<I>PHYLLOMEDUSA SAUVAGII
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Journey of Life of the Tiger-Striped Leaf Frog Callimedusa Tomopterna (Cope, 1868): Notes of Sexual Behaviour, Nesting and Reproduction in the Brazilian Amazon
Herpetology Notes, volume 11: 531-538 (2018) (published online on 25 July 2018) The journey of life of the Tiger-striped Leaf Frog Callimedusa tomopterna (Cope, 1868): Notes of sexual behaviour, nesting and reproduction in the Brazilian Amazon Thainá Najar1,2 and Lucas Ferrante2,3,* The Tiger-striped Leaf Frog Callimedusa tomopterna 2000; Venâncio & Melo-Sampaio, 2010; Downie et al, belongs to the family Phyllomedusidae, which is 2013; Dias et al. 2017). constituted by 63 described species distributed in In 1975, Lescure described the nests and development eight genera, Agalychnis, Callimedusa, Cruziohyla, of tadpoles to C. tomopterna, based only on spawns that Hylomantis, Phasmahyla, Phrynomedusa, he had found around the permanent ponds in the French Phyllomedusa, and Pithecopus (Duellman, 2016; Guiana. However, the author mentions a variation in the Frost, 2017). The reproductive aspects reported for the number of eggs for some spawns and the use of more than species of this family are marked by the uniqueness of one leaf for confection in some nests (Lescure, 1975). egg deposition, placed on green leaves hanging under The nests described by Lescure in 1975 are probably standing water, where the tadpoles will complete their from Phyllomedusa vailantii as reported by Lescure et development (Haddad & Sazima, 1992; Pombal & al. (1995). The number of eggs in the spawns reported Haddad, 1992; Haddad & Prado, 2005). However, by Lescure (1975) diverge from that described by other exist exceptions, some species in the genus Cruziohyla, authors such as Neckel-Oliveira & Wachlevski, (2004) Phasmahylas and Prhynomedusa, besides the species and Lima et al. (2012). In addition, the use of more than of the genus Agalychnis and Pithecopus of clade one leaf for confection in the nest mentioned by Lescure megacephalus that lay their eggs in lotic environments (1975), are characteristic of other species belonging to (Haddad & Prado, 2005; Faivovich et al. -
Release Calls of Four Species of Phyllomedusidae (Amphibia, Anura)
Herpetozoa 32: 77–81 (2019) DOI 10.3897/herpetozoa.32.e35729 Release calls of four species of Phyllomedusidae (Amphibia, Anura) Sarah Mângia1, Felipe Camurugi2, Elvis Almeida Pereira1,3, Priscila Carvalho1,4, David Lucas Röhr2, Henrique Folly1, Diego José Santana1 1 Mapinguari – Laboratório de Biogeografia e Sistemática de Anfíbios e Repteis, Universidade Federal de Mato Grosso do Sul, 79002-970, Campo Grande, MS, Brazil. 2 Programa de Pós-graduação em Ecologia, Universidade Federal do Rio Grande do Norte, Lagoa Nova, 59072-970, Natal, RN, Brazil. 3 Programa de Pós-graduação em Biologia Animal, Laboratório de Herpetologia, Universidade Federal Rural do Rio de Janeiro, 23890-000, Seropédica, RJ, Brazil. 4 Programa de Pós-Graduação em Biologia Animal, Universidade Estadual Paulista (UNESP), 15054-000, São José do Rio Preto, SP, Brazil. http://zoobank.org/16679B5D-5CC3-4EF1-B192-AB4DFD314C0B Corresponding author: Sarah Mângia ([email protected]) Academic editor: Günter Gollmann ♦ Received 8 January 2019 ♦ Accepted 6 April 2019 ♦ Published 15 May 2019 Abstract Anurans emit a variety of acoustic signals in different behavioral contexts during the breeding season. The release call is a signal produced by the frog when it is inappropriately clasped by another frog. In the family Phyllomedusidae, this call type is known only for Pithecophus ayeaye. Here we describe the release call of four species: Phyllomedusa bahiana, P. sauvagii, Pithecopus rohdei, and P. nordestinus, based on recordings in the field. The release calls of these four species consist of a multipulsed note. Smaller species of the Pithecopus genus (P. ayeaye, P. rohdei and P. nordestinus), presented shorter release calls (0.022–0.070 s), with high- er dominant frequency on average (1508.8–1651.8 Hz), when compared to the bigger Phyllomedusa (P. -
Miocene Plio-Pleistocene Oligocene Eocene Paleocene Cretaceous
