Epichlorohydrin

Total Page:16

File Type:pdf, Size:1020Kb

Epichlorohydrin J. Cleaner Prod., Vol. 2. Na. 3-4, pp. 181-184, 1W4 Elccvicr Scicncc Lid Prinicd in Greai Briiitin 0959-6526(95)00024-0 W59-6526194 $10.00 -+ 0.00 Clean technology in the production of epichlorohydrin Jowi W. Bijsterbosch, A. Das+ and F.P.J.M. Kerkhof* RIZA, Institute for Inland Water Management and Waste Water ïreatment, Ministry of Transport, Public Works and Water Management, PO Box 17, 8200 AA Lelystad, The Netherlands *Comprimo Consulting Services, PO Box 58026, 7040 HA Amsterdam, The Netherlands The conventional production of epichlorohydrin takes place via allyl chloride and dichlorohydrin. A major disadvantage of this chemica1 process is the formation of a large amount of chiorinated organic by-products, which are found panially in the voiuminous effluent. In order to reduce thic emicsion to surface water, measures have to be taken. Technica( measures varying from end-of-pipe techniques to alternative processes have been evaluated. Application of end-of- pipe techniques is not the optimal solution for emission reduction, either technically or economically. Results from in-proces measures focused on reduction of the amount of waste water and contaminants are more promising. However, the development of an alternative route is necessary in order to obtain a process with minimal emiscions and minimal costs. Keywords: clean technology; epìchlorohydrin; chemica1 industry Introduction water treatment facilities. However, the EOCI reduction obtained is considered to be insufficient In the early 19SOs, the first industrial production of from an environmental point of view. epichlorohydrin (ECH) took place. Nowadays, therc Within the frlimework of the Dutch government are about 20 production locations worldwide at which programme SPA (focused on pollution prevention, ECH is produced by the conventional route starting clean technoiogy and advanced waste water treatment) , with propenc and chlorine via allyl chloride (AC) and u project has been set up by RIZA (Tnstitute for Inland dichlorohydrin (DCH) to ECH. The world production Water Management and Waste Water Treatrnent) capacity of arnounts to about kton per year. ECH 800 ond Comprimo Consulting Services (engineering and is mainly used for the production of epoxy resins ECH consulting company). in which the possibilities of end- (about 50% of the ECH produced) and glycerin (about of-pipe techniques, in-process measures and clean 20%). The primarily chlorine-free epoxy resins are production processes for reduction of the EOCI applied in paints, electric circuits, construction, gum, emission to surface water are compared'. and so on. Important properties of epoxy rcsins are chemica1 inertness, insensitivity to corrosion and aggressive chemicals, and good electrical isolation and adhesion properties. ECH is considered US an Conventional production of ECH irreplaceablc chemica1 compound for the production of epoxy resins at tlie moment. The chernistry of ECH production is briefly discussed. A major problem with the conventional production Details about technica1 ospects of this production process for ECH is the formation of a large arnount process can be found elsewhere'. The synthesis of of chlorinated by-products, which are found purtially ECI-I can be divided into four steps: in the voluminous effluent. The amount of by-products is about 0.3 kg per kg ECH produced. The by-products e synthesis of allylchloride (AC) are generally considered as waste and incinerated. 0 synthesis of dichiorohydrin (DCH) Without waste water treatment facilities, about 1 to synthesis of epichlorohydrin (ECH) 3 g EOCI (extractable organochíorine cornpounds) per synthesis of hypochlorite (HOCI) kg ECH produccd is present in the effluent. In western countries, ECH production plants usually have waste The main reaction equations are given in Scheme 1. J. Cleaner Prad. Volume 2 Nurnber 3-4 181 Clean technology in ECH production: J. W, Bijsterbosch et al. H2C = CH-CH-j + Cl2 + H2C = CH-CH2CI + HCI propene chlorine allyl chloride hydrochloric acid H2C = CH-CHICI + HOCI + CHZCl-CHOH-CH2Cl + CH20H-CHCCCH2CI allyl chloride h ypochlorite 1,3-dichlorohydrin 1,2-dichlorohydrin CH2CCCHOH-CH2CI + kCa(OH)2 .