United States Patent (19) (11) 4,284,573 Arnett Et Al

Total Page:16

File Type:pdf, Size:1020Kb

United States Patent (19) (11) 4,284,573 Arnett Et Al United States Patent (19) (11) 4,284,573 Arnett et al. 45) Aug. 18, 1981 54 PREPARATION OF GLYCIDYL ETHERS OTHER PUBLICATIONS 75 Inventors: John F. Arnett, Newton; George A. Chemical Abstracts, vol. 87 (1977) 22359X. Doorakian, Bedford, both of Mass. Primary Examiner-Norma S. Milestone 73) Assignee: The Dow Chemical Company, Attorney, Agent, or Firm-Michael L. Glenn Midland, Mich. 57 ABSTRACT 21 Appl. No.: 80,769 A process for producing glycidyl ethers of phenols is described which comprises the steps of: (22 Filed: Oct. 1, 1979 (1) reacting by contacting, in liquid phase, a phenol with excess epichlorohydrin in the presence of a catalytic 5ll Int. Cl............................................. CO7D 301/28 amount of tetrahydrocarbyl phosphonium bicarbon 52 U.S. Cl. ........................... 260/348.15; 260/348.19 ate salt, to thereby produce a coupled reaction prod 58) Field of Search ...................... 260/348.15, 348.18, uct comprising the corresponding propylene 260/348.19 chlorohydrin ether of said phenol; (2) devolatilizing said coupled reaction product to re 56) References Cited move excess epichlorohydrin and volatile by-pro U.S. PATENT DOCUMENTS ducts; and (3) contacting the devolatilized reaction product from 3,948,855 4/1976 Perry ............................... 260/47 EP Step (2) with aqueous base, thereby converting the 3,992,432 11/1976 Napier et al. ... 260/348.31 . propylenechlorohydrin groups of the coupled reac 3,996,259 12/1976. Lee et al. ..... ... 260/348.18 tion product to glycidyl ether groups. FOREIGN PATENT DOCUMENTS This process is particularly useful in preparing low 893.191 7/1970 Canada . molecular weight liquid epoxy resins by the reaction of 2335199 1/1975 Fed. Rep. of Germany ...... 260/348.15 epichlorohydrin with bisphenol A. 2533505 12/1976 Fed. Rep. of Germany ...... 260/348.15 1019565 2/1966 United Kingdom ................ 260/348.15 10 Claims, No Drawings 4,284,573 1 2 teaches that the coupling reaction should be conducted PREPARATION OF GLYCDYL ETHERS at temperatures less than 60° C. At temperatures in excess of 60° C., undesirable polymeric compounds are BACKGROUND OF THE INVENTION formed. 1. Field of the Invention Others have utilized sulfonium salts (e.g., British Pat. This invention pertains to a process of making glyci No. 1,019,565), tertiary amines or quaternary ammo dyl ethers of phenolic compounds by the reaction of nium salts as catalysts for the coupling reaction (e.g., epichlorohydrin with the phenols. More particularly, British Pat. No. 897,744) and still others have utilized this invention pertains to a process for making low phosphonium salts (German AUS. No. 2,335, 199) and molecular weight liquid epoxy resins from the reaction 10 /or phosphoranes (e.g., German Offen. No. 2,533,505). of epichlorohydrin with polyhydric phenols. The latter two German references are the closest prior 2. Prior Art art relative to step one in the instant process in that The prior art is replete with techniques of preparing these references do at least use catalysts containing glycidyl ethers of phenols and particularly for prepar phosphorus. ing glycidyl ethers of polyhydric phenols. 15 The dehydrochlorination step has also been the sub The usual preparation of glycidyl ethers of phenols ject of investigation. Smith (U.S. Pat. No. 3,372,442) involves the reaction of epichlorohydrin with a phenol teaches that the dehydrochlorination is facilitated by in the presence of an alkali metal hydroxide, as repre using an aqueous sodium hydroxide solution which is sented by the following equation: substantially saturated with sodium carbonate. Becker 20 (U.S. Pat. No. 3,980,679) teaches that the dehydrochlo R rination is facilitated by adding solid alkali metal hy O droxide incrementally to the reaction mixture. / N None of the