To Super-Resolution Mass Spectrometry
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Petroleomics
Petroleomics A barrel load of compounds As the world’s petroleum supply dries up, Phillip Broadwith goes hunting for oil armed with a mass spectrometer, a chromatography column and state-of-the-art data-mining software THINKSTOCK 46 | Chemistry World | May 2010 www.chemistryworld.org Petroleum, or crude oil, is one by 0.0005Da – about the mass of an biggest FT-ICR spectrometer In short of the most complex naturally electron. has a 14.5 Tesla superconducting occurring chemical mixtures on Rodgers explains why FT-ICR Oil companies are magnet, but they are expecting a the planet. Each drop can contain MS has the upper hand when it looking to oil shale and 21T machine to come online later hundreds of thousands of different comes to resolution: it’s down to tar sands, as supplies of this year. To put that in perspective, types of molecules, from simple the magnets. The magnet separates lightweight oils run low a fridge magnet has a field of hydrocarbons to highly structurally ions of different masses within the Oil is a very complex about 0.1T and a 500MHz NMR diverse carboxylic acids, sulfur and spectrometer – charged particles mixture of molecules, spectrometer’s magnet comes in at nitrogen heterocycles and metal in electromagnetic fields start to and mass spectrometry is just under 12T. ‘What we’ve found salts. whirl around, and the frequency of used to reveal these and is that you can never have enough Some of these compounds this spinning depends on both the assess the suitability of resolution,’ says Rodgers. ‘As you go – like the hydrocarbons – are mass of the ion and the strength of new oil supplies higher and higher you can see more relatively chemically benign, but the magnetic field. -
Simultaneous Analysis of Drugs in Forensic Cases by Liquid Chromatography–High‑Resolution Orbitrap Mass Spectrometry
Chromatographia (2020) 83:53–64 https://doi.org/10.1007/s10337-019-03814-w ORIGINAL Simultaneous Analysis of Drugs in Forensic Cases by Liquid Chromatography–High‑Resolution Orbitrap Mass Spectrometry Siti U. Mokhtar1 · Chadin Kulsing2,3,4 · Jalal T. Althakafy2,5 · Alex Kotsos6 · Olaf H. Drummer6,7 · Philip J. Marriott2 Received: 10 May 2019 / Revised: 23 September 2019 / Accepted: 15 October 2019 / Published online: 31 October 2019 © Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract In the present study, liquid chromatography coupled to an Orbitrap mass spectrometer (HPLC–Q-Orbitrap MS) was used as an approach for identifcation and quantifcation of 113 drugs simultaneously in biological samples (whole blood/plasma/ serum). Samples were prepared using liquid–liquid extraction conducted using a trizma/isopropanol/butyl chloride bufer system. Reversed-phase separation employing a column (50 × 2.1 mm) packed with 2.6-μm C18 particles was then performed under gradient elution with mobile phase composition consisting of acetic acid and aqueous-acetonitrile mixtures with the acetonitrile content ranging from 10 to 100% v/v. Compounds were detected with high-resolution MS operated in full scan mode having a mass accuracy < 5 ppm. In this study, isobaric compounds (same nominal mass) were easily distinguished and identifed by their diferent retention times. Extracted ion chromatograms (XICs) with narrow mass tolerance window (5 ppm) 2 provided analysis with acceptable linearity (r ) ranged from 0.9530 to 1, low limits of detection (LOD) (0.02–39 ng mL−1) and low limit of quantifcation (LOQ) (0.1–130 ng mL−1). The developed method was applied to successfully analyse drugs in 26 blood samples from positive forensic cases and proved that this technique was able to detect analytes at trace level. -
Mass Spectrometer Business Presentation Materials
Mass Spectrometer Business Presentation Materials Hiroto Itoi, Corporate Officer Deputy General Manager of the Analytical & Measuring Instruments Division Shimadzu Corporation Jul. 3, 2018 Contents I. Introduction • Expansion of Mass Spectrometry ………………………………………………………………… p.3 • History of Shimadzu's Growth in Mass Spectrometry …………………………………………… p.5 II. Overview of Mass Spectrometers • Operating Principle, Demand Trends, and Vendors ……………………………………………… p.9 • Mass Spectra ………………………………………………………………………………………… p.10 • Configuration of Mass Spectrometers …………………………………………………………… p.11 • Ionization …………………………………………………………………………………………… p.12 • Mass Separation …………………………………………………………………………………… p.14 III. Shimadzu's Mass Spectrometer Business • Product Type ………………………………………………………………………………………… p.17 • Application Software ………………………………………………………………………………… p.18 • Growth Strategy for Mass Spectrometer Business ……………………………………………… p.19 • Expand/Improve Product Lines …………………………………………………………………… p.20 • Measures to Expand Application Fields …………………………………………………………… p.24 • Measures to Automate Data Processing Using AI ……………………………………………… p.25 IV. Summary • Future Direction ……………………………………………………………………………………… p.26 July 2018 Mass Spectrometer Business Presentation Materials 2 I. Introduction Expansion of Mass Spectrometry (1) Why Mass Spectrometry? Mass spectrometry is able to analyze a wide variety of compounds with high accuracy and high efficiency (simultaneous multicomponent analysis). It offers superior characteristics that are especially beneficial in the following fields, -
