Characterization of Hydrothermal Vent Faunal Assemblages in the Mariana Back-Arc Spreading Centre

Total Page:16

File Type:pdf, Size:1020Kb

Characterization of Hydrothermal Vent Faunal Assemblages in the Mariana Back-Arc Spreading Centre Characterization of hydrothermal vent faunal assemblages in the Mariana Back-Arc Spreading Centre by Thomas Normand Giguère B.Sc., University of Guelph, 2017 A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE in the School of Earth and Ocean Sciences © Thomas Normand Giguère, 2020 University of Victoria All rights reserved. This thesis may not be reproduced in whole or in part, by photocopy or other means, without the permission of the author. ii Supervisory Committee Characterization of hydrothermal vent faunal assemblages in the Mariana Back-Arc Spreading Centre by Thomas Normand Giguère B.Sc. University of Guelph, 2017 Supervisory Committee Dr. Verena Tunnicliffe, School of Earth and Ocean Sciences Supervisor Dr. John Dower, School of Earth and Ocean Sciences Departmental Member Dr. Brian Starzomski, School of Environmental Studies Outside Member iii Abstract Researchers have learned much about the biological assemblages that form around hydrothermal vents. However, identities of species in these assemblages and their basic ecological features are often lacking. In 2015, the first leg of the Hydrothermal Hunt expedition identified likely new vent sites in the Mariana Back-arc Spreading Center (BASC). In 2016, the second leg of the expedition used a remotely operated vehicle (ROV) to confirm and sample two new sites and two previously known sites. My first objective is to identify the animals collected from these four vent sites. In these samples, I identify 42 animal taxa, including the discovery of four new vent-associated species, five potentially new species and six taxa not previously reported in the Mariana BASC vents. My second objective is to combine these new data with previous studies and examine the species distributions among all known vent sites in the Mariana BASC using the α-, β-, and γ-diversity framework. I present updated species absence-presence lists for all eight Mariana BASC vent sites, which begin to resolve some of the issues with species identification. In this thesis, my approach to assessing β-diversity is novel in the field of hydrothermal vent ecology. My work also provides the first intra-regional scale assessments of β-diversity that include all sites known in a vent system. My third objective is to explore environmental factors driving these species distribution patterns. The α-diversity of BASC vent sites gradually increases with latitude, and the β-diversity calculated using the Raup-Crick index correlates with distance to nearby vent sites. Stochastic assembly processes likely shape the diversity patterns throughout the Mariana BASC as few environmental variables are known to correlate with these patterns. My fourth objective is to compare the β-diversity patterns between the Mariana BASC vent sites and those in two other vent systems: the Mariana Arc and the Juan de Fuca Ridge. The γ- and average α-diversity values for the BASC vents are relatively low compared to the other two systems. The Jaccard index revealed that the average number of iv shared species among the Arc vent sites is much lower than those of the BASC and the Juan de Fuca Ridge. The Raup-Crick index indicates that stochastic processes explain the average β- diversity of the Mariana BASC vents better than those of the Mariana Arc and Juan de Fuca Ridge. v Table of Contents Supervisory Committee .............................................................................................................. ii Abstract ........................................................................................................................................ iii Table of Contents ........................................................................................................................ v List of Tables ............................................................................................................................ viii List of Figures .............................................................................................................................. x Acknowledgements ..................................................................................................................... xii Dedication ................................................................................................................................. xiii Chapter 1: General Introduction .............................................................................................. 1 Species Diversity and Distributions ............................................................................... 1 Hydrothermal Vents and Their Biotic Assemblages ................................................... 5 Vent Diversity .................................................................................................................. 8 Study System - The Mariana Back-Arc Spreading Centre ......................................... 12 Hydrothermal Hunt Cruises .......................................................................................... 19 References ........................................................................................................................ 22 Chapter 2: Diversity Distribution of Hydrothermal Vent Fauna ......................................... 28 Introduction ..................................................................................................................... 28 Beta Diversity ....................................................................................................... 28 Mariana BASC Hydrothermal Vents ................................................................ 31 Mariana BASC Vent Fauna ............................................................................... 