aforementioned references teach that Cl-H2C-HC - CH2 + HO - NaOH there is any advantage in conducting the dehydrochlo 25 rination step in the presence of a quaternary onium salt nor do they indicate what effect, if any, the residual O quaternary onium salts or other catalysts have on the / N reaction product or on this particular step of the overall H2C - CH-CH2-O -- NaCl -- H2O reaction. It is known, however, that amines and quater 30 nary ammonium salts are capable of causing degrada The stoichiometry of the reaction requires one equiva tion of the epoxides. And at least one of the references lent of epichorohydrin and one equivalent of base per specifically teaches that the catalyst for the coupled phenolic hydroxyl group. However, excessive amounts reaction should be removed from the reaction mixture of undesirable by-products are produced if one uses a 35 prior to the dehydrochlorination reaction (British Pat. stoichiometric ratio of reactants. To maximize the yield No. 897,744). The other references are not as explicit in of the glycidyl ether, excess epichlorohydrin and excess their written description but convey the same teaching base have been used to a substantial advantage. One of in that they wash the coupling reaction product with the major problems associated with the use of excess water to remove the catalyst and/or water-soluble by epichlorohydrin has been the recovery of unreacted 40 products, (e.g., sodium chloride and other salts) before epichlorohydrin from the reaction product. the dehydrochlorination step. Still other references A typical multistep method for preparing glycidyl handle the problem by passing the glycidyl ether of the ethers of phenols which results in the production of low phenol through various clays or other materials to ab molecular weight epoxy resins is described in U.S. Pat. sorb the residual catalyst from the reaction product. No. 2,943,095 (Farnham et al.). Farnham et al. con 45 The glycidyl ethers of phenols can be prepared ac ducted the reaction of epichlorohydrin with a polyhyd cording to the above techniques using either batch pro ric phenol in two steps: In the first step, the phenol is cesses or by continuous processes. This is illustrated by reacted with excess epichlorohydrin in the presence of the above references and by German Pat. No. 2,522,745 a base (e.g., lithium chloride, lithium acetate and alkali and German Pat. No. 2,523,696. metal hydroxides) to give a product comprising the 50 propylene chlorohydrin of the phenol. This reaction is SUMMARY OF THE INVENTION generally referred to as the coupling reaction. Farnham A process for producing glycidyl ethers of phenols et al. report that in stage one, the reaction temperature has now been discovered which comprises the steps of: should not exceed 45 C. In step two, the coupled reac (a) introducing a catalytic amount of a tetrahydrocar tion product is dehydrohalogenated with a strong base 55 by phosphonium bicarbonate salt into a liquid phase to form the corresponding glycidyl ether of the phenol. mixture of a phenol with excess epichlorohydrin to This dehydrohalogenation is normally performed in a thereby produce at reactive conditions a coupled reac mixture of liquids comprising a volatile water-soluble 'tion product comprising the corresponding propylene alcohol or ketone and a water-immiscible liquid. Farn chlorohydrin ether of said phenol; and ham et al. recover excess epichlorohydrin by distillation (b) contacting the coupled reaction product in a liq between steps one and two. uid organic solvent with sufficient aqueous base in the Many other patents have issued which also use a presence of a catalytic amount of the tetrahydrocarbyl multistep reaction and which teach that various cata phosphonium bicarbonate salt or its in situ derivative lysts may be used to promote the coupling reaction. salts from step (a) to convert the propylenechlorohy Reinking et al. (U.S. Pat. No. 2,943,096) indicate