Advantages of the LTQ Orbitrap for Protein Identification in Complex Digests
Application Note: 386 Advantages of the LTQ Orbitrap for Protein Identification in Complex Digests Rosa Viner, Terry Zhang, Scott Peterman, and Vlad Zabrouskov, Thermo Fisher Scientific, San Jose, CA, USA Introduction Materials and Methods Key Words Comprehensive, accurate identification of proteins in Sample Preparation • LTQ Orbitrap complex sample mixtures is an important fundamental capability for any proteomics research laboratory. Technology Ten µL of E. coli cell lysate diluted 20-fold with 6 M • Peptide advancements in both hardware and software continue to guanidine HCl in 50 mM ammonium bicarbonate (pH 8.0) Sequencing expand and refine our view of any proteomic system in was reduced with 5 mM DTT, alkylated with 25 mM iodoacetic acid and digested at 37 °C for 16 hours. • Protein terms of protein identities and their post-translational Identification modifications (PTMs). It has been suggested that the very HPLC recent ability to routinely obtain accurate mass measurements Column: C18 Packed tip, 75 µm x 75 mm (QSTAR Elite); • PTMs (< 5 ppm RMS) on precursor and MS/MS fragment ions C18 column, 75 µm x 100 mm (LTQ Orbitrap XL) in proteomic experiments should lead to unprecedented Mobile phase A: 0.1% Formic Acid in Water with accuracy in the ability to identify and characterize proteins.1 2% Acetonitrile This paper compares alternative approaches to this Mobile phase B: 0.1% Formic Acid in Acetonitrile challenging application using two high performance Flow Rate: 300 nL/min platforms for proteomics: a QqTOF instrument (QSTAR® Gradient: 5% B to 35% B in 90 min Elite from Applied Biosystems) and a hybrid linear ion trap- orbitrap instrument (Thermo Scientific LTQ Orbitrap XL). -
Novel Quadrupole Time-Of-Flight Mass Spectrometry for Shotgun Proteomics
DISSERTATION ZUR ERLANGUNG DES DOKTORGRADES DER FAKULTÄT FÜR CHEMIE UND PHARMAZIE DER LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN Novel quadrupole time-of-flight mass spectrometry for shotgun proteomics von Scarlet Svenja Anna-Maria Beck aus Tettnang 2016 ii Erklärung Diese Dissertation wurde im Sinne von §7 der Promotionsordnung vom 28. November 2011 von Herrn Prof. Dr. Matthias Mann betreut. Eidesstattliche Versicherung Diese Dissertation wurde eigenständig und ohne unerlaubte Hilfe erarbeitet. München, den 25.04.2017 …………………………………………………………………………………………Scarlet Beck Dissertation eingereicht am 23.09.2016 1. Gutachter: Prof. Dr. Matthias Mann 2. Gutachter: Prof. Dr. Jürgen Cox Mündliche Prüfung am 04.11.2016 iii iv ABSTRACT Mass spectrometry (MS)-based proteomics has become a powerful technology for the identification and quantification of thousands of proteins. However, the coverage of complete proteomes is still very challenging due to the high sample complexity and the difference in protein concentrations. In data-dependent shotgun proteomics several peptides elute simultaneously from the column and are isolated by the quadrupole and fragmented by the collision cell one at a time. This method has two major disadvantages. On the one hand, a large number of eluting peptides cannot be targeted since the sequencing speeds of current instruments are too slow and on the other hand, peptides that only differ slightly in mass and elute together are co-isolated and co-fragmented, resulting in chimeric MS2 spectra. Therefore an urgent need for further developments and improvements of mass spectrometers remains. The aim of this thesis was to co-develop, evaluate and improve novel quadrupole time-of-flight (QTOF) mass spectrometers. In my first project I have described the developments and improvements of the hardware of the high-resolution QTOF mass spectrometer, the impact II, and have shown that this instrument can be used for very deep coverage of diverse proteomes as well as for accurate and reproducible quantification. -
Orbitrap Fusion Tribrid Mass Spectrometer