Phrynomantis microps Hemisus sudanensis Hemisus marmoratus Balebreviceps hillmani Breviceps mossambicus Breviceps adspersus Breviceps montanus Breviceps fuscus Breviceps gibbosus Breviceps macrops Breviceps namaquensis Breviceps branchi Spelaeophryne methneri Probreviceps loveridgei Probreviceps uluguruensis Probreviceps durirostris Probreviceps sp. Nguru Probreviceps sp. Rubeho Probreviceps sp. Kigogo Probreviceps sp. Udzungwa Probreviceps rungwensis Probreviceps macrodactylus Callulina shengena Callulina laphami Callulina dawida Callulina kanga Callulina sp lowland Callulina sp Rubeho Callulina hanseni Callulina meteora Callulina stanleyi Callulina kisiwamsitu Callulina kreffti Nyctibates corrugatus Scotobleps gabonicus Astylosternus laticephalus Astylosternus occidentalis Trichobatrachus robustus Astylosternus diadematus Astylosternus schioetzi Astylosternus batesi Leptodactylodon mertensi Leptodactylodon erythrogaster Leptodactylodon perreti Leptodactylodon axillaris Leptodactylodon polyacanthus Leptodactylodon bicolor Leptodactylodon bueanus Leptodactylodon ornatus Leptodactylodon boulengeri Leptodactylodon ventrimarmoratus Leptodactylodon ovatus Leptopelis parkeri Leptopelis macrotis Leptopelis millsoni Leptopelis rufus Leptopelis argenteus Leptopelis yaldeni Leptopelis vannutellii Leptopelis susanae Leptopelis gramineus Leptopelis kivuensis Leptopelis ocellatus Leptopelis spiritusnoctis Leptopelis viridis Leptopelis aubryi Leptopelis natalensis Leptopelis palmatus Leptopelis calcaratus Leptopelis brevirostris Leptopelis notatus -
Evidence of Ranavirus in a Green Tree Frog (Litoria Caerulea) in Captive
Short Communication Evidence of Ranavirus in a green tree frog (Litoria caerulea) in captive zoo Nopadon Pirarat1 Angkana Sommanustweechai2 Somporn Techangamsuwan1,3* Abstract Ranavirus is one of the causative agents responsible for the rapid decline in amphibian populations worldwide. The objectives of this study were to detect and to genetically characterize ranavirus infection in 36 liver tissues obtained from dead imported zoo amphibians in Thailand. Polymerase chain reaction and molecular phylogenetic analysis was performed based on nucleotide sequences containing major capsid protein gene. Results showed 1 positive sample (~531 bp) from a green tree frog (Litoria caerulea). The virus was highly homologous (98%) and closely related to ranavirus. Our results extend the risk and evidence of ranavirus infection in zoo amphibian in Thailand. Keywords: green tree frog, ranavirus, zoo amphibian 1STAR Wildlife, Exotic and Aquatic Pathology, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand 2Bureau of Conservation, Research and Education, Zoological Park Organization, Bangkok 10300, Thailand 3Center of Excellence for Emerging and Re-emerging Infectious Disease in Animals (CUEIDAs), Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand *Correspondence: [email protected] Thai J Vet Med. 2016. 46(3): 497-502. 498 Pirarat N. et al. / Thai J Vet Med. 2016. 46(3): 497-502. Introduction of Thailand during 2010-2013 (Table 1). These dead frogs were found in frog aquariums in the zoos without In recent decade, there has been a rapid global clinical records. The frogs were kept individually in decline in amphibian populations. Many important each aquarium. High mortality was observed in factors including the destruction and alteration of the imported frogs during the first few months after physical habitats of the animals and the emergence of introducing them to the aquariums. -
BOA5.1-2 Frog Biology, Taxonomy and Biodiversity