that 65 drin groups to the corresponding glycidyl ether groups. the coupling step is greatly facilitated by conducting the The glycidyl ethers prepared in the above-described reaction under anhydrous conditions in the presence of manner are advantageous because of their excellent a quaternary ammonium salt catalyst. This reference color and purity. Epoxy resins produced by this process 4,284,573 3 moveover have the advantage of a low total organic chloride content and a narrow molecular weight distri R R R R I bution that corresponds closely to theory. DETAILED DESCRIPTION OF THE HO X OH INVENTION Phosphonium Bicarbonate Salts R R R R The tetrahydrocarbyl phosphonium bicarbonate salts O wherein each R independently is hydrogen, halogen correspond to the formula I (fluoro, chloro or bromo) or a hydrocarbyl radical and X is oxygen, sulfur, -SO-, -SO2-, bivalent hydro carbon radicals containing up to about 10 carbon atoms, and oxygen-, sulfur- and nitrogen-containing hydrocar R.--R, HCO3G, 15 bon radicals, such as -OR'O-, -OR'OR'O-, -S-R'-S-, -S-R'-S-R-S-, -OSiO-, -OSiOSiO-, wherein R1, R2, R3 and R4 independently are hydro O O carbyl or inertly-substituted hydrocarbyl radicals, hav 20 ing from 1 to about 20 carbon atoms. R1, R2, R3 and R4. are preferably C1 to C12 alkyl groups or phenyl and and -SO2-R'-SO2-radicals wherein R is a bivalent more preferably are C1 to C4 alkyl or phenyl. More hydrocarbon radical. 4,4'-Isopropylidenediphenol (i.e., preferably R1-R3 are each phenyl groups and R4 is an bisphenol A) is the most preferred phenol. n-butyl group. Most preferably R1-R3 are each n-butyl 25 groups and R4 is a methyl group. COUPLING REACTION: STEP (A) Compounds of the formula I are conveniently pre The process for preparing glycidyl ethers of phenols pared by reacting at room temperature a tetrahydrocar consists of two distinct reactions-coupling (Step (a)) and dehydrochlorination (Step (b)). These reactions can byl phosphonium halide dissolved in a lower alkanol 30 be carried out in a batch, semi-continuous or continuous with an ion-exchange resin (quaternary ammonium hy process.
Recommended publications
  • A New Approach to Prepare Polyethylene Glycol Allyl Glycidyl Ether
    E3S Web of Conferences 267, 02004 (2021) https://doi.org/10.1051/e3sconf/202126702004 ICESCE 2021 A new approach to prepare Polyethylene Glycol Allyl Glycidyl Ether Huizhen Wang1*, Ruiyang Xie1, Mingjun Chen1*, Weihao Deng1, Kaixin Zhang2, Jiaqin Liu1 1School of Science, Xihua University, Chengdu 610039, China; 2Chengdu Jingyiqiang Environmental Protection Technology Co., Ltd. Abstract. The polyethylene glycol allyl glycidyl ether (PGAGE) is an important intermediate for preparing silicone softener that can be synthesized from allyl alcohol polyoxyethylene ether and epichlorohydrin (ECH). The performance parameters including the concentration of ECH, initial boron trifluoride diethyl etherate (BFEE) as well as CaCl2 quality were investigated respectively. The optimum process parameters which can get high capping and low by-product rate are as follows: the ECH concentration is 2.0 M, the initial BFEE concentration is 1.65mM, and the CaCl2 dosage is 1.65g/L. Under these conditions, the maximal yield can be improved to 91.36%, the percent of capping rate is higher than 98.16%, the residual concentration of F- is only 0.63 mg/L. concentrated basic solution, in which the total yield was between 90%~91% by Matsuoka et al. [10] also use the 1 Introduction two-step reaction to synthesize AGE based on the reaction Polyethylene glycol allyl glycidyl ether (PGAGE) and the of allyl alcohol with ECH using BFEE as the catalyst. allyl polyoxyethylene ether (APEG), tethering with both Their results demonstrated that the yield reaches 82% alkene and epoxy groups, are widely used as fabric under the following condition: n (ECH) : n (allyl alcohol): finishing agent [1-2] , reactive diluent [3] , cross-linking (catalysis) = 1: (1~3) : (0.01~0.002).
