<<

Highly complex analysis from petroleum to polymers

Carlos Afonso Infrastructure de recherche nationale CNRS Spectrométrie de masse FTICR à très haut champs Responsable Guillaume Van der Rest

Paris - UPMC Lille – ULille 1 FR 3624 SolariX 7T Rouen APEX Q 9.4T Univ. Rouen SolariX XR 12 T Metz Uni. de Lorraine Paris Ion Spec 9.4T ESPCI ParisTech LTQ FT 7T Palaiseau Ecole Polytechnique Orsay SolariX XR 9.4 T Uni. Paris Sud APEX Q 7T

Hélène Lavanant : Responsable scientifique www.fticr.org Isabelle Schmitz : Responsable d’acceuil Installation

C2MC joint lab

• Complementary expertise Pierre TOTAL Giusti – Industrial applications RC – MS – ICP-MS Univ. Univ. Pau Rouen Brice Bouyssière

23 octobre 2015 Complex mixtures

6 LC/MS a 2D separation

7 Analysis of heavy petroleum product

Post ionization separation

1D separation 2D separation Ion mobility – spectrometry Ultra high resolution FT-MS Drift time (ms) time Drift m/z 8 Isotopic Fine Structure 34S R: 1.3 106

• Lincomycin (C18H34N2OS) 13C 18O 2 13C 13C 15N 33S

[M+H]+

9 Petroleum complexity

? C H S+• • C vs SH 330.2353 22 34 3 4 330 .23754 1 +• – 3.4 mDa C25H30 330.234170 R=40000 R=900000

m1/2

330.1996

330.20 330.25 m/z

R=m/m1/2 Petroleum refining processes Context

Conventional crude composition Market (Arabian Light) demand 0 0 Increase of light and middle fractions cuts (diesel) Light demand: conversion units 10 fractions 10 Light 20 fractions 20 Need for hydrodemetallation, hydrodesulfuration, hydrodenitrogenation and hydrocracking 30 30 process understanding at the molecular level : Middle 40 fractions 40

50 50

60 Middle 60 fractions Rationalization and 70 70 Heavy prediction of processes at 80 80 fractions the molecular level 90 Heavy 90 fractions 100 100 wt % wt % 12 Why molecular characterization

• Petroluem valued based on macroscopic descriptors – American petroleum institute (API) Gravity – Sulfur content – Total acidity number (TAN) – Metal content (V, Ni)… • Understand macroscopic properties at the molecular level – Corrosion – Fouling – Emulsion… • Petroleums with similar macroscopic descriptors may have different properties Properties Crude Oil Country of Origin Crude Oil Class Price USD Gravity °API Sulfur (wt.%) (2018/03)

Brent UK 40.0 0.5 69.0 Light Sweet West Texas Intermediate USA 39.8 0.3 64.8

Arabian Extra Lt. Export Saudi Arabia Light Sour 38.1 1.1 68.9

Daqing China Medium Medium Sour 33.0 0.1 63.1

Arabian Light Expor Saudi Arabia 34.0 1.9 64.0 Medium Sour Kuwait Export Blend Kuwait 30.9 2.5 62.1

Oriente Export Ecuador 25.0 1.4 60.3 Heavy Sour Maya Heavy Export Mexico 21.3 3.4 57.0 Thèse de Johann Le Maitre Vacuum Gasoil ESI(−)

VGO 0.5 mg/mL toluene/MeOH 3% NH4OH

Intens. 529.46261 170406_VGOHC204_neg_000007.d: -isCID MS x108

390.31646

1.25

342.22270 286.16000

1.00

0.75

655.10611

0.50

0.25 811.12772

0.00 200 300 400 500 600 700 800 m/z 170406_VGOHC204_neg_000007.d: -isCID MS

15 13 Intens. C H N 170406_VGOHC204_neg_000007.d:C -isCID MS x107 26 38 m/z 377 377.30418 3 Accuracy better than 100 ppb

2 C28H25O C25H29OS C27H37O 13 377.28500 C27H26N C 377.21029 1 C25H45O2 C H O 377.34252 27 21 2 C26H33O2 377.19106 377.24861