33 Objectives ............................................................................................................. 34 Methods ............................................................................................................................ 35 Sampling Locations ............................................................................................. 35 Sample Collection ................................................................................................ 35 Sample Processing and Identification ............................................................... 36 Determination of a New Shrimp Species ........................................................... 37 Distributions of Species ....................................................................................... 38 Data Processing ................................................................................................... 38 Data Analysis ....................................................................................................... 39 Results .............................................................................................................................. 45 Taxa Identified from the Sample Collection ..................................................... 45 vi Features of the Biological Collection ..................................................... 45 Reliance on Taxonomic Identification Methods ................................... 45 Undescribed Species ................................................................................ 50 The Snail Graveyard ............................................................................... 55 Mariana BASC Species Richness & Distribution Patterns ............................. 55 Other Regional Species Richness and Distribution Patterns .......................... 62 Vent System Comparisons .................................................................................. 64 Discussion......................................................................................................................... 68 The Challenges of Hydrothermal Vent Diversity Studies ............................... 68 Faunal Diversity of the Central Mariana BASC Vent Sites ............................ 70 New Species of Rimicaris Shrimp ....................................................................... 77 The Snail Graveyard ........................................................................................... 78 Alpha Diversity in the Mariana BASC .............................................................. 79 Beta Diversity in the Mariana BASC ................................................................ 80 Regional Comparisons ........................................................................................ 82 The Mariana Region ........................................................................................... 84 References ........................................................................................................................ 88 Chapter 3: Conclusions and Future Directions........................................................................ 95 Major Outcomes.............................................................................................................. 95 Collected Taxa ..................................................................................................... 95 Diversity Distributions in the Mariana BASC .................................................. 96 Environmental Drivers ....................................................................................... 97 Regional Comparisons ........................................................................................ 97 Big Picture ......................................................................................................................
Recommended publications
  • Vertical, Lateral and Temporal Structure in Larval Distributions at Hydrothermal Vents
    MARINE ECOLOGY PROGRESS SERIES Vol. 293: 1–16, 2005 Published June 2 Mar Ecol Prog Ser Vertical, lateral and temporal structure in larval distributions at hydrothermal vents L. S. Mullineaux1,*, S. W. Mills1, A. K. Sweetman2, A. H. Beaudreau3, 4 5 A. Metaxas , H. L. Hunt 1Woods Hole Oceanographic Institution, MS 34, Woods Hole, Massachusetts 02543, USA 2Max-Planck-Institut für marine Mikrobiologie, Celsiusstraße 1, 28359 Bremen, Germany 3University of Washington, Box 355020, Seattle, Washington 98195, USA 4Dalhousie University, Halifax, Nova Scotia B3H 4J1, Canada 5University of New Brunswick, PO Box 5050, Saint John, New Brunswick E2L 4L5, Canada ABSTRACT: We examined larval abundance patterns near deep-sea hydrothermal vents along the East Pacific Rise to investigate how physical transport processes and larval behavior may interact to influence larval dispersal from, and supply to, vent populations. We characterized vertical and lateral distributions and temporal variation of larvae of vent species using high-volume pumps that recov- ered larvae in good condition (some still alive) and in high numbers (up to 450 individuals sample–1). Moorings supported pumps at heights of 1, 20, and 175 m above the seafloor, and were positioned directly above and at 10s to 100s of meters away from vent communities. Sampling was conducted on 4 cruises between November 1998 and May 2000. Larvae of 22 benthic species, including gastropods, a bivalve, polychaetes, and a crab, were identified unequivocally as vent species, and 15 additional species, or species-groups, comprised larvae of probable vent origin. For most taxa, abundances decreased significantly with increasing height above bottom. When vent sites within the confines of the axial valley were considered, larval abundances were significantly higher on-vent than off, sug- gesting that larvae may be retained within the valley.