    [Show full text]
  • A New Coupling Process for Synthesis of Epichlorohydrin from Dichloropropanols
    2nd International Conference on Machinery, Materials Engineering, Chemical Engineering and Biotechnology (MMECEB 2015) A new coupling process for synthesis of epichlorohydrin from dichloropropanols Dawei Wu, Sumin Zhou* School of Chemical Engineering, Huaiyin Institute of Technology, Huaian 223005, China [email protected] Keywords: dichloropropanol, epichlorohydrin, tubular reactor, wiped film evaporation. Abstract. As an important material used in the production of epoxy resins, epichlorohydrin is usually derived from the saponification and cyclization of dichloropropanol in a tower reacting system. In order to reduce energy consumption and wastewater discharge, a new process of tubular reactor coupled with wiped film evaporation was adopt to produce epichlorohydrin. The effects of different technological parameters on the yield of the coupling process were investigated, such as reactants' molar ratio, reaction & evaporation temperature, residence time and so on. Results indicated that the use of coupling process will significantly reduce the material consumption and shorter the reaction time. This coupling process provided a useful suggestion for the design of the industrial plants. 1. Introduction Epichlorohydyin(ECH), also known as 1-chloro-2, 3-epoxy propane, is an important chemical material, mainly used to synthesizing epoxy resin, chlorohydrins rubber, pesticide, plasticizer and so on [1]. The main method to produce ECH is high-temperature chlorination of propylene [2]. With the fast-development of biodiesel production, the use of glycerol for producing ECH [3-4] is going to mature and has become an important industrial technological process [5]. Although the difference raw materials were used, the processes also consist of two reaction steps as well. First step is the saponification and cyclization of dichloropropanol (DCP) to produce ECH.
    [Show full text]
  • Production of Glycidyl Compounds
    Office europeen des brevets (fi) Publication number : 0 491 529 A1 @ EUROPEAN PATENT APPLICATION @ Application number : 91311630.7 © Int. CI.5: C07D 301/28, C07D 303/24 (22) Date of filing : 13.12.91 (30) Priority : 18.12.90 GB 9027448 (72) Inventor : Thoseby, Michael Robert 29 De Freville Avenue Cambridge (GB) (43) Date of publication of application : Inventor : Rolfe, William Martin 24.06.92 Bulletin 92/26 42 Vetch Walk Haverhill, Suffolk (GB) (S) Designated Contracting States : CH DE ES FR GB IT LI NL (74) Representative : Sparrow, Kenneth D. et al CIBA-GEIGY PLC. Patent Department, Central Research, Hulley Road @ Applicant : CIBA-GEIGY AG Macclesfield, Cheshire SK10 2NX (GB) Klybeckstrasse 141 CH-4002 Basel (CH) (54) Production of glycidyl compounds. (57) A process for the production of a glycidyl ether of an alcohol, comprising reacting an alcohol with epichlorohydrin, in substantially the stoichiometric proportions required to pro- duce the 1:1 adduct, in the presence, as catal- yst, of a salt of perchloric acid or trifluoromethane sulphonic acid with a metal of Group IMA of the Periodic Table of Elements (according to the IUPAC 1970 convention) ; and then dehydrochlorinating the product so obtained. CM LU Jouve, 18, rue Saint-Denis, 75001 PARIS 1 EP 0 491 529 A1 2 The present invention relates to a process for the 100 parts by weight of the alcohol reactant. production of glycidyl compounds. The alcohol reactant may be a primary, secon- The addition reaction between epoxides and dary or tertiary alcohol. While monohydric alcohols alcohols, in the presence of a catalyst, to produce an may be used, e.g.
