Controlled Synthesis of Polyepichlorohydrin with Pendant
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A New Approach to Prepare Polyethylene Glycol Allyl Glycidyl Ether
E3S Web of Conferences 267, 02004 (2021) https://doi.org/10.1051/e3sconf/202126702004 ICESCE 2021 A new approach to prepare Polyethylene Glycol Allyl Glycidyl Ether Huizhen Wang1*, Ruiyang Xie1, Mingjun Chen1*, Weihao Deng1, Kaixin Zhang2, Jiaqin Liu1 1School of Science, Xihua University, Chengdu 610039, China; 2Chengdu Jingyiqiang Environmental Protection Technology Co., Ltd. Abstract. The polyethylene glycol allyl glycidyl ether (PGAGE) is an important intermediate for preparing silicone softener that can be synthesized from allyl alcohol polyoxyethylene ether and epichlorohydrin (ECH). The performance parameters including the concentration of ECH, initial boron trifluoride diethyl etherate (BFEE) as well as CaCl2 quality were investigated respectively. The optimum process parameters which can get high capping and low by-product rate are as follows: the ECH concentration is 2.0 M, the initial BFEE concentration is 1.65mM, and the CaCl2 dosage is 1.65g/L. Under these conditions, the maximal yield can be improved to 91.36%, the percent of capping rate is higher than 98.16%, the residual concentration of F- is only 0.63 mg/L. concentrated basic solution, in which the total yield was between 90%~91% by Matsuoka et al. [10] also use the 1 Introduction two-step reaction to synthesize AGE based on the reaction Polyethylene glycol allyl glycidyl ether (PGAGE) and the of allyl alcohol with ECH using BFEE as the catalyst. allyl polyoxyethylene ether (APEG), tethering with both Their results demonstrated that the yield reaches 82% alkene and epoxy groups, are widely used as fabric under the following condition: n (ECH) : n (allyl alcohol): finishing agent [1-2] , reactive diluent [3] , cross-linking (catalysis) = 1: (1~3) : (0.01~0.002). -
A New Coupling Process for Synthesis of Epichlorohydrin from Dichloropropanols
2nd International Conference on Machinery, Materials Engineering, Chemical Engineering and Biotechnology (MMECEB 2015) A new coupling process for synthesis of epichlorohydrin from dichloropropanols Dawei Wu, Sumin Zhou* School of Chemical Engineering, Huaiyin Institute of Technology, Huaian 223005, China [email protected] Keywords: dichloropropanol, epichlorohydrin, tubular reactor, wiped film evaporation. Abstract. As an important material used in the production of epoxy resins, epichlorohydrin is usually derived from the saponification and cyclization of dichloropropanol in a tower reacting system. In order to reduce energy consumption and wastewater discharge, a new process of tubular reactor coupled with wiped film evaporation was adopt to produce epichlorohydrin. The effects of different technological parameters on the yield of the coupling process were investigated, such as reactants' molar ratio, reaction & evaporation temperature, residence time and so on. Results indicated that the use of coupling process will significantly reduce the material consumption and shorter the reaction time. This coupling process provided a useful suggestion for the design of the industrial plants. 1. Introduction Epichlorohydyin(ECH), also known as 1-chloro-2, 3-epoxy propane, is an important chemical material, mainly used to synthesizing epoxy resin, chlorohydrins rubber, pesticide, plasticizer and so on [1]. The main method to produce ECH is high-temperature chlorination of propylene [2]. With the fast-development of biodiesel production, the use of glycerol for producing ECH [3-4] is going to mature and has become an important industrial technological process [5]. Although the difference raw materials were used, the processes also consist of two reaction steps as well. First step is the saponification and cyclization of dichloropropanol (DCP) to produce ECH. -