    [Show full text]
  • The Recent Molluscan Marine Fauna of the Islas Galápagos
    THE FESTIVUS ISSN 0738-9388 A publication of the San Diego Shell Club Volume XXIX December 4, 1997 Supplement The Recent Molluscan Marine Fauna of the Islas Galapagos Kirstie L. Kaiser Vol. XXIX: Supplement THE FESTIVUS Page i THE RECENT MOLLUSCAN MARINE FAUNA OF THE ISLAS GALApAGOS KIRSTIE L. KAISER Museum Associate, Los Angeles County Museum of Natural History, Los Angeles, California 90007, USA 4 December 1997 SiL jo Cover: Adapted from a painting by John Chancellor - H.M.S. Beagle in the Galapagos. “This reproduction is gifi from a Fine Art Limited Edition published by Alexander Gallery Publications Limited, Bristol, England.” Anon, QU Lf a - ‘S” / ^ ^ 1 Vol. XXIX Supplement THE FESTIVUS Page iii TABLE OF CONTENTS INTRODUCTION 1 MATERIALS AND METHODS 1 DISCUSSION 2 RESULTS 2 Table 1: Deep-Water Species 3 Table 2: Additions to the verified species list of Finet (1994b) 4 Table 3: Species listed as endemic by Finet (1994b) which are no longer restricted to the Galapagos .... 6 Table 4: Summary of annotated checklist of Galapagan mollusks 6 ACKNOWLEDGMENTS 6 LITERATURE CITED 7 APPENDIX 1: ANNOTATED CHECKLIST OF GALAPAGAN MOLLUSKS 17 APPENDIX 2: REJECTED SPECIES 47 INDEX TO TAXA 57 Vol. XXIX: Supplement THE FESTIVUS Page 1 THE RECENT MOLLUSCAN MARINE EAUNA OE THE ISLAS GALAPAGOS KIRSTIE L. KAISER' Museum Associate, Los Angeles County Museum of Natural History, Los Angeles, California 90007, USA Introduction marine mollusks (Appendix 2). The first list includes The marine mollusks of the Galapagos are of additional earlier citations, recent reported citings, interest to those who study eastern Pacific mollusks, taxonomic changes and confirmations of 31 species particularly because the Archipelago is far enough from previously listed as doubtful.
    [Show full text]
  • Biodiversity and Trophic Ecology of Hydrothermal Vent Fauna Associated with Tubeworm Assemblages on the Juan De Fuca Ridge
    Biogeosciences, 15, 2629–2647, 2018 https://doi.org/10.5194/bg-15-2629-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. Biodiversity and trophic ecology of hydrothermal vent fauna associated with tubeworm assemblages on the Juan de Fuca Ridge Yann Lelièvre1,2, Jozée Sarrazin1, Julien Marticorena1, Gauthier Schaal3, Thomas Day1, Pierre Legendre2, Stéphane Hourdez4,5, and Marjolaine Matabos1 1Ifremer, Centre de Bretagne, REM/EEP, Laboratoire Environnement Profond, 29280 Plouzané, France 2Département de sciences biologiques, Université de Montréal, C.P. 6128, succursale Centre-ville, Montréal, Québec, H3C 3J7, Canada 3Laboratoire des Sciences de l’Environnement Marin (LEMAR), UMR 6539 9 CNRS/UBO/IRD/Ifremer, BP 70, 29280, Plouzané, France 4Sorbonne Université, UMR7144, Station Biologique de Roscoff, 29680 Roscoff, France 5CNRS, UMR7144, Station Biologique de Roscoff, 29680 Roscoff, France Correspondence: Yann Lelièvre ([email protected]) Received: 3 October 2017 – Discussion started: 12 October 2017 Revised: 29 March 2018 – Accepted: 7 April 2018 – Published: 4 May 2018 Abstract. Hydrothermal vent sites along the Juan de Fuca community structuring. Vent food webs did not appear to be Ridge in the north-east Pacific host dense populations of organised through predator–prey relationships. For example, Ridgeia piscesae tubeworms that promote habitat hetero- although trophic structure complexity increased with ecolog- geneity and local diversity. A detailed description of the ical successional stages, showing a higher number of preda- biodiversity and community structure is needed to help un- tors in the last stages, the food web structure itself did not derstand the ecological processes that underlie the distribu- change across assemblages.