    [Show full text]
  • Gasket Chemical Services Guide
    Gasket Chemical Services Guide Revision: GSG-100 6490 Rev.(AA) • The information contained herein is general in nature and recommendations are valid only for Victaulic compounds. • Gasket compatibility is dependent upon a number of factors. Suitability for a particular application must be determined by a competent individual familiar with system-specific conditions. • Victaulic offers no warranties, expressed or implied, of a product in any application. Contact your Victaulic sales representative to ensure the best gasket is selected for a particular service. Failure to follow these instructions could cause system failure, resulting in serious personal injury and property damage. Rating Code Key 1 Most Applications 2 Limited Applications 3 Restricted Applications (Nitrile) (EPDM) Grade E (Silicone) GRADE L GRADE T GRADE A GRADE V GRADE O GRADE M (Neoprene) GRADE M2 --- Insufficient Data (White Nitrile) GRADE CHP-2 (Epichlorohydrin) (Fluoroelastomer) (Fluoroelastomer) (Halogenated Butyl) (Hydrogenated Nitrile) Chemical GRADE ST / H Abietic Acid --- --- --- --- --- --- --- --- --- --- Acetaldehyde 2 3 3 3 3 --- --- 2 --- 3 Acetamide 1 1 1 1 2 --- --- 2 --- 3 Acetanilide 1 3 3 3 1 --- --- 2 --- 3 Acetic Acid, 30% 1 2 2 2 1 --- 2 1 2 3 Acetic Acid, 5% 1 2 2 2 1 --- 2 1 1 3 Acetic Acid, Glacial 1 3 3 3 3 --- 3 2 3 3 Acetic Acid, Hot, High Pressure 3 3 3 3 3 --- 3 3 3 3 Acetic Anhydride 2 3 3 3 2 --- 3 3 --- 3 Acetoacetic Acid 1 3 3 3 1 --- --- 2 --- 3 Acetone 1 3 3 3 3 --- 3 3 3 3 Acetone Cyanohydrin 1 3 3 3 1 --- --- 2 --- 3 Acetonitrile 1 3 3 3 1 --- --- --- --- 3 Acetophenetidine 3 2 2 2 3 --- --- --- --- 1 Acetophenone 1 3 3 3 3 --- 3 3 --- 3 Acetotoluidide 3 2 2 2 3 --- --- --- --- 1 Acetyl Acetone 1 3 3 3 3 --- 3 3 --- 3 The data and recommendations presented are based upon the best information available resulting from a combination of Victaulic's field experience, laboratory testing and recommendations supplied by prime producers of basic copolymer materials.
    [Show full text]
  • Comparisons of Epoxy Technology for Protective Coatings and Linings In
    ComparisonsComparisons ofof EpoxyEpoxy TechnologyTechnology forfor ProtectiveProtective CoatingsCoatings andand LiningsLinings inin WastewaterWastewater FacilitiesFacilities By John D. Durig, General Polymers, Cincinnati, Ohio, USA Aeration tank at a wastewater plant. Bis F epoxy resin with an aliphatic or a cycloaliphatic amine curing agent is appropriate. Editor’s Note: This article was first presented at SSPC (Photos courtesy of the author) 99, The Industrial Protective Coatings Conference and Exhibit, November 14-18, 1999, in Houston, TX, USA, and published in The Proceedings of the Seminars, SSPC 99-14, pp. 31-37. poxy technology and methods of curing and Epoxy Resin Technology E reacting with amine-based hardeners have There are three types of epoxy resins that find application continued to evolve since the first epoxy patents were is- in wastewater treatment facilities: bisphenol A, bisphenol sued in the 1930s. The possible reactions combined with F, and novolac resins. These resins all result from reac- wide-ranging formulation additives have resulted in a myri- tions of epichlorohydrin with phenolic compounds. The ad of products that can easily confuse decision makers type and number of phenolic groups determine both when it comes to product selection. Adding to the confu- physical and performance properties of the cured resin. sion is the wide range of environmental factors that must be considered when choosing a protective coating system. Bisphenol A Resin Structure This article will identify the primary differences be- Bisphenol A is a reaction product of phenol and acetone. tween three types of epoxies and four types of amine- Bisphenol A is reacted with epichlorohydrin to form based hardeners typically used in coatings for wastewater diglycidylether bisphenol A resin or DGEBA.