The Biology of Amphibians Agnes Scott College Mark Mandica Executive Director The Amphibian Foundation [email protected] 678 379 TOAD (8623) Phyllomedusidae: Agalychnis annae 5.1-2: Frog Biology, Taxonomy & Biodiversity Part 2, Neobatrachia Hylidae: Dendropsophus ebraccatus CLassification of Order: Anura † Triadobatrachus Ascaphidae Leiopelmatidae Bombinatoridae Alytidae (Discoglossidae) Pipidae Rhynophrynidae Scaphiopopidae Pelodytidae Megophryidae Pelobatidae Heleophrynidae Nasikabatrachidae Sooglossidae Calyptocephalellidae Myobatrachidae Alsodidae Batrachylidae Bufonidae Ceratophryidae Cycloramphidae Hemiphractidae Hylodidae Leptodactylidae Odontophrynidae Rhinodermatidae Telmatobiidae Allophrynidae Centrolenidae Hylidae Dendrobatidae Brachycephalidae Ceuthomantidae Craugastoridae Eleutherodactylidae Strabomantidae Arthroleptidae Hyperoliidae Breviceptidae Hemisotidae Microhylidae Ceratobatrachidae Conrauidae Micrixalidae Nyctibatrachidae Petropedetidae Phrynobatrachidae Ptychadenidae Ranidae Ranixalidae Dicroglossidae Pyxicephalidae Rhacophoridae Mantellidae A B † 3 † † † Actinopterygian Coelacanth, Tetrapodomorpha †Amniota *Gerobatrachus (Ray-fin Fishes) Lungfish (stem-tetrapods) (Reptiles, Mammals)Lepospondyls † (’frogomander’) Eocaecilia GymnophionaKaraurus Caudata Triadobatrachus 2 Anura Sub Orders Super Families (including Apoda Urodela Prosalirus †) 1 Archaeobatrachia A Hyloidea 2 Mesobatrachia B Ranoidea 1 Anura Salientia 3 Neobatrachia Batrachia Lissamphibia *Gerobatrachus may be the sister taxon Salientia Temnospondyls -
Unravelling the Skin Secretion Peptides of the Gliding Leaf Frog, Agalychnis Spurrelli (Hylidae)
Unravelling the Skin Secretion Peptides of the Gliding Leaf Frog, Agalychnis spurrelli (Hylidae) Proaño-Bolaños, C., Blasco-Zúñiga , A., Rafael Almeida , J., Wang, L., Angel Llumiquinga , M., Rivera, M., Zhou, M., Chen, T., & Shaw, C. (2019). Unravelling the Skin Secretion Peptides of the Gliding Leaf Frog, Agalychnis spurrelli (Hylidae). Biomolecules, 9(11), [667]. https://doi.org/10.3390/biom9110667 Published in: Biomolecules Document Version: Publisher's PDF, also known as Version of record Queen's University Belfast - Research Portal: Link to publication record in Queen's University Belfast Research Portal Publisher rights Copyright 2019 the authors. This is an open access article published under a Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited. General rights Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches -
Hand and Foot Musculature of Anura: Structure, Homology, Terminology, and Synapomorphies for Major Clades
HAND AND FOOT MUSCULATURE OF ANURA: STRUCTURE, HOMOLOGY, TERMINOLOGY, AND SYNAPOMORPHIES FOR MAJOR CLADES BORIS L. BLOTTO, MARTÍN O. PEREYRA, TARAN GRANT, AND JULIÁN FAIVOVICH BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY HAND AND FOOT MUSCULATURE OF ANURA: STRUCTURE, HOMOLOGY, TERMINOLOGY, AND SYNAPOMORPHIES FOR MAJOR CLADES BORIS L. BLOTTO Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil; División Herpetología, Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”–CONICET, Buenos Aires, Argentina MARTÍN O. PEREYRA División Herpetología, Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”–CONICET, Buenos Aires, Argentina; Laboratorio de Genética Evolutiva “Claudio J. Bidau,” Instituto de Biología Subtropical–CONICET, Facultad de Ciencias Exactas Químicas y Naturales, Universidad Nacional de Misiones, Posadas, Misiones, Argentina TARAN GRANT Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil; Coleção de Anfíbios, Museu de Zoologia, Universidade de São Paulo, São Paulo, Brazil; Research Associate, Herpetology, Division of Vertebrate Zoology, American Museum of Natural History JULIÁN FAIVOVICH División Herpetología, Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”–CONICET, Buenos Aires, Argentina; Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; Research Associate, Herpetology, Division of Vertebrate Zoology, American -
Amphibian Taxon Advisory Group Regional Collection Plan
1 Table of Contents ATAG Definition and Scope ......................................................................................................... 4 Mission Statement ........................................................................................................................... 4 Addressing the Amphibian Crisis at a Global Level ....................................................................... 5 Metamorphosis of the ATAG Regional Collection Plan ................................................................. 6 Taxa Within ATAG Purview ........................................................................................................ 