    [Show full text]
  • I. Türkiye Derin Deniz Ekosistemi Çaliştayi Bildiriler Kitabi 19 Haziran 2017
    I. TÜRKİYE DERİN DENİZ EKOSİSTEMİ ÇALIŞTAYI BİLDİRİLER KİTABI 19 HAZİRAN 2017 İstanbul Üniversitesi, Su Bilimleri Fakültesi, Gökçeada Deniz Araştırmaları Birimi, Çanakkale, Gökçeada EDİTÖRLER ONUR GÖNÜLAL BAYRAM ÖZTÜRK NURİ BAŞUSTA Bu kitabın bütün hakları Türk Deniz Araştırmaları Vakfı’na aittir. İzinsiz basılamaz, çoğaltılamaz. Kitapta bulunan makalelerin bilimsel sorumluluğu yazarlarına aittir. All rights are reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means without the prior permission from the Turkish Marine Research Foundation. Copyright © Türk Deniz Araştırmaları Vakfı ISBN-978-975-8825-37-0 Kapak fotoğrafları: Mustafa YÜCEL, Bülent TOPALOĞLU, Onur GÖNÜLAL Kaynak Gösterme: GÖNÜLAL O., ÖZTÜRK B., BAŞUSTA N., (Ed.) 2017. I. Türkiye Derin Deniz Ekosistemi Çalıştayı Bildiriler Kitabı, Türk Deniz Araştırmaları Vakfı, İstanbul, Türkiye, TÜDAV Yayın no: 45 Türk Deniz Araştırmaları Vakfı (TÜDAV) P. K: 10, Beykoz / İstanbul, TÜRKİYE Tel: 0 216 424 07 72, Belgegeçer: 0 216 424 07 71 Eposta: [email protected] www.tudav.org ÖNSÖZ Dünya denizlerinde 200 metre derinlikten sonra başlayan bölgeler ‘Derin Deniz’ veya ‘Deep Sea’ olarak bilinir. Son 50 yılda sualtı teknolojisindeki gelişmelere bağlı olarak birçok ulus bu bilinmeyen deniz ortamlarını keşfetmek için yarışırken yeni cihazlar denemekte ayrıca yeni türler keşfetmektedirler. Özellikle Amerika, İngiltere, Kanada, Japonya başta olmak üzere birçok ülke derin denizlerin keşfi yanında derin deniz madenciliğine de ilgi göstermektedirler. Daha şimdiden Yeni Gine izin ve ruhsatlandırma işlemlerine başladı bile. Bütün bunlar olurken ülkemizde bu konuda çalışan uzmanları bir araya getirerek sinerji oluşturma görevini yine TÜDAV üstlendi. Memnuniyetle belirtmek gerekir ki bu çalıştay amacına ulaşmış 17 değişik kurumdan 30 uzman değişik konularda bildiriler sunarak konuya katkı sunmuşlardır.