Production of Glycidyl Compounds
Office europeen des brevets (fi) Publication number : 0 491 529 A1 @ EUROPEAN PATENT APPLICATION @ Application number : 91311630.7 © Int. CI.5: C07D 301/28, C07D 303/24 (22) Date of filing : 13.12.91 (30) Priority : 18.12.90 GB 9027448 (72) Inventor : Thoseby, Michael Robert 29 De Freville Avenue Cambridge (GB) (43) Date of publication of application : Inventor : Rolfe, William Martin 24.06.92 Bulletin 92/26 42 Vetch Walk Haverhill, Suffolk (GB) (S) Designated Contracting States : CH DE ES FR GB IT LI NL (74) Representative : Sparrow, Kenneth D. et al CIBA-GEIGY PLC. Patent Department, Central Research, Hulley Road @ Applicant : CIBA-GEIGY AG Macclesfield, Cheshire SK10 2NX (GB) Klybeckstrasse 141 CH-4002 Basel (CH) (54) Production of glycidyl compounds. (57) A process for the production of a glycidyl ether of an alcohol, comprising reacting an alcohol with epichlorohydrin, in substantially the stoichiometric proportions required to pro- duce the 1:1 adduct, in the presence, as catal- yst, of a salt of perchloric acid or trifluoromethane sulphonic acid with a metal of Group IMA of the Periodic Table of Elements (according to the IUPAC 1970 convention) ; and then dehydrochlorinating the product so obtained. CM LU Jouve, 18, rue Saint-Denis, 75001 PARIS 1 EP 0 491 529 A1 2 The present invention relates to a process for the 100 parts by weight of the alcohol reactant. production of glycidyl compounds. The alcohol reactant may be a primary, secon- The addition reaction between epoxides and dary or tertiary alcohol. While monohydric alcohols alcohols, in the presence of a catalyst, to produce an may be used, e.g. -
Gasket Chemical Services Guide
Gasket Chemical Services Guide Revision: GSG-100 6490 Rev.(AA) • The information contained herein is general in nature and recommendations are valid only for Victaulic compounds. • Gasket compatibility is dependent upon a number of factors. Suitability for a particular application must be determined by a competent individual familiar with system-specific conditions. • Victaulic offers no warranties, expressed or implied, of a product in any application. Contact your Victaulic sales representative to ensure the best gasket is selected for a particular service. Failure to follow these instructions could cause system failure, resulting in serious personal injury and property damage. Rating Code Key 1 Most Applications 2 Limited Applications 3 Restricted Applications (Nitrile) (EPDM) Grade E (Silicone) GRADE L GRADE T GRADE A GRADE V GRADE O GRADE M (Neoprene) GRADE M2 --- Insufficient Data (White Nitrile) GRADE CHP-2 (Epichlorohydrin) (Fluoroelastomer) (Fluoroelastomer) (Halogenated Butyl) (Hydrogenated Nitrile) Chemical GRADE ST / H Abietic Acid --- --- --- --- --- --- --- --- --- --- Acetaldehyde 2 3 3 3 3 --- --- 2 --- 3 Acetamide 1 1 1 1 2 --- --- 2 --- 3 Acetanilide 1 3 3 3 1 --- --- 2 --- 3 Acetic Acid, 30% 1 2 2 2 1 --- 2 1 2 3 Acetic Acid, 5% 1 2 2 2 1 --- 2 1 1 3 Acetic Acid, Glacial 1 3 3 3 3 --- 3 2 3 3 Acetic Acid, Hot, High Pressure 3 3 3 3 3 --- 3 3 3 3 Acetic Anhydride 2 3 3 3 2 --- 3 3 --- 3 Acetoacetic Acid 1 3 3 3 1 --- --- 2 --- 3 Acetone 1 3 3 3 3 --- 3 3 3 3 Acetone Cyanohydrin 1 3 3 3 1 --- --- 2 --- 3 Acetonitrile 1 3 3 3 1 --- --- --- --- 3 Acetophenetidine 3 2 2 2 3 --- --- --- --- 1 Acetophenone 1 3 3 3 3 --- 3 3 --- 3 Acetotoluidide 3 2 2 2 3 --- --- --- --- 1 Acetyl Acetone 1 3 3 3 3 --- 3 3 --- 3 The data and recommendations presented are based upon the best information available resulting from a combination of Victaulic's field experience, laboratory testing and recommendations supplied by prime producers of basic copolymer materials. -