377.15461 0 377.15 377.20 377.25 377.30 377.35 m/z 170406_VGOHC204_neg_000007.d: -isCID MS

Meas. m/z # Ion Formula m/z err [ppm] 377.191059 1 C28H25O 377.191089 0.1 377.194431 1 C25H29OS 377.194460 0.1 377.248612 1 C26H33O2 377.248604 0 377.251936 1 C23H37O2S 377.251975 0.1 377.284998 1 C27H37O 377.284989 0 377.342524 1 C25H45O2 377.342504 -0.1

16 What is important for complex mixtures

• Properties – Resolving Power – Mass accuracy – Dynamic range – Number of ions • High field FTICR – All properties increase – Linear – Quadratic

Marshall, Rapid Commun. Mass Spectrom., 1996, 10, 1819 Molecular map

Kendrick Diagram Van Krevelen Diagram DBE vs C#

S. Gutierrez Sama, M. Farenc, C. Barrère-Mangote, R. Lobinski, C. Afonso, B. Bouyssiere, P. Giusti. Molecular Fingerprints and Speciation of Crude Oils and Heavy Fractions Revealed by Molecular and Elemental : Keystone between , Metallopetroleomics, and Petrointeractomics. Energy Fuels18 2018. Data treatment

• PetroOrg – http://petroorg.com • Composer (Sierra Analytics) – http://massspec.com/composer/

19 comparison

• ESI • APCI • APPI Atmospheric Pressure Atmospheric Pressure Photo Ionization

Gaseous phase ionization Gaseous phase ionization Liquid phase ionization Using a corona discharge Using a UV lamp hυ = 10.6 eV

20 Equipment

APCI • API sources

o ESI

o APCI

o APPI

o Direct insertion probe APCI

• MALDI DIP-APCI

APGC

21 Exemple: Complex petroleum mixtures

- Basic vs Non Basic N - Z types (Z is the “hydrogen deficiency” relative to alkanes, CcH2c+zX, in which X denotes heteroatoms acridine (B) - classes (i.e., different combinations of N, O, and S atoms 2-hydroxyquinoline (B) 1,10-phenanthroline (B)

oxindole (NB) carbazole (NB) 1-aminoanthracene (B)

22 Marshall, Energy & Fuels 2001, 15, 1186-1193 Ionization discrimination

+ C21H28N 294.2205 294.2205 100 100

ESI(+) % %

293.2083 294.1867 294.1304 294.1867 294.1304 0 m/z 0 m/z 294.100 294.120 294.140 294.160 294.180 294.200 294.220 294.240 294.260 294 +• 294.2343 294.2343 100 C H 100 23 18 294.1442 +• 294.1442 C22H30 293.2257 %

% ASAP(+) +• C21H26O 293.1359 294.2005 294.1105 293.3194 294.1105 293.2857 294.2906 0 m/z 0 m/z 294.100 294.120 294.140 294.160 294.180 294.200 294.220 294.240 294.260 294 294.2358 293.2273 100 100 294.2358 +• + +• C23H18 C21H28N C22H30 294.1420 294.1420 %

% APPI(+) C H O+• 293.1374 21 26294.1983 294.1082 293.3209 294.1082 0 m/z 0 m/z + 294 294.100 294.120 294.140 294.160 294.180 294.200 294.220 294.240 294.260 C H 1: TOF MS AP+ 293.229522 29 + 294.2230294.2305 100 2.26e4 100 C H N 21 28 12C 13C H +• APCI(+) C H +• 21 1 29

% 23 18 % 294.2230 294.1405 293.1359 294.1405 294.1967 0 m/z 0 m/z 294 294.100 294.120 294.140 294.160 294.180 294.200 294.220 294.240 294.260

23 ESI(-) NB nitrogen

Charge C 1mg/ml MeOH/Toluene (50:50) + 1% NH4OH a 28% 1403543 204 (3.500) Cm (7:366) 1: TOF MS ES+ 308.2367 1.39e4 100 – C22H28N 306.2237 310.2524