    [Show full text]
  • The Production of Epichlorohydrin from Glycerol. a Bachelor Integration Project for Delfzijl’S Chempark
    The production of epichlorohydrin from glycerol. A Bachelor Integration Project for Delfzijl’s Chempark Ruurd Feikes van der Heide University of Groningen Faculty of Science and Engineering IE&M Bachelor Thesis Supervisor 1: prof. Dr. Ir. HJ (Erik) Heeres Supervisor 2: Dr. Ing. H. Kloosterman Syncom supervisor: Dr. Ir. Andre Heeres June 2018 Pelsterstraat 32 9711 KM Groningen (06) 13787270 [email protected] student number 2674122 1 Table of content Introduction (RDP) -Problem context -Stakeholder analysis -System description -Goal statement -Design goal -Scope -Research questions -Cycle choice Abstract Backgrounds -Glycerol -Epichlorohydrin Benchmark -Propylene into epichlorohydrin, via allyl chloride -Allyl chloride to epichlorohydrin -TRL Innovation - Glycerol into epichlorohydrin -Hydrochlorination -Hexanoic acid -Acetic acid -Dehydrochlorination -TRL Cost analysis -Hexanoic acid -Solid oxide Discussion and conclusions References Appendix 2 Problem context The city of Delfzijl (Netherlands) has a chemical park with multiple factories present. The companies at the chemical park have interrelationships with each other which results that if a few of them stop producing products, the other companies will find problems in their own existence. The committee Willems started an investigation how the chemical park should optimize its competitiveness among the business environment nowadays. Willems used to be a high ranked employee of Shell before leaving the company. The committee stated that if the companies on the park want to stay in business, changes within production methods have to be made. A more sustainable production method where green raw materials like biomass are converted into valuable products is the solution to stay competitive. Prof. Dr. Ir.
    [Show full text]
  • Current Chemistry Letters Synthesis of Allyl-Glycidyl Ether by The
    Current Chemistry Letters 6 (2017) 7–14 Contents lists available at GrowingScience Current Chemistry Letters homepage: www.GrowingScience.com Synthesis of allyl-glycidyl ether by the epoxidation of diallyl ether with t-butyl hydroperoxide over the Ti-MWW catalyst Agnieszka Wróblewskaa*, Marika Walaseka and Beata Michalkiewiczb aWest Pomeranian University of Technology, Szczecin, Institute of Organic Chemical Technology, Pulaskiego 10, 70-322 Szczecin, Poland bWest Pomeranian University of Technology, Szczecin, Institute of Inorganic Chemical Technology and Environment Engineering, Pulaskiego 10, 70- 322 Szczecin, Poland C H R O N I C L E A B S T R A C T Article history: In this paper, modified hydrothermal method for Ti-MWW catalyst preparation has been Received August 21, 2016 shown. Instrumental analysis of the zeolite material Ti-MWW has been performed by means Received in revised form of UV-vis spectrometry, infrared spectrometry (IR), scanning electron microscope (SEM), X- October 24, 2016 ray diffraction (XRD), and X-ray microanalysis. Moreover, the results of the epoxidation of Accepted 8 November 2016 diallyl ether (DAE) over the titanium silicate catalyst Ti-MWW and in the presence of Available online methanol have been presented. t-Butyl hydroperoxide have been applied for the first time as 9 November 2016 an oxidant for this process. The influence of temperature (20-130°C), DAE/TBHP molar ratio Keywords: (1:1-3:1), methanol concentration (10-80 wt%), amount of catalyst (1-7 wt%) and reaction Diallyl ether time (60-1440 min.) was studied. The main functions describing the process were determined Allyl-glycidyl ether on the basis of the results obtained from the gas chromatography method.