+ CH2CI-HC-CH2 f fCaC12 + H20 b' 13-dichlorohydrin calcium hydroxide epichlorohydrin calcium chloride Scheme 1 Reaction equations for the synthesis of (1) allyl chloride, (2) dichlorohydrin, and (3) eipichlorohydrin Synthesis of AC 40 m3 per ton ECH) originates from the DCH synthesis. The effluent contains not only CaCl, in high concen- The synthesis of AC takes place by reaction of propene tration, but also EOCI compounds. Typical concen- with chlorine at a temperature of 500-520"C (equation trations are 25-75 I-], which corresponds to an (1) in Scheme I). The selectivity of this reaction is mg EOCl ernission of 1-3 kg per ton ECH produced. In rather low; by-products such as mono- and dichloropro- some cases, the effluent of the ECH plant is biologically pene and mono- and dichloropropane are formed. treated before it is emitted to surface water. Generally the compounds are only partially removed by Synthesis DCH EOCI of biological treatrnent. Therefore, additional measures "he reaction of AC and HOC1 to form DCH is are necessary . performed in water at a temperature of 30°C (equation In this paper, three points of view for ernission (2) in Scheme I). Excess water has to be used in order reduction are considered: (i) end-of-pipe techniques to prevent formation of an organic phase, as the and combinations of end-of-pipe techniques; (ii) in- undesirable side-reaction of AC to form 1,2,3-trichloro- process measures; and (iii) alternative, cleaner pro- propane (TCP) takes place in the organic phase. The cesses. It wil1 be shown that for the production of low solubility of AC in water makes the large arnount ECH, application of most end-of-pipe techniques is of water necessary2. Besides TCP, chlorinated ethers insufficient for reaching an EOCI level of 0.1 mg I-'. are forrned as by-products. They originsite from From both an environmental and an economic point the reaction of the reactive intemediate species of view, in-process measures and especially alternative (chloronium ions) with DCH. Their formation is process routes are much more promising. suppressed by the large arnount of water. Application of end-of-pipe techniques Synthesis of ECH Several end-of-pipe techniques and combinations of ECH is forrned by dehydrochlorination of DCH with these techniques are theoretically considered for treat- Ca(OH)* in water at a temperature of 90°C (equation ment of the ECH effluent. These include (i) biological (3) in Scheme 1). ECH is irnrnediately rernoved treatment, (ii) biological treatrnent, reverse osmosis from the solution in order to prevent formation of and evaporation of the concentrate flow, (iii) biological monochlorohydrin and consequently glycerol3. (MCH) treatment and active-carbon adsorption, (iv) biological treatment, active-carbon adsorption and wet-air oxi- Syiithesis of HOC1 dation for regeneration of the carbon, and (v) evapor- The HOC1 solution is used in the DCH synthesis is ation. prepared by the reaction of chlorine and calcium Table I shows the assumed removal levels and a hydroxide (Ca(OH)2). HOCI is partially converted rough estirnate of the costs of the techniques for a into other chlorine-containing inorganic compounds, typical production plant with a capacity of 24 kton which play a role in the formation of chlorinated per year. By biological treatment, about 50% of the organic by-products. EOCl is removed. Additional application of reverse osmosis or active-carbon adsorption results in EOCI Environmental aspects of the conventional removal of 90%. Evaporation yields 100% EOCI process removal. Only by application of evaporation can the desired EOCl level of 0.1 mg I-' be reached. The As mentioned earlier, the conventional production costs