6 Priority Species and Regions ........................................................................................................... 7 Priority Conservations Activities..................................................................................................... 8 Institutional Capacity of AZA Communities .............................................................................. 8 Space Needed for Amphibians ........................................................................................................ 9 Species Selection Criteria ............................................................................................................ 13 The Global Prioritization Process .................................................................................................. 13 Selection Tool: Amphibian Ark’s Prioritization Tool for Ex situ Conservation .......................... -
Anura: Phyllomedusidae): a Tree Frog Inhabiting the Brazilian Semiarid
SALAMANDRA 55(4) 242–252 30 OctoberMarina 2019 dos SantosISSN 0036–3375 Faraulo et al. Reproductive behavior of Pithecopus nordestinus (Anura: Phyllomedusidae): a tree frog inhabiting the Brazilian semiarid Marina dos Santos Faraulo, Jamille Freitas Dias & Juliana Zina Universidade Estadual do Sudoeste da Bahia (UESB) – Campus de Jequié, Departamento de Ciências Biológicas, Laboratório de Vertebrados, Av. José Moreira Sobrinho, s/n, Jequiezinho, Jequié, Bahia, Brasil, CEP: 45208-091 Corresponding author: Marina dos Santos Faraulo, e-mail: [email protected] Manuscript received: 18 May 2019 Accepted: 2 September 2019 by Arne Schulze Abstract. Pithecopus nordestinus is a small species of Phyllomedusidae that occurs in semi-arid zones, being the only one of the genus that occurs in Caatinga areas. In order to understand the ecological and behavioral traits responsible for the existence of the species in xeric environments we study a population of P. nordetinus of a Caatinga area in southwest Bahia, Brazil. Males of P. nordestinus used preferably the vegetation (mainly Euphorbiaceae and Poaceae) inside semi-permanent and temporary water bodies as calling sites. The dependence of aquatic environments, the arboreal habit, and reproduc- tive mode may lead to these preferences, being that choice related to the species fitness in the semiarid region. The species has elaborated courtship, including the use of visual signals, with females that inspect the oviposition site and split their clutch (spatial partition), probably spawning in more than one occasion during the reproductive season (temporal parti- tion). This set of behaviors points to a sophisticated control mechanism during egg laying and sperm release, as well as the existence of a repertoire of complex reproductive behavioral displays related to the occupation of environments with characteristics as peculiar as those of the Brazilian Northeastern semi-arid. -
Bioactive Molecules from Amphibian Skin: Their Biological Activities with Reference to Therapeutic Potentials for Possible Drug Development
Indian Journal of Experimental Biology Vol. 45, July 2007, pp. 579-593 Review Article Bioactive molecules from amphibian skin: Their biological activities with reference to therapeutic potentials for possible drug development Antony Gomes1, Biplab Giri1, Archita Saha1, R Mishra1, Subir C Dasgupta1, A Debnath2 & Aparna Gomes2 1Laboratory of Toxinology and Experimental Pharmacodynamics Department of Physiology, University of Calcutta 92 A. P. C. Road, Kolkata 700 009, India 2Division of New Drug Development, Indian Institute of Chemical Biology 4 S. C. Mullick Road, Kolkata 700 032, India The amphibian skin contains various bioactive molecules (peptides, proteins, steroids, alkaloids, opiods) that possess potent therapeutic activities like antibacterial, antifungal, antiprotozoal, antidiabetic, antineoplastic, analgesic and sleep inducing properties. Research on amphibian skin derived biomolecules can provide potential clue towards newer drug development to combat various pathophysiological conditions. An overview on the bioactive molecules of various amphibian skins has been discussed. Keywords: Amphibians, Frog skin, Medicinal