304.2059 312.2709 298.2528 302.1909 %

314.2842 309.2399 300.2698 307.2275 311.2551 313.2729 299.2586 303.1956 305.2101 301.1802 0 m/z 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315

N

- Chemical Formula: C22H28N Exact Mass: 306.22272 24 DBE = c − h/2 + n/2 + 1

(for CcHhNnOoSs) DBE vs C#

20 20 N S 1 1 100 100 18 18 N1 80 80 16 16 60 60 14 14 DBE 12 40

DBE 40 12

10 20 10 20 8 0 8 0 6 6 15 20 25 30 35 40 45 10 15 20 25 30 35 40 45 50 55 C# C#

20 20 O 18 O1 100 OH 18 100 16 O2 80 16 14 80 14 12 60 12 60 10

DBE 10 40 DBE =5 8 DBE 8 40 6 20 6 4 20 O 4 2 0 OH 2 0 0 15 20 25 30 35 40 45 0 15 20 25 30 35 40 45 C# DBE =3 C# 25 Un peu de chimie structurale

Intens. 490.44067 170415_VGOHC204_000002.d: +isCID MS [%]

50

40 Q ICR

30 m/z 490

20

10

0 300 400 500 600 700 800 m/z

Intens. 170415_VGOHC204_000003 isol 490.d: +MS(isCID->CASI 489.60001) [%] 490.44073

80

60

40

20

0 26 300 400 500 600 700 800 m/z Isolation m/z 490.449

170415_VGOHC204_000003.d: +MS(isCID->CASI 489.60001)

490.44073 100 DBE 9 C35H56N 80

N H

60 + Chemical Formula: C36H44N Exact Mass: 490.34683 [%] DBE 16 40 C36H44N 490.34684 C33H48NS 20 C34H36NS

490.25632 490.31044 490.40434 0 490.250 490.275 490.300 490.325 490.350 490.375 490.400 490.425 490.450 m/z

27 Spectres CID Q ICR m/z 490 * *

30 V

40 V

50 V

60 V

*harmonics 28 Selection m/z 490.449 Q ICR m/z 490

20 100

80

15 60

N1 Class DBE 10 40

20 5

0

0 10 20 30 40 C#

N 20 100 H

80 + Chemical Formula: C36H44N 15 DBE 16 Exact Mass: 490.34683 N1 Class 60 Selection 490.4 DBE 10 DBE 9 40 20 5

0

0 10 20 30 40 29 C# 20 100 20 100

30 eV17 80 40 eV 80 15 15 60 60

DBE 10 10 40 DBE 10 40

20 20 5 5

0 0

0 0 10 20 30 40 10 20 30 40 C# C#

100 20 50 eV100 20 60 eV

Losses of 80 80 15 15 DBE through 60 60 DBE ring opening DBE 10 40 10 40

20 20 5 5 N 0 + 0 Chemical Formula: C16H16N Exact Mass: 222.12773 0 0 10 20 30 40 10 20 30 40 30 C# C# DBE 10 N1 fragment series

Ion core

N + Chemical Formula: C16H16N Exact Mass: 222.12773

40 V 50 V 60 V

100 100 100

80 80 80

60 60 60 Intensity Intensity Intensity 40 40 40

20 20 20

0 0 0 15 20 25 30 15 20 25 30 15 20 25 30 C# C# C#

31 Asphaltenes • Reference asphaltene de in the framework of PetroPhase 2017 Le Havre. Non-soluble in pentane or heptane but soluble in toluene

Island Archipelago

Org. Biomol. Chem., 2015, 13, 6984-6991 Asphaltene Results

Fullerene Chemical Formula: C60 Exact Mass: 720.00

VGO

Brut

Brut VGO Asphaltene

Marianny Combariza Sulfur

APCI-FTICR

Y. Han, Y. Zhang, C. Xu, C. S. Hsu. Molecular characterization of sulfur-containing compounds in petroleum. Fuel 2018, 221, 144. N. Hourani, J. T. Andersson, I. Moller, M. Amad, M. Witt, S. M. Sarathy. Atmospheric pressure chemical ionization Fourier transform ion cyclotron resonance mass spectrometry for complex thiophenic mixture analysis. Rapid commun. mass spectrom. 2013, 27, 2432. ESI(+) Canadian HVGO Cationization