MASS SPECTROMETRY Product Specifications Thermo Scientific Orbitrap Fusion Tribrid Mass Spectrometer Unmatched analytical performance, revolutionary MS architecture The Thermo Scientific™ Orbitrap Fusion™ mass spectrometer combines the best of quadrupole, Orbitrap, and linear ion trap mass analysis in a revolutionary Thermo Scientific™ Tribrid™ architecture that delivers unprecedented depth of analysis. It enables life scientists working with even the most challenging samples—samples of low abundance, high complexity, or difficult-to-analyze chemical structure—to identify more compounds faster, quantify them more accurately, and elucidate molecular composition more thoroughly. • Tribrid architecture combines quadrupole, followed by ETD or EThCD for glycopeptide linear ion trap, and Orbitrap mass analyzers characterization or HCD followed by CID • Multiple fragmentation techniques—CID, for small-molecule structural analysis. HCD, and optional ETD and EThCD—are available at any stage of MSn, with The ultrahigh resolution of the Orbitrap mass subsequent mass analysis in either the ion analyzer increases certainty of analytical trap or Orbitrap mass analyzer results, enabling molecular-weight • Parallelization of MS and MSn acquisition determination for intact proteins and confident to maximize the amount of high-quality resolution of isobaric species. The unsurpassed data acquired scan rate and resolution of the system are • Next-generation ion sources and ion especially useful when dealing with complex optics increase system ease of operation and robustness and low-abundance samples in proteomics, • Innovative instrument control software metabolomics, glycomics, lipidomics, and makes setup easier, methods more similar applications. powerful, and operation more intuitive The intuitive user interface of the tune editor The Orbitrap Fusion Tribrid MS can perform and method editor makes instrument calibration a wide variety of analyses, from in-depth and method development easier. -
Classifying Petroleum Samples with Waters SYNAPT HDMS and Omics
Classifying Petroleum Samples with Waters SYNAPT HDMS and Omics LLC PetroOrg Petroleomics Software Combines the value of Ion Mobility Mass Spectrometry (IM-MS) and accurate mass information with petroleomics data processing to easily characterize petroleum chemical composition ECONOMIC VALUE AND CHEMICAL COMPOSITION OF CRUDE OIL Benefits of using Waters The chemical composition of petroleum determines its economic value. Especially important SYNAPT HDMS and PetroOrg to economic value is the proportion of heteroatoms in crude oil, particularly molecules Petroleomics Software containing nitrogen, sulfur, and oxygen because these species contribute to solid deposition, ■■ Ion mobility in Waters SYNAPT flocculation, catalyst deactivation, storage instability, and refinery corrosion. Light sweet HDMS delivers enhanced crude are low in these heteroatoms, but the world supply of light sweet crude is diminishing, sample deconvolution thus resulting in a world-wide shift to heavier crudes that are rich in heteroatoms. Energy ■■ Easily classify petroleum samples companies seek better analytical methodologies to determine crude oil’s economic value using petroleomics methodology and the level of refining required in order to produce high-value products. and diagrams Analytical Characterization of Crude Oil ■■ Determining heteroatom Mass spectrometric analysis of petroleum is an attractive approach to fully characterizing composition of petroleum samples crude oils, including categorizing crude oil samples by their heteroatom content. Some aids in determining economic value of the earliest innovations in mass spectrometry were directed towards the petroleum ■■ Complementary to GC-MS and NMR industry. However, the extremely high complexity of crude oils offers a significant analyses of petroleum samples challenge to the analytical chemist. Added to that challenge is the difficulty of processing, ■■ The combination of Ion Mobility, visualizing, and interpreting the information rich mass spectral data. -
Yale School of Public Health Symposium on Lifetime Exposures and Human Health: the Exposome; Summary and Future Reflections Caroline H