    [Show full text]
  • Identification and Quantitation Studies of Migrants from BPA Alternative
    polymers Article Identification and Quantitation Studies of Migrants from BPA Alternative Food-Contact Metal Can Coatings Nan Zhang *, Joseph B. Scarsella and Thomas G. Hartman * Department of Food Science, Rutgers, The State University of New Jersey, 65 Dudley Road, New Brunswick, NJ 08901, USA; [email protected] * Correspondence: [email protected] (N.Z.); [email protected] (T.G.H.); Tel.: +1-848-932-5543 (N.J. & T.G.H.) Received: 28 October 2020; Accepted: 26 November 2020; Published: 29 November 2020 Abstract: Bisphenol A (BPA)-based epoxy resins have wide applications as food-contact materials such as metal can coatings. However, negative consumer perceptions toward BPA have driven the food packaging industry to develop other alternatives. In this study, four different metal cans and their lids manufactured with different BPA-replacement food-contact coatings are subjected to migration testing in order to identify migratory chemical species from the coatings. Migration tests are conducted using food simulants and conditions of use corresponding to the intended applications and regulatory guidance from the U.S. Food and Drug Administration. Extracts are analyzed by gas chromatography mass spectrometry (GC-MS) and high resolution GC-MS. The migratory compounds identified include short chain cyclic polyester migrants from polyester-based coatings and bisphenol-type migrants including tetramethyl bisphenol F (TMBPF), tetramethyl bisphenol F diglycidyl ether (TMBPF DGE), bisphenol F (BPF), bisphenol C (BPC), and other related monomers or oligomers. The concentration of the migrants is estimated using an internal standard, and validated trimethylsilyl (TMS) derivatization GC-MS methods are developed to specifically quantify TMBPF, BPF, BPC, and BPA in the coatings.
    [Show full text]
  • Section 2. Hazards Identification OSHA/HCS Status : This Material Is Considered Hazardous by the OSHA Hazard Communication Standard (29 CFR 1910.1200)
    SAFETY DATA SHEET Nonflammable Gas Mixture: 1,2-Dichloropropane / 1,2,3-Trichloropropane / 2, 3-Dichloropropene / Allyl Chloride / Butylene Oxide / Cis-1,3-Dichloropropene / Epichlorohydrin / Helium / Trans-1,3-Dichloropropene Section 1. Identification GHS product identifier : Nonflammable Gas Mixture: 1,2-Dichloropropane / 1,2,3-Trichloropropane / 2, 3-Dichloropropene / Allyl Chloride / Butylene Oxide / Cis-1,3-Dichloropropene / Epichlorohydrin / Helium / Trans-1,3-Dichloropropene Other means of : Not available. identification Product use : Synthetic/Analytical chemistry. SDS # : 013053 Supplier's details : Airgas USA, LLC and its affiliates 259 North Radnor-Chester Road Suite 100 Radnor, PA 19087-5283 1-610-687-5253 Emergency telephone : 1-866-734-3438 number (with hours of operation) Section 2. Hazards identification OSHA/HCS status : This material is considered hazardous by the OSHA Hazard Communication Standard (29 CFR 1910.1200). Classification of the : GASES UNDER PRESSURE - Compressed gas substance or mixture GHS label elements Hazard pictograms : Signal word : Warning Hazard statements : Contains gas under pressure; may explode if heated. May displace oxygen and cause rapid suffocation. Precautionary statements General : Read and follow all Safety Data Sheets (SDS’S) before use. Read label before use. Keep out of reach of children. If medical advice is needed, have product container or label at hand. Close valve after each use and when empty. Use equipment rated for cylinder pressure. Do not open valve until connected to equipment prepared for use. Use a back flow preventative device in the piping. Use only equipment of compatible materials of construction. Prevention : Use and store only outdoors or in a well ventilated place. Response : Not applicable.