of this technique are estimated to be about 800 process for ECH is characterized by a large arnount guilders (fl) per ton ECH produced, which is high of by-products and a voluminous waste water flow. In compared to the cost price of ECH (about 3000 nearly al1 processes, the by-products (-0.3 kg per kg guilders per ton). Application of the other techniques ECH produced) have to be considered as waste and is cheaper, but their performance is insufficient. are incinerated. About 80% of the effluent (about It is concluded that application of end-of-pipe 182 J. Cleaner Prod. Volume 2 Number 3-4 - Clean technology in ECH production: J. W. Bijsterbosch et al. 'ïnhle I EOCI rcmoviil :iiid estimute i)Iihe costs for end-af-pipe techiiiques applied at an ECH plant with a production capacity of 24 kton per ycar' EOCI Costs Costs Costs 'ïcchniquca removal ('70) (film3) (iüton ECH) (Wkg EOCI) -- - - ____._I_ - -~. Biological triiatriiclii 50 6 240 400 Biologica1 trciiitncni iictivc-carbon adsorption 90 9 360 330 Biologiciil trcatrneiii . aciivc-carbon adsorption + wet-air oxidaiion 90 6 320 300 Biolagicol ticatincnt + reverse osmoris + cvaporation 90 16 640 590 Ev:ipor:iiioii 100 20 800 670 techniques is not thc optima1 solution for EOCI the effect of a measure on the final EOCI emission, as cmissioi? rcduction. This is caused by the large amount a measure can result in different effects. The effect of of waste water which has to be treated (-40 m3 per the desired minimization of the amount of water is ton ECH produced). It is advisable to reduce the discussed as an example. amount of waste water first by in-process measures Excess water is prìmarily applied for preventing the iind subsequently treat the smaller waste water flow. formation of by-products. With excess water, formation of the organic phase is prevented. So, TCP formation In-process measures onginating from AC in the organic phase does not occur. Excess water also limits the formation of ether In-proccss mcasures are airned at reducing the arnount and TCP. Minimizing the amount of water wil1 result of wiistc water and the rtmount of EOCI in the effluent.
Recommended publications
  • A New Approach to Prepare Polyethylene Glycol Allyl Glycidyl Ether
    E3S Web of Conferences 267, 02004 (2021) https://doi.org/10.1051/e3sconf/202126702004 ICESCE 2021 A new approach to prepare Polyethylene Glycol Allyl Glycidyl Ether Huizhen Wang1*, Ruiyang Xie1, Mingjun Chen1*, Weihao Deng1, Kaixin Zhang2, Jiaqin Liu1 1School of Science, Xihua University, Chengdu 610039, China; 2Chengdu Jingyiqiang Environmental Protection Technology Co., Ltd. Abstract. The polyethylene glycol allyl glycidyl ether (PGAGE) is an important intermediate for preparing silicone softener that can be synthesized from allyl alcohol polyoxyethylene ether and epichlorohydrin (ECH). The performance parameters including the concentration of ECH, initial boron trifluoride diethyl etherate (BFEE) as well as CaCl2 quality were investigated respectively. The optimum process parameters which can get high capping and low by-product rate are as follows: the ECH concentration is 2.0 M, the initial BFEE concentration is 1.65mM, and the CaCl2 dosage is 1.65g/L. Under these conditions, the maximal yield can be improved to 91.36%, the percent of capping rate is higher than 98.16%, the residual concentration of F- is only 0.63 mg/L. concentrated basic solution, in which the total yield was between 90%~91% by Matsuoka et al. [10] also use the 1 Introduction two-step reaction to synthesize AGE based on the reaction Polyethylene glycol allyl glycidyl ether (PGAGE) and the of allyl alcohol with ECH using BFEE as the catalyst. allyl polyoxyethylene ether (APEG), tethering with both Their results demonstrated that the yield reaches 82% alkene and epoxy groups, are widely used as fabric under the following condition: n (ECH) : n (allyl alcohol): finishing agent [1-2] , reactive diluent [3] , cross-linking (catalysis) = 1: (1~3) : (0.01~0.002).