• Ag(I) – [M + 107Ag]+ and [M + 109Ag]+ – AgOTf – Selective ionization

V. V. Lobodin, P. Juyal, A. M. McKenna, R. P. Rodgers, A. G. Marshall. Silver Cationization for Rapid Speciation of Sulfur-Containing Species in Crude Oils by Positive Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Energy Fuels 2014, 28, 447. • 7T FTICR, 2s transient Absorption mode

Y. Cho, Y. Qi, P. B. O'Connor, M. P. Barrow, S. Kim. Application of phase correction to improve the interpretation of crude oil spectra obtained using 7 T Fourier transform ion cyclotron resonance mass spectrometry. J Am Soc Mass Spectrom 2014, 25, 154. Evolution of RP with m/z 12T 1600000 + C29H42S Intens. 1400000 422.300183APPI_Infusion_C_000001.d: +MS [%] 3.3 s transient 1200000 x108 2.0 1000000 800000 R 850000 1.5 + 600000 C32H38 400000 422.296812 200000 1.0 0

0 500 1000 1500 2000 0.5

422.279731 422.291266 Intens. APPI_Infusion_C_000001.d: +MS [%] 470.394044 0.0 422.280 422.285 422.290 422.295 422.300 422.305 m/z x108 APPI_Infusion_C_000001.d: +MS 4 C H + C H S+ Intens. 55 86 APPI_Infusion_C_000001.d:52 90 +MS [%] 746.675771 x107 3 2.5

2.0 R 550000 2

1.5

1 1.0

0.000000 0.5 746.663411 0 746.655481 300 400 500 600 700 800 m/z APPI_Infusion_C_000001.d: +MS

0.0 746.650 746.660 746.670 746.680 m/z APPI_Infusion_C_000001.d: +MS Quadripolar detection

• 7 T • RP150000 m/z 400 4s transient

E. Cho, M. Witt, M. Hur, M. J. Jung, S. Kim. Application of FT-ICR MS Equipped with Quadrupole Detection for Analysis of Crude Oil. Anal Chem 2017, 89, 12101. Limits

• Isomers ? – m/z depends only on molecular formula • Ionization discrimination – In complex mixtures charge tend to go to the more basic/acidic species – Observation of species with higher ionization efficiency • Compounds with low ionization efficiency? • Addition of separation – Fractionation – Liquid (on line and off line) – Emulsions

• Formation of emulsions can be a issue for oil production • Some oils lead to higher amount of emulsions heptane/toluene 10:25 MeOH/toluene

J. M. Jarvis, W. K. Robbins, Y. E. Corilo, R. P. Rodgers. Novel Method To Isolate Interfacial Material. Energy Fuels 2015, 29, 7058. HPLC-2 Off line chromatographic separation C1 - dinitroanilinopropyl (DNAP) column for separating the larger rings C2 - propylaminocyano (PAC) column for separating saturates and mono-aromatics

W. K. Robbins. Quantitative Measurement of Mass and Aromaticity Distributions for Heavy Distillates 1. Capabilities of the HPLC-2 System. J. Chrom. Sci. 1998, 36, 457. D. C. Podgorski, Y. E. Corilo, L. Nyadong, V. V. Lobodin, B. J. Bythell, W. K. Robbins, A. M. McKenna, A. G. Marshall, R. P. Rodgers. Heavy Petroleum Composition. 5. Compositional and Structural Continuum of Petroleum Revealed. Energy Fuels 2013, 27, 1268.