Filter Chart
Filter Chart Chemical Filter Chemical Filter Chemical Filter Abate FFP1 tert-Butyl acetate A1 Copper fume FFP1 Acetaldehyde A1 Butyl acrylate A1 Dusts & mist (as Cu) FFP1 Acetic acid E1 n-Butyl alcohol A1 Cotton dust, raw FFP1 Acetic anhydride B1 sec-Butyl alcohol R A1 Crag herbicide FFP1 Acetonitrile A1 Butylamine B1 Cresol, all isomers FFP1 Acetylene dichloride A1 tert-Butyl chromate (as Cro3) FFP1 Cumene FFP1 Acetylene tetrabromide A1 n-Butyl glycidyl ether(BGE) A1 Cyanamide A1 P1 Acetylsalicylic acid FFP2 n-Butyl lactate A1 Cyanogen B1 Acrolein A1 o-sec Butyl phenol A1 Acrylamide A1 P2 p-tert Butyltoluene A1 Cyanogen chloride (CK) B1 Acrylonitrile A1 Cadmium, dust & salts (as Cd) FFP1 Cyclohexane A1 Aldrin A1 P2 Cadmium oxide fume (as Cd) FFP1 Cyclohexnol A1 Allyl alcohol A1 Calcium cyanamide FFP1 Cyclohexanone A1 Allyl chloride A1 Calcium hydroxide FFP1 Cyclohexene Allyl glycidyl ether (AGE) A1 Calcium oxide FFP1 A1 Allyl propyl disulfide B1 Camphor, synthetic A1 Cyclohexylamine A1 Aluminium metal and oxide FFP2 Caprolactam Dust FFP1 Cyclonite B1 Aluminium pyro powders FFP2 Vapor A1 1.3 Cyclopentadiene A1 Aluminium welding fumes A1 P2 Captafol(DifolatanR) FFP1 2.4-D (2.4-Dichlorophenoxy acetic acid) FFP1 Aluminium soluble salts FFP2 Captan FFP1 Aluminium, alkyls A1 R Carbary (Seven ) FFP1 D.D.T. (Dichlorodiphenyl A1 P1 4-Aminodiphenyl FFP1 Carbofuran (FuradanR) FFP1 trichloroethane) A1 P1 2- Aminoethanol A1 Carbon black FFP1 DDVP Decaborane B1 P1 2- Aminopyridine K1 Carbon dusulfide B1 DemetonR B1 P1 Ammonia A1 Carbon tetrabromide -
Vulcanizable Epichlorohydrin Polymer Composition
Europaisches Patentamt J European Patent Office © Publication number: 0 657 499 A1 Office europeen des brevets EUROPEAN PATENT APPLICATION © Application number: 94119434.2 © int. Ci.6; C08K 13/02, //(C08K1 3/02,3:26, 5:45) @ Date of filing: 08.12.94 © Priority: 09.12.93 JP 308836/93 © Applicant: DAISO CO., LTD. 1 9.04.94 JP 801 76/94 1 0-8, Edobori 1 -chome Nishi-ku @ Date of publication of application: Osaka-shi 14.06.95 Bulletin 95/24 Osaka-fu (JP) © Designated Contracting States: @ Inventor: Tomoshige, Yoshihiro DE ES FR GB IT Yasuda-shukusha 2-507, 348-7 Tohda-cho Masuda-shi, Shimane-ken (JP) Inventor: Nishi, Yoshikazu 35-5, Ohshima 2-chome Amagasaka-shi, Hyogo-ken (JP) Inventor: Tanaka, Hidekazu 7-1-205, Mukonosato 2-chome Amagasaka-shi, Hyogo-ken (JP) Inventor: Ohnuki, Kohji 1-6-12, Nishitachibana-cho Amagasaki-shi, Hyogo-ken (JP) Inventor: Matoba, Yasuo 9-8-104, Kayandoh-cho Nishinomiya-shi, Hyogo-ken (JP) © Representative: VOSSIUS & PARTNER Siebertstrasse 4 D-81675 Munchen (DE) © Vulcanizable epichlorohydrin polymer composition. © A vulcanizable composition which contains (a) 100 parts by weight of an epichlorohydrin polymer; m CO (b) 0.1 to 10 parts by weight of a 2,3-dimercaptopyrazine derivative or a 2,3-dimercaptoquinoxaline derivative; and (c) 1 to 10 parts by weight of a hydrotalcite compound, has the high vulcanization rate and the excellent long time storage stability. Rank Xerox (UK) Business Services (3. 10/3.09/3.3.4) EP 0 657 499 A1 The present invention relates to a curable composition based on an epichlorohydrin polymer having excellent vulcanization properties and storage stability. -
Allyl Glycidyl Ether