    [Show full text]
  • A Comparison of Copepoda (Order: Calanoida, Cyclopoida, Poecilostomatoida) Density in the Florida Current Off Fort Lauderdale, Florida
    Nova Southeastern University NSUWorks HCNSO Student Theses and Dissertations HCNSO Student Work 6-1-2010 A Comparison of Copepoda (Order: Calanoida, Cyclopoida, Poecilostomatoida) Density in the Florida Current Off orF t Lauderdale, Florida Jessica L. Bostock Nova Southeastern University, [email protected] Follow this and additional works at: https://nsuworks.nova.edu/occ_stuetd Part of the Marine Biology Commons, and the Oceanography and Atmospheric Sciences and Meteorology Commons Share Feedback About This Item NSUWorks Citation Jessica L. Bostock. 2010. A Comparison of Copepoda (Order: Calanoida, Cyclopoida, Poecilostomatoida) Density in the Florida Current Off Fort Lauderdale, Florida. Master's thesis. Nova Southeastern University. Retrieved from NSUWorks, Oceanographic Center. (92) https://nsuworks.nova.edu/occ_stuetd/92. This Thesis is brought to you by the HCNSO Student Work at NSUWorks. It has been accepted for inclusion in HCNSO Student Theses and Dissertations by an authorized administrator of NSUWorks. For more information, please contact [email protected]. Nova Southeastern University Oceanographic Center A Comparison of Copepoda (Order: Calanoida, Cyclopoida, Poecilostomatoida) Density in the Florida Current off Fort Lauderdale, Florida By Jessica L. Bostock Submitted to the Faculty of Nova Southeastern University Oceanographic Center in partial fulfillment of the requirements for the degree of Master of Science with a specialty in: Marine Biology Nova Southeastern University June 2010 1 Thesis of Jessica L. Bostock Submitted in Partial Fulfillment of the Requirements for the Degree of Masters of Science: Marine Biology Nova Southeastern University Oceanographic Center June 2010 Approved: Thesis Committee Major Professor :______________________________ Amy C. Hirons, Ph.D. Committee Member :___________________________ Alexander Soloviev, Ph.D.
    [Show full text]
  • Molecular Species Delimitation and Biogeography of Canadian Marine Planktonic Crustaceans
    Molecular Species Delimitation and Biogeography of Canadian Marine Planktonic Crustaceans by Robert George Young A Thesis presented to The University of Guelph In partial fulfilment of requirements for the degree of Doctor of Philosophy in Integrative Biology Guelph, Ontario, Canada © Robert George Young, March, 2016 ABSTRACT MOLECULAR SPECIES DELIMITATION AND BIOGEOGRAPHY OF CANADIAN MARINE PLANKTONIC CRUSTACEANS Robert George Young Advisors: University of Guelph, 2016 Dr. Sarah Adamowicz Dr. Cathryn Abbott Zooplankton are a major component of the marine environment in both diversity and biomass and are a crucial source of nutrients for organisms at higher trophic levels. Unfortunately, marine zooplankton biodiversity is not well known because of difficult morphological identifications and lack of taxonomic experts for many groups. In addition, the large taxonomic diversity present in plankton and low sampling coverage pose challenges in obtaining a better understanding of true zooplankton diversity. Molecular identification tools, like DNA barcoding, have been successfully used to identify marine planktonic specimens to a species. However, the behaviour of methods for specimen identification and species delimitation remain untested for taxonomically diverse and widely-distributed marine zooplanktonic groups. Using Canadian marine planktonic crustacean collections, I generated a multi-gene data set including COI-5P and 18S-V4 molecular markers of morphologically-identified Copepoda and Thecostraca (Multicrustacea: Hexanauplia) species. I used this data set to assess generalities in the genetic divergence patterns and to determine if a barcode gap exists separating interspecific and intraspecific molecular divergences, which can reliably delimit specimens into species. I then used this information to evaluate the North Pacific, Arctic, and North Atlantic biogeography of marine Calanoida (Hexanauplia: Copepoda) plankton.