Saturated, Aromatics, Resins, Asphaltens SARA

APLI-FTICR

A. Gaspar, E. Zellermann, S. Lababidi, J. Reece, W. Schrader. Characterization of Saturates, Aromatics, Resins, and Asphaltenes Heavy Crude Oil Fractions by Atmospheric Pressure Laser Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Energy Fuels 2012, 26, 3481. • GPC-ICPMS GPC

S. Gutierrez Sama, A. Desprez, G. Krier, C.-P. Lienemann, J. Barbier, R. Lobinski, C. Barrere-Mangote, P. Giusti, B. Bouyssiere. Study of the Aggregation of Metal Complexes with Asphaltenes Using Gel Permeation Chromatography Inductively Coupled Plasma High- Resolution Mass Spectrometry. Energy Fuels 2016, 30, 6907. Thesis Alain Desprez Planar limit

Y. Cho, Y. H. Kim, S. Kim. Planar limit-assisted structural interpretation of saturates/aromatics/resins/asphaltenes fractionated crude oil compounds observed by Fourier transform ion 45 cyclotron resonance mass spectrometry. Anal Chem 2011, 83, 6068. Application SARA fractions

addition of a saturated Slope 0.25 cyclic ring

Slope 0.75 serial linear addition of aromatic rings

Slope 1 nonlinear addition of benzene rings

46 APPI-LTQ-Orbitrap On line LC/MS

T. Ghislain, L. Molnarne Guricza, W. Schrader. Characterization of crude oil asphaltenes by coupling size-exclusion chromatography directly to an ultrahigh-resolution mass . Rapid commun. mass spectrom. 2017, 31, 495. Orbitrap

9.4 T FT-ICR LTQ Orbitrap XL

A. E. Pomerantz, O. C. Mullins, G. Paul, J. Ruzicka, M. Sanders. Orbitrap Mass Spectrometry: A Proposal for Routine Analysis of Nonvolatile Components of Petroleum. Energy Fuels 2011, 25, 3077. Orbitrap

ESI(+)

Std Orbitrap 0.5 s

7 T FTICR 3 s

Mega Orbitrap 3 s (eFT)

E. M. Schmidt, M. A. Pudenzi, J. M. Santos, C. F. F. Angolini, R. C. L. Pereira, Y. S. Rocha, E. Denisov, E. Damoc, A. Makarov, M. N. Eberlin. Petroleomics via Orbitrap mass spectrometry with resolving power above 1 000 000 at m/z 200. RSC Advances 2018, 8, 6183 SARA APPI saturates aromatics APPI-FTICR

resins asphaltenes

Y. Cho, J.-G. Na, N.-S. Nho, S. Kim, S. Kim. Application of Saturates, Aromatics, Resins, and Asphaltenes Crude Oil Fractionation for Detailed Chemical Characterization of Heavy Crude Oils by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry Equipped with Atmospheric Pressure Photoionization. Energy Fuels 2012, 26, 2558. Ion Mobility

• Separation based on size and shape – Drift time (1-30 ms) – Access to collision cross section v = K ´ E • Intrinsic property of the ion d • Predictable • IM-MS coupling – 2D separation – Information on isomers – Coupling with TOF (acquisition in μs range)

• IM-FTMS coupling – Second time scale LC IM TOF-MS

103 102 101 100 10-1 10-2 10-3 10-4 10-5 10-6 (s)

Edward Mack, Jr, J. Am. Chem. Soc. 1925, 47, 2468 51 IMS-TOF and FTMS ESI(-)

O Class, DBE=5O 2 OH

DBE =5

P. M. Lalli, Y. E. Corilo, S. M. Rowland, A. G. Marshall, R. P. Rodgers. Isomeric Separation and Structural Characterization of Acids in Petroleum by Ion Mobility Mass Spectrometry. Energy Fuels 2015, 29, 3626. 52 ESI(+)

N1 Class 5.30 DBE = 8 100 5.51 ve i t a l e R intensity (%) intensity Drift time (ms) time Drift 0 4.0 4.5 5.0 5.5 6.0 6.5 7.5 Drift time (ms) Carbon Number

M. Farenc, Y. E. Corilo, P. M. Lalli, E. Riches, R. P. Rodgers, C. Afonso, P. Giusti. Comparison of Atmospheric Pressure Ionization for the Analysis of Heavy Petroleum Fractions with Ion Mobility- 53 Mass Spectrometry. Energy Fuels 2016, 30, 8896. 114.5 Å2 120.4 Å2