    [Show full text]
  • A New Coupling Process for Synthesis of Epichlorohydrin from Dichloropropanols
    2nd International Conference on Machinery, Materials Engineering, Chemical Engineering and Biotechnology (MMECEB 2015) A new coupling process for synthesis of epichlorohydrin from dichloropropanols Dawei Wu, Sumin Zhou* School of Chemical Engineering, Huaiyin Institute of Technology, Huaian 223005, China [email protected] Keywords: dichloropropanol, epichlorohydrin, tubular reactor, wiped film evaporation. Abstract. As an important material used in the production of epoxy resins, epichlorohydrin is usually derived from the saponification and cyclization of dichloropropanol in a tower reacting system. In order to reduce energy consumption and wastewater discharge, a new process of tubular reactor coupled with wiped film evaporation was adopt to produce epichlorohydrin. The effects of different technological parameters on the yield of the coupling process were investigated, such as reactants' molar ratio, reaction & evaporation temperature, residence time and so on. Results indicated that the use of coupling process will significantly reduce the material consumption and shorter the reaction time. This coupling process provided a useful suggestion for the design of the industrial plants. 1. Introduction Epichlorohydyin(ECH), also known as 1-chloro-2, 3-epoxy propane, is an important chemical material, mainly used to synthesizing epoxy resin, chlorohydrins rubber, pesticide, plasticizer and so on [1]. The main method to produce ECH is high-temperature chlorination of propylene [2]. With the fast-development of biodiesel production, the use of glycerol for producing ECH [3-4] is going to mature and has become an important industrial technological process [5]. Although the difference raw materials were used, the processes also consist of two reaction steps as well. First step is the saponification and cyclization of dichloropropanol (DCP) to produce ECH.
    [Show full text]
  • Production of Glycidyl Compounds
    Office europeen des brevets (fi) Publication number : 0 491 529 A1 @ EUROPEAN PATENT APPLICATION @ Application number : 91311630.7 © Int. CI.5: C07D 301/28, C07D 303/24 (22) Date of filing : 13.12.91 (30) Priority : 18.12.90 GB 9027448 (72) Inventor : Thoseby, Michael Robert 29 De Freville Avenue Cambridge (GB) (43) Date of publication of application : Inventor : Rolfe, William Martin 24.06.92 Bulletin 92/26 42 Vetch Walk Haverhill, Suffolk (GB) (S) Designated Contracting States : CH DE ES FR GB IT LI NL (74) Representative : Sparrow, Kenneth D. et al CIBA-GEIGY PLC. Patent Department, Central Research, Hulley Road @ Applicant : CIBA-GEIGY AG Macclesfield, Cheshire SK10 2NX (GB) Klybeckstrasse 141 CH-4002 Basel (CH) (54) Production of glycidyl compounds. (57) A process for the production of a glycidyl ether of an alcohol, comprising reacting an alcohol with epichlorohydrin, in substantially the stoichiometric proportions required to pro- duce the 1:1 adduct, in the presence, as catal- yst, of a salt of perchloric acid or trifluoromethane sulphonic acid with a metal of Group IMA of the Periodic Table of Elements (according to the IUPAC 1970 convention) ; and then dehydrochlorinating the product so obtained. CM LU Jouve, 18, rue Saint-Denis, 75001 PARIS 1 EP 0 491 529 A1 2 The present invention relates to a process for the 100 parts by weight of the alcohol reactant. production of glycidyl compounds. The alcohol reactant may be a primary, secon- The addition reaction between epoxides and dary or tertiary alcohol. While monohydric alcohols alcohols, in the presence of a catalyst, to produce an may be used, e.g.