    [Show full text]
  • The Heart of a Dragon: 3D Anatomical Reconstruction of the 'Scaly-Foot Gastropod'
    The heart of a dragon: 3D anatomical reconstruction of the 'scaly-foot gastropod' (Mollusca: Gastropoda: Neomphalina) reveals its extraordinary circulatory system Chen, C., Copley, J. T., Linse, K., Rogers, A. D., & Sigwart, J. D. (2015). The heart of a dragon: 3D anatomical reconstruction of the 'scaly-foot gastropod' (Mollusca: Gastropoda: Neomphalina) reveals its extraordinary circulatory system. Frontiers in zoology, 12(13), [13]. https://doi.org/10.1186/s12983-015-0105-1 Published in: Frontiers in zoology Document Version: Publisher's PDF, also known as Version of record Queen's University Belfast - Research Portal: Link to publication record in Queen's University Belfast Research Portal Publisher rights © 2015 Chen et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. General rights Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws.
    [Show full text]
  • Chemical and Thermal Description of the Environment of the Genesis Hydrothermal Vent Community (13°N, EPR)
    Cah. Biol. Mar. (1998) 39 : 159-167 Chemical and thermal description of the environment of the Genesis hydrothermal vent community (13°N, EPR) Pierre-Marie SARRADIN1, Jean-Claude CAPRAIS1, Patrick BRIAND1, Françoise GAILL2, Bruce SHILLITO2 et Daniel DESBRUYÈRES1 1 DRO/EP/LEA IFREMER centre de BREST - BP 70 - F-29280 PLOUZANE (France), 2 INSU / CNRS / UPMC Roscoff / Paris (France) Fax: (33) 2 98 22 47 57; e-mail: [email protected] Abstract: The objective of this study is to describe the chemical and physical environment surrounding the vent organisms at the Genesis site (EPR, 2640 m). The main chimney is colonized by Riftia pachyptila, fishes Zoarcidae and crabs Bythograeidae. The top of the smoker is covered with tubes of polychaetes Alvinellidae, the frontier zone by limpet gastropods. Temperature measurements and water sampling were made on an axis along the chimney. The environment was characterized using relationships between chemical concentrations and temperature to provide a chemo-thermal model of the site. Discrete temperature ranges were l-1.6°C in sea water, 1.6- 10°C among Riftia plumes (up to 25°C at the tube base), 7-91°C close to the alvinellid tubes, fluid emission was 262-289°C. This study describes the habitat - 2- -1 -1 of Alvinellidae emphasizing its chemical (£S [H2S + HS + S ] 3-300 µmol l , CO2 3.5-6 mmol l , pH 5.7-7.5) and thermal specificities compared to the Riftia ones (IS 4-12 µmol l-1 ; CO2 2-3.5 mmol 1-1 ; pH 5.8-7.7). The size of Riftia allowed us to define its environment at the organism (temperature gradient along the tube 0.5-1°C cm-1) and population scales (temperature difference between organisms from the same clump: 10-20°C).
    [Show full text]
  • Orden POECILOSTOMATOIDA Manual
    Revista IDE@ - SEA, nº 97 (30-06-2015): 1-15. ISSN 2386-7183 1 Ibero Diversidad Entomológica @ccesible www.sea-entomologia.org/IDE@ Clase: Maxillopoda: Copepoda Orden POECILOSTOMATOIDA Manual CLASE MAXILLOPODA: SUBCLASE COPEPODA: Orden Poecilostomatoida Antonio Melic Sociedad Entomológica Aragonesa (SEA). Avda. Francisca Millán Serrano, 37; 50012 Zaragoza [email protected] 1. Breve definición del grupo y principales caracteres diagnósticos El orden Poecilostomatoida Thorell, 1859 tiene una posición sistemática discutida. Tradicionalmente ha sido considerado un orden independiente, dentro de los 10 que conforman la subclase Copepoda; no obstante, algunos autores consideran que no existen diferencias suficientes respeto al orden Cyclopoida, del que vendrían a ser un suborden (Stock, 1986 o Boxshall & Halsey, 2004, entre otros). No obstante, en el presente volumen se ha considerado un orden independiente y válido. Antes de entrar en las singularidades del orden es preciso tratar sucintamente la morfología, ecolo- gía y biología de Copepoda, lo que se realiza en los párrafos siguientes. 1.1. Introducción a Copepoda Los copépodos se encuentran entre los animales más abundantes en número de individuos del planeta. El plancton marino puede alcanzar proporciones de un 90 por ciento de copépodos respecto a la fauna total presente. Precisamente por su número y a pesar de su modesto tamaño (forman parte de la micro y meiofauna) los copépodos representan una papel fundamental en el funcionamiento de los ecosistemas marinos. En su mayor parte son especies herbívoras –u omnívoras– y por lo tanto transformadoras de fito- plancton en proteína animal que, a su vez, sirve de alimento a todo un ejército de especies animales, inclu- yendo gran número de larvas de peces.