Table 1: Theoretical CCS (Å2) values for + putative C22H32N isomers isomer TM CS (Å2) 1 115.0 2 117.5 3 119.8 4 120.4 5 121.8 6 127.4 7 139.0 MMFF94 force field 8 136.8 54 DBE=8 IMS Peak width 100

Ala 80 3 Ala4 Ala5 Ala6 60 Ala7 Ala8

Intensity 40

20

0 2 4 6 8 10 drift time (ms)

M. Farenc, B. Paupy, S. Marceau, E. Riches, C. Afonso, P. Giusti. Effective Ion Mobility Peak Width as a New Isomeric Descriptor for the Untargeted Analysis of Complex Mixtures Using Ion Mobility-Mass 55 Spectrometry. J Am Soc Mass Spectrom 2017, 28, 2476. IMS with FTMS

• IMS coupling with FTICR? – Second time scale – FAIMS – TIMS-FTMS

56 TIMS-FTICR

C10H8

* 2% experimental value

P. Benigni, R. Marin, F. Fernandez-Lima. Towards unsupervised polyaromatic hydrocarbons structural 57 assignment from SA-TIMS-FTMS data. Int J Ion Mobil Spectrom 2015, 18, 15 Chemometrics Evaluation of the accurate determination of calculated mixing ratios of similar crude oils

M. Witt, W. Timm. Determination of Simulated Crude Oil Mixtures from the North Sea Using Atmospheric Pressure Photoionization Coupled to Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Energy Fuels 2015, 30, 3707. Nathalie Carasco (Univ. Paris Saclay) Tholins Thèse de Julien Maillard Cassini Mission

Titan

Quadripole 95 % à 98,4 % d'azote 1,6 % à 5 % de méthane

Tholins

59 Vue de l’intérieur du réacteur de l’expérience PAMPRE

60 Que savions nous avant cette étude ?

• Propriétés physiques des Tholins (Carrasco et al. 2009) : Analyse élémentaire, Solubilité, (Le tholins préparées avec 5% de méthane sont solubles à 35% dans le méthanol) Absorption IR, (Validation par rapport aux données de Titan)

• Etude de la fraction soluble en ESI-Orbitrap (Gautier et al. 2014):

Polymère, motifs CH2 et HCN

Postulat fraction soluble représentative de la globalité

11 Analyse par desorption laser des fractions solubles et insolubles

Soluble

Soluble

Insoluble Insoluble

Totale

Totale

21 Diagrammes de Van Krevelen de la fraction soluble

N /C = 0,5 H/C = 1,5

14 Van Krevelen avec x = N/C, y = H/C et z = m/z

N /C = 0,5 H/C = 1,5

• Fraction soluble

• Convergence des espèces

Polymère de motif –C2H3N-

15 Diagrammes de Van Krevelen de la fraction insoluble

• Deuxième motif de croissance

N/C = 0,5; H/C = 0,75

Motif: C4H3N2

22 Comparaison de la saturation des fractions

40 Partie insoluble de N = 5 à N = 9 Partie insoluble pour N5 à N9 Partie soluble pour N5 à N9 35

30

25

20 DBE

15

10 HAP 5 DBE

0 0 5 10 15 20 25 30 35 40 45 Nombre de Carbones

66 23 Polymères et MS

T T • Polymères 1 2 – Motif de répétition MN = ΣMiNi/ΣNi – Terminaisons MW = Σ(Mi) Ni/ΣMiNi – Masse moyenne polydispersité D = MW/MN

CH CH3 3 O + Si N [M+H] O Substance Formula CH calculated 3 n O O CH n n 3 n PDMS 1 PVP 3 PMMA 2 PS 7 • Additifs Chimassorb 81 316.1211 – Anti-UV

– Antioxydants Tinuvin 326 327.1955 – Photostabilisants de type amines encombrées

• HALS (hindered amine light Tinuvin 328 352.2383 stabilizants) –… 67 Tinuvin 770 481.4000 Ionization of Polymers