ENEA0080 - ALLYL GLYCIDYL ETHER ALLYL GLYCIDYL ETHER Safety Data Sheet ENEA0080 Date of issue: 12/22/2016 Version: 1.0 SECTION 1: Identification 1.1. Product identifier Product name : ALLYL GLYCIDYL ETHER Product code : ENEA0080 Product form : Substance Physical state : Liquid Formula : C6H10O2 Synonyms : 2-(ALLYLOXYMETHYL)OXIRANE 1,2-EPOXY-3-ALLYLOXYPROPANE [(2-PROPENYLOXY)METHYL]OXIRANE 1-(2-PROPENYLOXY)-2,3-EPOXYPROPANE Chemical family : EPOXY COMPOUND 1.2. Recommended use of the chemical and restrictions on use Recommended use : Chemical intermediate For research and industrial use only 1.3. Details of the supplier of the safety data sheet GELEST, INC. 11 East Steel Road Morrisville, PA 19067 USA T 215-547-1015 - F 215-547-2484 - (M-F): 8:00 AM - 5:30 PM EST [email protected] - www.gelest.com 1.4. Emergency telephone number Emergency number : CHEMTREC: 1-800-424-9300 (USA); +1 703-527-3887 (International) SECTION 2: Hazard(s) identification 2.1. Classification of the substance or mixture GHS-US classification Flammable liquids Category 3 H226 Acute toxicity (oral) Category 4 H302 Acute toxicity (inhalation:vapor) Category 3 H331 Skin sensitization Category 1 H317 Germ cell mutagenicity Category 2 H341 Reproductive toxicity Category 2 H361 Specific target organ toxicity (single exposure) Category 3 H335 Hazardous to the aquatic environment - Acute Hazard Category 3 H402 Full text of H statements : see section 16 2.2. Label elements GHS-US labeling Hazard pictograms (GHS-US) : GHS02 GHS06 GHS07 GHS08 Signal word (GHS-US) : Danger Hazard -
Comparisons of Epoxy Technology for Protective Coatings and Linings In
ComparisonsComparisons ofof EpoxyEpoxy TechnologyTechnology forfor ProtectiveProtective CoatingsCoatings andand LiningsLinings inin WastewaterWastewater FacilitiesFacilities By John D. Durig, General Polymers, Cincinnati, Ohio, USA Aeration tank at a wastewater plant. Bis F epoxy resin with an aliphatic or a cycloaliphatic amine curing agent is appropriate. Editor’s Note: This article was first presented at SSPC (Photos courtesy of the author) 99, The Industrial Protective Coatings Conference and Exhibit, November 14-18, 1999, in Houston, TX, USA, and published in The Proceedings of the Seminars, SSPC 99-14, pp. 31-37. poxy technology and methods of curing and Epoxy Resin Technology E reacting with amine-based hardeners have There are three types of epoxy resins that find application continued to evolve since the first epoxy patents were is- in wastewater treatment facilities: bisphenol A, bisphenol sued in the 1930s. The possible reactions combined with F, and novolac resins. These resins all result from reac- wide-ranging formulation additives have resulted in a myri- tions of epichlorohydrin with phenolic compounds. The ad of products that can easily confuse decision makers type and number of phenolic groups determine both when it comes to product selection. Adding to the confu- physical and performance properties of the cured resin. sion is the wide range of environmental factors that must be considered when choosing a protective coating system. Bisphenol A Resin Structure This article will identify the primary differences be- Bisphenol A is a reaction product of phenol and acetone. tween three types of epoxies and four types of amine- Bisphenol A is reacted with epichlorohydrin to form based hardeners typically used in coatings for wastewater diglycidylether bisphenol A resin or DGEBA. -
The Production of Epichlorohydrin from Glycerol. a Bachelor Integration Project for Delfzijl’S Chempark