    [Show full text]
  • Controlled Synthesis of Polyepichlorohydrin with Pendant
    Controlled synthesis of polyepichlorohydrin with pendant cyclic carbonate functions for isocyanate-free polyurethane networks Anne-Laure Brocas, Gabriel Cendejas, Sylvain Caillol, Alain Deffieux, Stéphane Carlotti To cite this version: Anne-Laure Brocas, Gabriel Cendejas, Sylvain Caillol, Alain Deffieux, Stéphane Carlotti. Con- trolled synthesis of polyepichlorohydrin with pendant cyclic carbonate functions for isocyanate-free polyurethane networks. Journal of Polymer Science Part A: Polymer Chemistry, Wiley, 2011, 49 (12), pp.2677-2684. 10.1002/pola.24699. hal-00591301 HAL Id: hal-00591301 https://hal.archives-ouvertes.fr/hal-00591301 Submitted on 9 May 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Controlled Synthesis of Polyepichlorohydrin with Pendant Cyclic Carbonate Functions for Isocyanate-Free Polyurethane Networks ANNE-LAURE BROCAS,1 GABRIEL CENDEJAS,1 SYLVAIN CAILLOL,2 ALAIN DEFFIEUX,1 STEPHANE CARLOTTI1 1Universite´ de Bordeaux, Laboratoire de Chimie des Polyme` res Organiques, CNRS, ENSCBP, 16 avenue Pey Berland, 33607 Pessac Cedex, France 2Institut Charles Gerhardt, UMR5253 CNRS/UM2/ENSCM/UM1, Ecole Nationale Supe´ rieure de Chimie de Montpellier, 8 rue de l’Ecole Normale, 34296 Montpellier Cedex 5, France Received 2 February 2011; accepted 1 April 2011 DOI: 10.1002/pola.24699 Published online 27 April 2011 in Wiley Online Library (wileyonlinelibrary.com).
    [Show full text]
  • Chemical Compatibility Guide
    20887Cvr:Layout 1 5/13/08 7:39 AM Page 2 Chemical Compatibility Guide Aro is pleased to present this selection guide to provide a convenient and informative reference point for pump selection. This information was compiled from information provided by material suppliers and manufacturers. The compatibility listings are intended as a guide only. We assume no liability for their accuracy on their use. The user should test under their own operating conditions to determine the suitability of any compound and material in a particular application. 20887Txt:43077 5/12/08 8:36 AM Page 1 20887Txt:43077 5/12/08 8:36 AM Page 1 THERMOPLASTIC ELASTOMERS (TPE’s) verses THERMOSETTING RUBBER DIAPHRAGMS Aro’s direction has been to move toward replacement of traditional thermoset rubber diaphragms with thermoplastic elastomers (TPE). Examples of TPE’s include: Santoprene, Nitrile (TPE) and Hytrel. TPE’s are manufactured using a plastic injection molding process where the resin, or diaphragm material, is melted and injected into a mold to produce the diaphragm. The advantages of this process includes: Features Benefits Diaphragm is molded to optimum shape Excellent flex life Homogenous part No delamination failures High performance resins Chemical, abrasion and flex life Injection molded/tight process control Low cost/consistent performance Laboratory testing has shown: Injection Mold Process Santoprene outperformed all rubber diaphragms except Buna in the mild abrasive fluids. Molded Diaphragm The Geolast diaphragm had equivalent life to the Buna diaphragms and was superior to the other rubbers compounds. 1 Teflon with the Santoprene backer exhibited the best flex life of all diaphragms during the test series.
    [Show full text]
  • WO 2017/079437 Al 11 May 2017 (11.05.2017) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2017/079437 Al 11 May 2017 (11.05.2017) P O P C T (51) International Patent Classification: DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, C08G 59/18 (2006.01) C08L 63/00 (2006.01) HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, C08G 59/62 (2006.01) KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, (21) International Application Number: OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, PCT/US2016/060332 SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, (22) International Filing Date: TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, 3 November 20 16 (03 .11.20 16) ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (26) Publication Language: English GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, (30) Priority Data: TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, 62/250,217 3 November 2015 (03. 11.2015) US TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, (71) Applicant: VALSPAR SOURCING, INC. [US/US]; PO LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, Box 1461, Minneapolis, MN 55440 (US).
    [Show full text]