these assemblages and their basic ecological features are often lacking. In 2015, the first leg of the Hydrothermal Hunt expedition identified likely new vent sites in the Mariana Back-arc Spreading Center (BASC). In 2016, the second leg of the expedition used a remotely operated vehicle (ROV) to confirm and sample two new sites and two previously known sites. My first objective is to identify the animals collected from these four vent sites. In these samples, I identify 42 animal taxa, including the discovery of four new vent-associated species, five potentially new species and six taxa not previously reported in the Mariana BASC vents.
    [Show full text]
  • Larval Assemblages Over the Abyssal Plain in the Pacific Are Highly Diverse and Spatially Patchy
    Larval assemblages over the abyssal plain in the Pacific are highly diverse and spatially patchy Oliver Kersten1,2, Eric W. Vetter1, Michelle J. Jungbluth1,3, Craig R. Smith3 and Erica Goetze3 1 Hawaii Pacific University, Kaneohe, HI, United States of America 2 Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway 3 Department of Oceanography, University of Hawaii at Manoa, Honolulu, HI, United States of America ABSTRACT Abyssal plains are among the most biodiverse yet least explored marine ecosystems on our planet, and they are increasingly threatened by human impacts, including future deep seafloor mining. Recovery of abyssal populations from the impacts of polymetallic nodule mining will be partially determined by the availability and dispersal of pelagic larvae leading to benthic recolonization of disturbed areas of the seafloor. Here we use a tree-of-life (TOL) metabarcoding approach to investigate the species richness, diversity, and spatial variability of the larval assemblage at mesoscales across the abyssal seafloor in two mining-claim areas in the eastern Clarion Clipperton Fracture Zone (CCZ; abyssal Pacific). Our approach revealed a previously unknown taxonomic richness within the meroplankton assemblage, detecting larvae from 12 phyla, 23 Classes, 46 Orders, and 65 Families, including a number of taxa not previously reported at abyssal depths or within the Pacific Ocean. A novel suite of parasitic copepods and worms were sampled, from families that are known to associate with other benthic invertebrates or demersal fishes as hosts. Larval assemblages were patchily distributed at the mesoscale, with little similarity in OTUs detected among deployments even within the same 30 × 30 km study area.
    [Show full text]
  • 10Th Deep-Sea Biology Symposiu M
    10th Deep-Sea Biology Symposiu m Coos Bay, Oregon August 25-29, 2003 10th Deep-Sea Biology Symposiu m Program and Abstracts Coos Bay Oregon August 25-29, 2003 Sponsor: Oregon Institute of Marine Biology, University of Orego n Venue: Southwestern Oregon Community College Organizing Committee: Prof. Craig M . Young (chair) Dr. Sandra Brooke Prof. Anna-Louise Reysenbac h Prof. Emeritus Andrew Carey Prof. Robert Y. George Prof. Paul Tyler CONTENTS Program & Activity Schedule Page 1 Abstracts of Oral Presentations (alphabetical) Page 1 1 Abstracts of Poster Presentations (alphabetical) Page 49 Participant List and Contact Information Page 76 CampusMap Page 85 ACKNOWLEDGMENT S Many individuals in addition to the organizing committee assisted with the preparations and logistics of the symposium . Mary Peterson and Torben Wolff advised on matters of publicity and advertizing . The web site, conference logo and t-shirt were created by Andrew Young of Splint Web Design (http ://www.splintmedia.com/) . Marge LeBow helped organize housin g and meals at OIMB, and Pat Hatzel helped format the participant list . Shawn Arellano, Isabel Tarjuelo and Ahna Van Gaes t assisted with the formatting and reformatting of abstracts and made decisions on housing assignments . Larry Draper, Toby Shappell, Mike Allman and Melanie Snodgrass prepared the OIMB campus for visitors . Local graduate students an d postdocs Tracy Smart, John Young, Ali Helms, Michelle Phillips, Mike Berger, Hope Anderson, Ahna Van Gaest, Shaw n Arellano, and Isabel Tarjuelo assisted with last-minute logistics, including transportation and registration . We thank Kay Heikilla, Sarah Callison and Paul Comfort for assistance with the SWOCC venue and housing arrangements, Sid Hall, Davi d Lewis and Sharon Clarke for organized the catering, and Sharron Foster and Joe Thompson for facilitating the mid-conferenc e excursion .
    [Show full text]