• Ionization – M+• CH3 + + + CH3 – [M+H] , [M+Na] , [M+Met] Si O O O CH 3 n CH 3 n n • Polymers : large molecular PDMS 1 PMMA 2 PS 7 diversity – Heteroatoms (PEG, PMMA…) – Unsaturated (PB) – Aromatics (PS) – Saturated (PE, PP…) • Solubility – In MS most ionization imply that the sample is soluble

68 Polyolefins

• Saturated polymers H2 H C C – Most common polymers n CH3 – PE (80 million tonnes) PE PP – PP (55 million tonnes) • Solubility iPP – Insoluble in most solvents sPP – Most ionization method requires solutions aPP • Ionization – How to ionize large alkanes ?

69 ASAP or DIP-APCI: a complex ionization process Ionization By charge exchange e−

+• N2 N2 Traces of O2 and H2O pyrolysis ? PP

Pyrolysis products

R.B. Cody, Anal. Chem. 2009, 81, 1101–1107 70 FTICR analysis

391.2842 339.3621 391.2842 339.3621353.3414365.3778 (a) 323.3308 379.3934 PE 295.2995

419.3155

300 325 350 375 m/z

(b) 353.3414 PP 395.3884 437.4353479.4823 C3H6 C3H6 C3H6

311.2945 521.5292 563.5762 605.6231 269.2475 647.67010 689.7170 731.7640

200 300 400 500 600 700 m/z

Differentiation of PP and PE 71 RP=900000 FT-ICR Analysis DBE 0.5 PE DBE 0.5

PP

Oxygen containing species for PE and PP Low DBE species detected for PE not for PP M. Farenc, M. Witt, K. Craven, C. Barrere-Mangote, C. Afonso, P. Giusti. Characterization of Polyolefin Pyrolysis Species Produced Under Ambient Conditions by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry and Ion Mobility- Mass Spectrometry. J Am Soc Mass Spectrom 2017, 28, 507. 72 Oxygen number distribution (FT-ICR)

PE PP

50 45 40 35 30 25 PE 20 PPi 15 PPa Relative Intensity 10 5 0 O0 O1 O2 O3 O4 O5 Number of oxygens

Higher number of oxygens for PP related to ramifications ?

73 DBE distribution CxHy (no oxygen) (FTICR)

60

50

40

30 PE PPi 20 PPa Relative Intensity

10

0 0.5 1.5 2.5 3.5 4.5 5.5 6.5 DBE

74 polybisphenol A carbonate (PC) 2270 = T1+T2+n×254.09+23 n ≤ 2247/254=8.8 T2 T1 n=8 254.09 x 8 = 2032.7 254.09 u 254 T1+T2 = 214.3

[M+Na]+ 16 O O + 2270 [M+Na] 16 O [M+K]+ [M+K]+ 137.02 77.04 2286 2564 2580

2564 = T1+T2+n×254.09+23 n ≤ 2541/254.09=10.00 2524 2541 T1+T2=0

polymère cyclique

Michel W. F. Nielen, Anal. Chem. 1998, 70, 1563-1568 75 ESI-FTICR PDMS 28 29 2+ 2+ 30 31 • PDMS 2+ 2+ ESI-FTICR 13 14 1+ 1+ poly(dimethylsiloxane) 14 1+ 15 15 16 1+ 1+ 1+

Maziarz et al., Macromolecules,1999,32,4411 76 Polymer mix

mass scale based on PO units

-CH(CH3)CH2O

H. Sato, S. Nakamura, K. Teramoto, T. Sato. Structural characterization of polymers by MALDI spiral-TOF mass spectrometry combined with Kendrick mass defect analysis. J Am Soc Mass Spectrom 2014, 25, 1346. 77 Alkanes: halide attachment

lubrifiants Alpha-olefin poly-alpha-olefin

photoionization

Electron capture dissocation

Anion attachment

Thesis Anna Siqueira

Macromolecules 2008, 41, 3772-3774 C. Loutelier H. Lavanant M. Hubert I. Schmitz A. Marcual Assistant Prof. Assistant Prof. Research Eng. Research Eng. Engineer Remerciements