    [Show full text]
  • MOLECULAR PHYLOGENY of the NERITIDAE (GASTROPODA: NERITIMORPHA) BASED on the MITOCHONDRIAL GENES CYTOCHROME OXIDASE I (COI) and 16S Rrna
    ACTA BIOLÓGICA COLOMBIANA Artículo de investigación MOLECULAR PHYLOGENY OF THE NERITIDAE (GASTROPODA: NERITIMORPHA) BASED ON THE MITOCHONDRIAL GENES CYTOCHROME OXIDASE I (COI) AND 16S rRNA Filogenia molecular de la familia Neritidae (Gastropoda: Neritimorpha) con base en los genes mitocondriales citocromo oxidasa I (COI) y 16S rRNA JULIAN QUINTERO-GALVIS 1, Biólogo; LYDA RAQUEL CASTRO 1,2 , Ph. D. 1 Grupo de Investigación en Evolución, Sistemática y Ecología Molecular. INTROPIC. Universidad del Magdalena. Carrera 32# 22 - 08. Santa Marta, Colombia. [email protected]. 2 Programa Biología. Universidad del Magdalena. Laboratorio 2. Carrera 32 # 22 - 08. Sector San Pedro Alejandrino. Santa Marta, Colombia. Tel.: (57 5) 430 12 92, ext. 273. [email protected]. Corresponding author: [email protected]. Presentado el 15 de abril de 2013, aceptado el 18 de junio de 2013, correcciones el 26 de junio de 2013. ABSTRACT The family Neritidae has representatives in tropical and subtropical regions that occur in a variety of environments, and its known fossil record dates back to the late Cretaceous. However there have been few studies of molecular phylogeny in this family. We performed a phylogenetic reconstruction of the family Neritidae using the COI (722 bp) and the 16S rRNA (559 bp) regions of the mitochondrial genome. Neighbor-joining, maximum parsimony and Bayesian inference were performed. The best phylogenetic reconstruction was obtained using the COI region, and we consider it an appropriate marker for phylogenetic studies within the group. Consensus analysis (COI +16S rRNA) generally obtained the same tree topologies and confirmed that the genus Nerita is monophyletic. The consensus analysis using parsimony recovered a monophyletic group consisting of the genera Neritina , Septaria , Theodoxus , Puperita , and Clithon , while in the Bayesian analyses Theodoxus is separated from the other genera.