The production of epichlorohydrin from glycerol. A Bachelor Integration Project for Delfzijl’s Chempark Ruurd Feikes van der Heide University of Groningen Faculty of Science and Engineering IE&M Bachelor Thesis Supervisor 1: prof. Dr. Ir. HJ (Erik) Heeres Supervisor 2: Dr. Ing. H. Kloosterman Syncom supervisor: Dr. Ir. Andre Heeres June 2018 Pelsterstraat 32 9711 KM Groningen (06) 13787270 [email protected] student number 2674122 1 Table of content Introduction (RDP) -Problem context -Stakeholder analysis -System description -Goal statement -Design goal -Scope -Research questions -Cycle choice Abstract Backgrounds -Glycerol -Epichlorohydrin Benchmark -Propylene into epichlorohydrin, via allyl chloride -Allyl chloride to epichlorohydrin -TRL Innovation - Glycerol into epichlorohydrin -Hydrochlorination -Hexanoic acid -Acetic acid -Dehydrochlorination -TRL Cost analysis -Hexanoic acid -Solid oxide Discussion and conclusions References Appendix 2 Problem context The city of Delfzijl (Netherlands) has a chemical park with multiple factories present. The companies at the chemical park have interrelationships with each other which results that if a few of them stop producing products, the other companies will find problems in their own existence. The committee Willems started an investigation how the chemical park should optimize its competitiveness among the business environment nowadays. Willems used to be a high ranked employee of Shell before leaving the company. The committee stated that if the companies on the park want to stay in business, changes within production methods have to be made. A more sustainable production method where green raw materials like biomass are converted into valuable products is the solution to stay competitive. Prof. Dr. Ir. -
Current Chemistry Letters Synthesis of Allyl-Glycidyl Ether by The
Current Chemistry Letters 6 (2017) 7–14 Contents lists available at GrowingScience Current Chemistry Letters homepage: www.GrowingScience.com Synthesis of allyl-glycidyl ether by the epoxidation of diallyl ether with t-butyl hydroperoxide over the Ti-MWW catalyst Agnieszka Wróblewskaa*, Marika Walaseka and Beata Michalkiewiczb aWest Pomeranian University of Technology, Szczecin, Institute of Organic Chemical Technology, Pulaskiego 10, 70-322 Szczecin, Poland bWest Pomeranian University of Technology, Szczecin, Institute of Inorganic Chemical Technology and Environment Engineering, Pulaskiego 10, 70- 322 Szczecin, Poland C H R O N I C L E A B S T R A C T Article history: In this paper, modified hydrothermal method for Ti-MWW catalyst preparation has been Received August 21, 2016 shown. Instrumental analysis of the zeolite material Ti-MWW has been performed by means Received in revised form of UV-vis spectrometry, infrared spectrometry (IR), scanning electron microscope (SEM), X- October 24, 2016 ray diffraction (XRD), and X-ray microanalysis. Moreover, the results of the epoxidation of Accepted 8 November 2016 diallyl ether (DAE) over the titanium silicate catalyst Ti-MWW and in the presence of Available online methanol have been presented. t-Butyl hydroperoxide have been applied for the first time as 9 November 2016 an oxidant for this process. The influence of temperature (20-130°C), DAE/TBHP molar ratio Keywords: (1:1-3:1), methanol concentration (10-80 wt%), amount of catalyst (1-7 wt%) and reaction Diallyl ether time (60-1440 min.) was studied. The main functions describing the process were determined Allyl-glycidyl ether on the basis of the results obtained from the gas chromatography method. -
NIH Public Access Author Manuscript Polym Chem