    [Show full text]
  • Gasket Chemical Services Guide
    Gasket Chemical Services Guide Revision: GSG-100 6490 Rev.(AA) • The information contained herein is general in nature and recommendations are valid only for Victaulic compounds. • Gasket compatibility is dependent upon a number of factors. Suitability for a particular application must be determined by a competent individual familiar with system-specific conditions. • Victaulic offers no warranties, expressed or implied, of a product in any application. Contact your Victaulic sales representative to ensure the best gasket is selected for a particular service. Failure to follow these instructions could cause system failure, resulting in serious personal injury and property damage. Rating Code Key 1 Most Applications 2 Limited Applications 3 Restricted Applications (Nitrile) (EPDM) Grade E (Silicone) GRADE L GRADE T GRADE A GRADE V GRADE O GRADE M (Neoprene) GRADE M2 --- Insufficient Data (White Nitrile) GRADE CHP-2 (Epichlorohydrin) (Fluoroelastomer) (Fluoroelastomer) (Halogenated Butyl) (Hydrogenated Nitrile) Chemical GRADE ST / H Abietic Acid --- --- --- --- --- --- --- --- --- --- Acetaldehyde 2 3 3 3 3 --- --- 2 --- 3 Acetamide 1 1 1 1 2 --- --- 2 --- 3 Acetanilide 1 3 3 3 1 --- --- 2 --- 3 Acetic Acid, 30% 1 2 2 2 1 --- 2 1 2 3 Acetic Acid, 5% 1 2 2 2 1 --- 2 1 1 3 Acetic Acid, Glacial 1 3 3 3 3 --- 3 2 3 3 Acetic Acid, Hot, High Pressure 3 3 3 3 3 --- 3 3 3 3 Acetic Anhydride 2 3 3 3 2 --- 3 3 --- 3 Acetoacetic Acid 1 3 3 3 1 --- --- 2 --- 3 Acetone 1 3 3 3 3 --- 3 3 3 3 Acetone Cyanohydrin 1 3 3 3 1 --- --- 2 --- 3 Acetonitrile 1 3 3 3 1 --- --- --- --- 3 Acetophenetidine 3 2 2 2 3 --- --- --- --- 1 Acetophenone 1 3 3 3 3 --- 3 3 --- 3 Acetotoluidide 3 2 2 2 3 --- --- --- --- 1 Acetyl Acetone 1 3 3 3 3 --- 3 3 --- 3 The data and recommendations presented are based upon the best information available resulting from a combination of Victaulic's field experience, laboratory testing and recommendations supplied by prime producers of basic copolymer materials.
    [Show full text]
  • Material Safety Data Sheet Allyl Chloride MSDS
    He a lt h 2 3 Fire 3 1 3 Re a c t iv it y 0 Pe rs o n a l Pro t e c t io n H Material Safety Data Sheet Allyl Chloride MSDS Section 1: Chemical Product and Company Identification Product Name: Allyl Chloride Contact Information: Catalog Codes: 10058 Finar Limited 184-186/P, Chacharwadi Vasna, CAS#: 107-05-1 Sarkhej-Bavla Highway, Ta.: Sanand, Dist.: Ahmedabad, RTECS: UC7350000 Email: [email protected] TSCA: TSCA 8(b) inventory: Allyl Chloride Web: www.finarchemicals.com CI#: Not available. Synonym: 3-Chloropropene; 3-Chloroprene Chemical Name: Allyl Chloride Chemical Formula: Not available. Section 2: Composition and Information on Ingredients Composition: Name CAS # % by Weight Allyl Chloride 107-05-1 100 Toxicological Data on Ingredients: Allyl Chloride: ORAL (LD50): Acute: 460 mg/kg [Rat]. 425 mg/kg [Mouse]. DERMAL (LD50): Acute: 2066 mg/kg [Rabbit]. VAPOR (LC50): Acute: 11000 mg/m 2 hours [Rat]. 5800 mg/m 3 2 hours [Guinea pig]. Section 3: Hazards Identification Potential Acute Health Effects: Hazardous in case of skin contact (irritant), of eye contact (irritant), of ingestion, of inhalation. Slightly hazardous in case of skin contact (permeator). Severe over-exposure can result in death. Potential Chronic Health Effects: CARCINOGENIC EFFECTS: Classified A3 (Proven for animal.) by ACGIH, 3 (Equivocal evidence.) by NTP, C (Possible for human.) by EPA. Classified None. by OSHA, None. by NIOSH. 3 (Not classifiable for human.) by IARC. MUTAGENIC EFFECTS: Mutagenic for bacteria and/or yeast. TERATOGENIC EFFECTS: Not available. DEVELOPMENTAL TOXICITY: Not available. The substance may be toxic to kidneys, lungs, liver, upper respiratory tract, skin, eyes.