application, Skin bioactive molecules, Therapeutic potential, Toad skin The amphibians are defenseless creatures that are in traditional medicines. Torched newts are consumed preferably by a great variety of predators. sometimes sold in Asia as aphrodisiacs and the skin of In order to protect themselves from the potential certain species are said to cure illnesses. Superstitions predators, the amphibians have evolved different and folklore as these may be, they were actually the morphological, physiological and behavioral features. stepping-stones to modern biological sciences. One such defense mechanism is the slimy glandular In fact, toad and frog skin extracts have been used secretion by the skin. Frogs and toads have two types in Chinese medicine for treating various ailments. -
Terrestrial Kbas in the Great Lakes Region (Arranged Alphabetically)
Appendix 1. Terrestrial KBAs in the Great Lakes Region (arranged alphabetically) Terrestrial KBAs Country Map No.1 Area (ha) Protect AZE3 Pressure Biological Other Action CEPF ion2 Priority4 funding5 Priority6 EAM7 Ajai Wildlife Reserve Uganda 1 15,800 **** medium 4 1 3 Akagera National Park Rwanda 2 100,000 *** medium 3 3 3 Akanyaru wetlands Rwanda 3 30,000 * high 4 0 2 Bandingilo South Sudan 4 1,650,000 **** unknown 4 3 3 Bangweulu swamps (Mweru ) Zambia 5 1,284,000 *** high 4 3 2 Belete-Gera Forest Ethiopia 6 152,109 **** unknown 3 3 3 Y Bonga forest Ethiopia 7 161,423 **** medium 2 3 3 Y Budongo Forest Reserve Uganda 8 79,300 **** medium 2 3 3 Y Bugoma Central Forest Uganda 9 40,100 low 2 3 3 **** Y Reserve Bugungu Wildlife Reserve Uganda 10 47,300 **** medium 4 3 3 Y Bulongwa Forest Reserve Tanzania 11 203 **** unknown 4 0 3 Y Burigi - Biharamulo Game Tanzania 12 350,000 unknown 4 0 3 **** Reserves Bururi Forest Nature Reserve Burundi 13 1,500 **** medium 3 1 3 Y Busia grasslands Kenya 14 250 * very high 4 1 2 Bwindi Impenetrable National Uganda 15 32,700 low 1 3 3 **** Y Park 1 See Basin level maps in Appendix 6. 2 Categorised * <10% protected; ** 10-49% protected; *** 50-90% protected: **** >90% protected. 3 Alliaqnce for Zero Extinction site (Y = yes). See section 2.2.2. 4 See Section 9.2. 5 0 – no funding data; 1 – some funding up to US$50k allocated; 2 – US$50-US$250k; 3 – >US$250k. -
2007 Proceedings Association of Reptilian and Amphibian Veterinarians Reproductive Organs in Lizards Are Paired and Located Craniomedial to the Kidneys
UROGENITAL TRACT DISEASES OF REPTILES AND AMPHIBIANS Drury R. Reavill, DVM, Dipl ABVP (Avian Practice), Dipl ACVP* and Robert E. Schmidt, DVM, DipIACVP, PhD* Zoo/Exotic Pathology Service, 2825 KOVR Drive, West Sacramento, CA 95605 USA ABSTRACT This paper covers the diseases ofthe urogenital system in both reptiles and amphibians. It is not a comprehensive review. More in-depth disease descriptions can be found in the articles, website, and reference books listed in the literature cited. After a brief summary of the normal gross appearance, the paper is divided by etiologic disease categories involving the urogenital system. A short discussion of the disease conditions of reptiles and amphibians are found in each section. For the purposes ofthis paper, chelonian will refer to all of the shelled reptiles. The term "tortoise" will be used to describe the large land animals that have stout elephantine feet. Few references to marine turtles, caecilian, and crocodilian species are included, as these are uncommonly seen in most clinical practices. Normal Gross Anatomy It will be important to recognize the normal gross appearance of the urogenital tract in order to determine if there are abnormalities that require further examination, either by surgical biopsies or histologic examination during a necropsy procedure. The kidneys in lizards are located in the caudal dorsal coelom, lateral to the lumbar spine. Most lizards, particularly the iguanids, will have the kidneys within the pelvic canal. Monitor species have the kidneys located approximately mid-caudal coelom. The kidneys are paired, symmetric, elongated, and slightly lobulated. In many lizard species, the caudal aspect of the kidneys may be closely apposed or fused.