NIH Public Access Author Manuscript Polym Chem. Author manuscript; available in PMC 2014 December 05. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: Polym Chem. 2012 ; 3(6): 1618–1628. doi:10.1039/C2PY20131C. Functional block copolymer nanoparticles: toward the next generation of delivery vehicles† Maxwell J. Robba, Luke A. Connala, Bongjae F. Leea, Nathaniel A. Lynda, and Craig J. Hawkera,b,* aDepartment of Chemistry and Biochemistry, Materials Department, and Materials Research Laboratory, University of California, Santa Barbara, CA 93106, USA bKing Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia 31261 Abstract The self-assembly of functional block copolymers (BCPs) into dispersed nanoparticles is a powerful technique for the preparation of novel delivery vehicles with precise control of morphology and architecture. Well-defined BCPs containing an alkyne-functional, biodegradable polylactide (PLA) block were synthesized and conjugated with azide-functional coumarin dyes via copper catalyzed azide alkyne cycloaddition ‘click’ chemistry. Self-assembled nanoparticles with internal nanophase-separated morphologies could then be accessed by carefully controlling the composition of the BCPs and release of the covalently attached model payload was shown to occur under physiological conditions via the degradation of the PLA scaffold. These results demonstrate the potential of self-assembled nanoparticles as modular delivery vehicles with multiple functionalities, nanostructures, and compartmentalized internal morphology. Introduction The design of efficient drug delivery vehicles has been a long standing challenge in polymer and materials science. A variety of polymeric platforms have been developed in recent years based on an array of different structures including micelles,1–6 dendrimers,7–10 hydrogels,11–13 and encapsulant particles. -
Identification and Quantitation Studies of Migrants from BPA Alternative
polymers Article Identification and Quantitation Studies of Migrants from BPA Alternative Food-Contact Metal Can Coatings Nan Zhang *, Joseph B. Scarsella and Thomas G. Hartman * Department of Food Science, Rutgers, The State University of New Jersey, 65 Dudley Road, New Brunswick, NJ 08901, USA; [email protected] * Correspondence: [email protected] (N.Z.); [email protected] (T.G.H.); Tel.: +1-848-932-5543 (N.J. & T.G.H.) Received: 28 October 2020; Accepted: 26 November 2020; Published: 29 November 2020 Abstract: Bisphenol A (BPA)-based epoxy resins have wide applications as food-contact materials such as metal can coatings. However, negative consumer perceptions toward BPA have driven the food packaging industry to develop other alternatives. In this study, four different metal cans and their lids manufactured with different BPA-replacement food-contact coatings are subjected to migration testing in order to identify migratory chemical species from the coatings. Migration tests are conducted using food simulants and conditions of use corresponding to the intended applications and regulatory guidance from the U.S. Food and Drug Administration. Extracts are analyzed by gas chromatography mass spectrometry (GC-MS) and high resolution GC-MS. The migratory compounds identified include short chain cyclic polyester migrants from polyester-based coatings and bisphenol-type migrants including tetramethyl bisphenol F (TMBPF), tetramethyl bisphenol F diglycidyl ether (TMBPF DGE), bisphenol F (BPF), bisphenol C (BPC), and other related monomers or oligomers. The concentration of the migrants is estimated using an internal standard, and validated trimethylsilyl (TMS) derivatization GC-MS methods are developed to specifically quantify TMBPF, BPF, BPC, and BPA in the coatings.