    [Show full text]
  • Increasing the Production of 3-Chloro-1-Propene (Allyl Chloride) in Unit 600
    Increasing the Production of 3-Chloro-1-Propene (Allyl Chloride) in Unit 600 Background You are currently employed by the TBWS Corp. at their Beaumont, Texas plant, and you have been assigned to the allyl chloride facility. A serious situation has developed at the plant, and you have been assigned to assist with troubleshooting the problems which have arisen. Recently your sister plant in Alabama was shut down by the EPA (Environmental Protection Agency) for violations concerning sulfur dioxide emissions from a furnace in their allyl chloride facility. Fortunately, the Beaumont facility had switched to natural gas as a fuel for their process in the early 1990s and, hence, is currently in compliance with the EPA and Texas regulations. However, the loss of the Alabama plant, albeit for a short time only, has put considerable pressure on the Beaumont plant to fulfill contractual obligations to our customers in Alabama for allyl chloride. Thus, part of your assignment is to advise management concerning the increase in production of allyl chloride that can be made at the Beaumont facility. Another related issue which has been discussed by management is the long term profitability of both allyl chloride facilities. Allyl chloride is used as a precursor in the production of allyl alcohol, glycerin, and a variety of other products used in the pharmaceutical industry. More efficient plants have been built recently by our competitors and we are being slowly squeezed out of the market by these rival companies. We still maintain a loyal customer base due to our excellent technical and customer service departments and our aggressive sales staff.
    [Show full text]
  • Cl2-1,5-Hexadiene from Reaction of Allyl Chloride and K2ptcl4
    UC San Diego UC San Diego Previously Published Works Title Unexpected synthesis and structural characterization of Pt(II)Cl2-1,5-hexadiene from reaction of allyl chloride and K2PtCl4 Permalink https://escholarship.org/uc/item/3s82k79p Journal Inorganica Chimica Acta, 364(1) ISSN 00201693 Authors Nair, Reji N Golen, James A Rheingold, Arnold L et al. Publication Date 2010-12-01 DOI 10.1016/j.ica.2010.09.006 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Inorganica Chimica Acta 364 (2010) 272–274 Contents lists available at ScienceDirect Inorganica Chimica Acta journal homepage: www.elsevier.com/locate/ica Note Unexpected synthesis and structural characterization of Pt(II)Cl2-1,5-hexadiene from reaction of allyl chloride and K2PtCl4 ⇑ Reji N. Nair a, James A. Golen b,c, Arnold L. Rheingold b, Douglas B. Grotjahn a, a Department of Chemistry and Biochemistry, 5500 Campanile Drive, San Diego State University, San Diego, CA 92182-1030, United States b Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0358, United States c Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, North Dartmouth, MA 02747, United States article info abstract Article history: An unexpected, new and convenient synthetic procedure for the synthesis of Pt(II)Cl2-1,5-hexadiene is Available online 21 September 2010 reported which is done under mild conditions, including a very short reaction time of 10 min. The com- plex was isolated and crystallized, leading to the first reported crystal structure of the diene complex. Dedicated to Professor Arnold L.
    [Show full text]
  • Comparisons of Epoxy Technology for Protective Coatings and Linings In
    ComparisonsComparisons ofof EpoxyEpoxy TechnologyTechnology forfor ProtectiveProtective CoatingsCoatings andand LiningsLinings inin WastewaterWastewater FacilitiesFacilities By John D. Durig, General Polymers, Cincinnati, Ohio, USA Aeration tank at a wastewater plant. Bis F epoxy resin with an aliphatic or a cycloaliphatic amine curing agent is appropriate. Editor’s Note: This article was first presented at SSPC (Photos courtesy of the author) 99, The Industrial Protective Coatings Conference and Exhibit, November 14-18, 1999, in Houston, TX, USA, and published in The Proceedings of the Seminars, SSPC 99-14, pp. 31-37. poxy technology and methods of curing and Epoxy Resin Technology E reacting with amine-based hardeners have There are three types of epoxy resins that find application continued to evolve since the first epoxy patents were is- in wastewater treatment facilities: bisphenol A, bisphenol sued in the 1930s. The possible reactions combined with F, and novolac resins. These resins all result from reac- wide-ranging formulation additives have resulted in a myri- tions of epichlorohydrin with phenolic compounds. The ad of products that can easily confuse decision makers type and number of phenolic groups determine both when it comes to product selection. Adding to the confu- physical and performance properties of the cured resin. sion is the wide range of environmental factors that must be considered when choosing a protective coating system. Bisphenol A Resin Structure This article will identify the primary differences be- Bisphenol A is a reaction product of phenol and acetone. tween three types of epoxies and four types of amine- Bisphenol A is reacted with epichlorohydrin to form based hardeners typically used in coatings for wastewater diglycidylether bisphenol A resin or DGEBA.