    [Show full text]
  • TREATISE ONLINE Number 48
    TREATISE ONLINE Number 48 Part N, Revised, Volume 1, Chapter 31: Illustrated Glossary of the Bivalvia Joseph G. Carter, Peter J. Harries, Nikolaus Malchus, André F. Sartori, Laurie C. Anderson, Rüdiger Bieler, Arthur E. Bogan, Eugene V. Coan, John C. W. Cope, Simon M. Cragg, José R. García-March, Jørgen Hylleberg, Patricia Kelley, Karl Kleemann, Jiří Kříž, Christopher McRoberts, Paula M. Mikkelsen, John Pojeta, Jr., Peter W. Skelton, Ilya Tëmkin, Thomas Yancey, and Alexandra Zieritz 2012 Lawrence, Kansas, USA ISSN 2153-4012 (online) paleo.ku.edu/treatiseonline PART N, REVISED, VOLUME 1, CHAPTER 31: ILLUSTRATED GLOSSARY OF THE BIVALVIA JOSEPH G. CARTER,1 PETER J. HARRIES,2 NIKOLAUS MALCHUS,3 ANDRÉ F. SARTORI,4 LAURIE C. ANDERSON,5 RÜDIGER BIELER,6 ARTHUR E. BOGAN,7 EUGENE V. COAN,8 JOHN C. W. COPE,9 SIMON M. CRAgg,10 JOSÉ R. GARCÍA-MARCH,11 JØRGEN HYLLEBERG,12 PATRICIA KELLEY,13 KARL KLEEMAnn,14 JIřÍ KřÍž,15 CHRISTOPHER MCROBERTS,16 PAULA M. MIKKELSEN,17 JOHN POJETA, JR.,18 PETER W. SKELTON,19 ILYA TËMKIN,20 THOMAS YAncEY,21 and ALEXANDRA ZIERITZ22 [1University of North Carolina, Chapel Hill, USA, [email protected]; 2University of South Florida, Tampa, USA, [email protected], [email protected]; 3Institut Català de Paleontologia (ICP), Catalunya, Spain, [email protected], [email protected]; 4Field Museum of Natural History, Chicago, USA, [email protected]; 5South Dakota School of Mines and Technology, Rapid City, [email protected]; 6Field Museum of Natural History, Chicago, USA, [email protected]; 7North
    [Show full text]
  • A New Minute Ectosymbiotic Harpacticoid Copepod Living on the Sea Cucumber Eupentacta Fraudatrix in the East/Japan Sea
    A new minute ectosymbiotic harpacticoid copepod living on the sea cucumber Eupentacta fraudatrix in the East/Japan Sea Jisu Yeom1, Mikhail A. Nikitin2, Viatcheslav N. Ivanenko3 and Wonchoel Lee1 1 Department of Life Science, Hanyang University, Seoul, South Korea 2 A.N. Belozersky Institute of Physico-chemical Biology, Lomonosov Moscow State University, Moscow, Russia 3 Department of Invertebrate Zoology, Biological Faculty, Lomonosov Moscow State University, Moscow, Russia ABSTRACT The ectosymbiotic copepods, Vostoklaophonte eupenta gen. & sp. nov. associated with the sea cucumber Eupentacta fraudatrix, was found in the subtidal zone of Peter the Great Bay, East/Japan Sea. The new genus, Vostoklaophonte, is similar to Microchelonia in the flattened body form, reduced mandible, maxillule and maxilla, but with well-developed prehensile maxilliped, and in the reduced segmentation and setation of legs 1–5. Most appendages of the new genus are more primitive than those of Microchelonia. The inclusion of the symbiotic genera Microchelonia and Vostoklaophonte gen. nov. in Laophontidae, as well as their close phylogenetic relationships, are supported by morphological observations and molecular data. This is the third record of laophontid harpacticoid copepods living in symbiosis with sea cucumbers recorded from the Korean and Californian coasts. Subjects Biodiversity, Marine Biology, Taxonomy Keywords Copepoda, Laophontidae, Eupentacta fraudatrix, Ectosymbiosis, New genus, 18S rDNA INTRODUCTION 21 December 2017 Submitted Symbiotic harpacticoids that use holothurians as hosts are rarely reported compared to Accepted 16 May 2018 Published 14 June 2018 the orders Poecilostomatoida and Siphonostomatoida (Humes, 1980; Ho, 1982; Jangoux, Corresponding author 1990; Mahatma, Arbizu & Ivanenko, 2008; Avdeev, 2017). Among harpacticoids, only one Wonchoel Lee, [email protected] species of Tisbidae Stebbing, 1910—Sacodiscus humesi Stock, 1960— and two species of Academic editor Laophontidae T.
    [Show full text]