    [Show full text]
  • Separation of a Multicomponent System Formed in the Production of Epichlorohydrin*
    THEORETICAL BASES OF CHEMICAL TECHNOLOGY Separation of a Multicomponent System Formed in the Production of Epichlorohydrin* E.A. Okhlopkova@, L.A. Serafimov, A.V. Frolkova, P.P. Tsekin Moscow Technological University (Institute of Fine Chemical Technologies), Moscow, 119571 Russia @ Corresponding author e-mail: [email protected] Epichlorohydrin is an important product of the basic organic synthesis. One promising direction of epichlorohydrin manufacturing is the liquid-phase epoxidation of allyl chloride with an aqueous solution of hydrogen peroxide in an organic solvent, methanol, in the presence of a heterogeneous catalyst, a titanium-containing zeolite. The multicomponent system of epichlorohydrin production according to this method contains allyl chloride, methanol, water, epichlorohydrin, 3-chloro-1,2-propanediol, 3-chloro-1-methoxypropanol-2 and hydrogen peroxide. In this work the thermodynamic topological analysis of the phase diagram of this multicomponent system of epichlorohydrin production was performed. On the basis of this study a principal technological scheme of separation of the studied system containing five distillation columns and a Florentine vessel was proposed. Keywords: epichlorohydrin, phase equilibrium, mathematical simulation, separation complex. Introduction Epichlorohydrin is an important product of the basic organic synthesis. It is used for producing a number of products that are applied in different industries. Epichlorohydrin contains an active epoxy group and a labile chlorine atom. Due to this it easily enters various reactions of electrophilic and nucleophilic addition and substitution. Paints, glues, ion exchange resins, synthetic fibers and rubbers characterized by high thermal stability and gas-tightness [1] are produced on its basis. About 80% of products based on epichlorohydrin are used for obtaining epoxy resins [2].
    [Show full text]
  • Allyl Chloride
    ENEA0070 - ALLYL CHLORIDE ALLYL CHLORIDE Safety Data Sheet ENEA0070 Date of issue: 06/25/2015 Version: 1.0 SECTION 1: Identification of the substance/mixture and of the company/undertaking 1.1. Product identifier Product form : Substance Physical state : Liquid Substance name : ALLYL CHLORIDE Product code : ENEA0070 Formula : C3H5Cl Synonyms : 3-CHLOROPROPENE; 2-PROPENYL CHLORIDE Chemical family : ESTER 1.2. Relevant identified uses of the substance or mixture and uses advised against Use of the substance/mixture : Chemical intermediate For research and industrial use only 1.3. Details of the supplier of the safety data sheet GELEST, INC. 11 East Steel Road Morrisville, PA 19067 USA T 215-547-1015 - F 215-547-2484 - (M-F): 8:00 AM - 5:30 PM EST [email protected] - www.gelest.com 1.4. Emergency telephone number Emergency number : CHEMTREC: 1-800-424-9300 (USA); +1 703-527-3887 (International) SECTION 2: Hazards identification 2.1. Classification of the substance or mixture Classification (GHS-US) Flam. Liq. 3 H226 Acute Tox. 3 (Oral) H301 Acute Tox. 4 (Inhalation:vapour) H332 Skin Irrit. 2 H315 Eye Irrit. 2A H319 Aquatic Acute 3 H402 Full text of H-phrases: see section 16 2.2. Label elements GHS-US labeling Hazard pictograms (GHS-US) : GHS02 GHS06 GHS07 Signal word (GHS-US) : Danger Hazard statements (GHS-US) : H226 - Flammable liquid and vapor H301 - Toxic if swallowed H315 - Causes skin irritation H319 - Causes serious eye irritation H332 - Harmful if inhaled H402 - Harmful to aquatic life Precautionary statements (GHS-US) : P210 - Keep
    [Show full text]
  • The Production of Epichlorohydrin from Glycerol. a Bachelor Integration Project for Delfzijl’S Chempark
    The production of epichlorohydrin from glycerol. A Bachelor Integration Project for Delfzijl’s Chempark Ruurd Feikes van der Heide University of Groningen Faculty of Science and Engineering IE&M Bachelor Thesis Supervisor 1: prof. Dr. Ir. HJ (Erik) Heeres Supervisor 2: Dr. Ing. H. Kloosterman Syncom supervisor: Dr. Ir. Andre Heeres June 2018 Pelsterstraat 32 9711 KM Groningen (06) 13787270 [email protected] student number 2674122 1 Table of content Introduction (RDP) -Problem context -Stakeholder analysis -System description -Goal statement -Design goal -Scope -Research questions -Cycle choice Abstract Backgrounds -Glycerol -Epichlorohydrin Benchmark -Propylene into epichlorohydrin, via allyl chloride -Allyl chloride to epichlorohydrin -TRL Innovation - Glycerol into epichlorohydrin -Hydrochlorination -Hexanoic acid -Acetic acid -Dehydrochlorination -TRL Cost analysis -Hexanoic acid -Solid oxide Discussion and conclusions References Appendix 2 Problem context The city of Delfzijl (Netherlands) has a chemical park with multiple factories present. The companies at the chemical park have interrelationships with each other which results that if a few of them stop producing products, the other companies will find problems in their own existence. The committee Willems started an investigation how the chemical park should optimize its competitiveness among the business environment nowadays. Willems used to be a high ranked employee of Shell before leaving the company. The committee stated that if the companies on the park want to stay in business, changes within production methods have to be made. A more sustainable production method where green raw materials like biomass are converted into valuable products is the solution to stay competitive. Prof. Dr. Ir.
    [Show full text]
  • Risk Based Design of Allyl Chloride Production Plant Alba Turja*, Micaela Demichela
    Risk Based Design of Allyl Chloride Production Plant Alba Turja*, Micaela Demichela Department of Material Science and Chemical Engineering, SAfeR Research Group, Polytechnic of Turin C.so Duca degli Abruzzi, 24 10129 Turin [email protected] The necessity to identify and quantify the risks for men and the environment, but also the excessive consumption of resources and energy related to the process plants has led to the formulation of analytical methods capable of assessing the reliability and availability of these systems in order to optimize their operation. Integrated Dynamic Decision Analysis (I.D.D.A.), in particular, represents a tool for the logic modeling of the process plants based on “dynamic” event trees able to describe the system both as “logic” concatenation of events and “probabilistic” coherence. This approach was used for reviewing the design of a plant for the production of allyl chloride by chlorination of propylene in exothermic conditions. This paper aims at building an objective and documented reference for the decision making about the design altrenatives to be adopted for risk minimization. 1. Introduction In order to have guarantees of consistency and completeness in a risk assessment used as a basis for a proper plant design, the probabilistic model of the system should be completed with a phenomenological interface of the process. This approach was used for reviewing the design of a plant for the production of allyl chloride by chlorination of propylene in exothermic conditions. The allyl chloride is product by the chlorination of propylene at high temperature: CH2=CH-CH3 + Cl2 CH2=CH-CH2Cl + HCl (1) r1= 3301562 exp (-15118/RT) p p ; reaction velocity [kmole /h m³] C3 H 6 Cl2 Cl2 ,reacted CH2=CH-CH3 + Cl2 CH2Cl-CHCl-CH3 (2) r2= 185,5 exp (-13811/RT) p p ; reaction velocity [kmole /h m³] C3 H 6 Cl2 Cl2 ,reacted At these temperatures (300-600°C), the chlorination occurs through a radical mechanism where the hydrogen atom in allylic position is replaced preferentially by chlorine giving rise to allyl chloride.
    [Show full text]