Yale school of public health symposium on lifetime exposures and human health: the exposome; summary and future reflections Caroline H. Johnson, Yale School of Public Health Toby J. Athersuch, Imperial College London Gwen W. Collman, National Institutes of Health Suraj Dhungana, Waters Corporation David F. Grant, University of Connecticut Dean Jones, Emory University Chirag J. Patel, Harvard Medical School Vasilis Vasiliou, Yale School of Public Health Publisher: Biomed Central LTD Publication Date: 2017-12-08 Type of Work: Report Publisher DOI: 10.1186/s40246-017-0128-0 Permanent URL: https://pid.emory.edu/ark:/25593/s6w0w Final published version: http://dx.doi.org/10.1186/s40246-017-0128-0 Copyright information: © 2017 The Author(s). This is an Open Access work distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/). Accessed October 1, 2021 10:15 AM EDT Johnson et al. Human Genomics (2017) 11:32 DOI 10.1186/s40246-017-0128-0 MEETING REPORT Open Access Yale school of public health symposium on lifetime exposures and human health: the exposome; summary and future reflections Caroline H. Johnson1*, Toby J. Athersuch2,3, Gwen W. Collman4, Suraj Dhungana5, David F. Grant6, Dean P. Jones7, Chirag J. Patel8 and Vasilis Vasiliou1* Abstract The exposome is defined as “the totality of environmental exposures encountered from birth to death” and was developed to address the need for comprehensive environmental exposure assessment to better understand disease etiology. Due to the complexity of the exposome, significant efforts have been made to develop technologies for longitudinal, internal and external exposure monitoring, and bioinformatics to integrate and analyze datasets generated. -
Download on the Rawtools
PARSING AND ANALYSIS OF MASS SPECTROMETRY DATA OF COMPLEX BIOLOGICAL AND ENVIRONMENTAL MIXTURES by Kevin Kovalchik B.S., Oregon State University, 2014 B.M., The University of Idaho, 2007 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE AND POSTDOCTORAL STUDIES (CHEMISTRY) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) August 2019 © Kevin Kovalchik, 2019 The following individuals certify that they have read, and recommend to the Faculty of Graduate and Postdoctoral Studies for acceptance, the dissertation entitled: PARSING AND ANALYSIS OF MASS SPECTROMETRY DATA OF COMPLEX BIOLOGICAL AND ENVIRONMENTAL MIXTURES submitted by Kevin A Kovalchik in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Chemistry Examining Committee: David DY Chen Co-supervisor John V Headley Co-supervisor Roman Krems Supervisory Committee Member Ed Grant University Examiner Keng Chou University Examiner ii Abstract The chemical characterization of biological and environmental samples are areas of research which involve the analysis of highly complex chemical mixtures. While the samples from these two fields differ greatly in composition, they present similar challenges. Complex mixtures provide a challenge to the analytical chemist as compounds in the mixture can have matrix effects which interfere with the analysis. Indeed, these interfering compounds may even be analytes themselves. High resolution mass spectrometry, which separates and detects ions based on their mass-to-charge ratio, is a powerful tool in the analysis of such mixtures. The amount of data resulting from such analyses, however, can be intractable to manual analysis, necessitating the use of computational tools. -
High Resolution LC-MS for Screening and Quantitative
High Resolution LC-MS for Screening and Quantitative Analysis of Antibiotics in Drinking Water Using an Orbitrap and Online Sample Preparation Jonathan Beck, Charles Yang, Dipankar Ghosh, Kristi Akervik; Thermo Fisher Scientific, San Jose, CA, USA Mass Spectrometry TABLE 2. List of antibiotics analyzed with their theoretical masses, LOQs and FIGURE 4. Spectral comparision of the MS2 spectrum of the antibiotic Overview Results reproducibility trimethoprim obtained at a concentration of 80 pg/mL. The library reference The Exactive™ Plus Orbitrap mass spectrometer was used in this experiment. The spectrum is the top spectrum, the lower spectrum is from the sample. The Purpose: To demonstrate online sample pre-concentration and extraction of water Exactive Plus was operated in alternating full scan and all ion fragmentation (AIF) Quantitation Compound Theoretical Mass (m/z) LOQ (pg/mL) % RSD at LOQ samples and analysis with high-resolution, accurate mass (HR/AM) detection, comparison was performed with ExactFinder software. mode with positive electrospray ionization. One scan of full scan MS data was Acquisition and quantitation was carried out using TraceFinder™ software. The Carbamazepine 332.14050 0.2 8.90 quantitation and confirmation. collected, and subsequently, all of the ions entering the MS were fragmented in the theoretical mass of each protonated antibiotic compound was used as the mass for Erythromycin 734.46852 40.0 14.30 Methods: Inject 1 mL water samples directly onto a trapping column. The trapped higher-energy C-trap dissociation (HCD) collision cell at a collision energy (CE) of quantitation in this analysis. Calibration lines were created for each compound, and fit Ketoprofen 255.10157 1.0 9.90 compounds are then backflushed onto an analytical HPLC column and detected using 30 eV with a 20% stepped CE, and analyzed in the Orbitrap mass analyzer. -
A Novel High Resolution Accurate Mass Orbitrap-Based GC-MS
ROUTINE OR RESEARCH GC-Orbitrap for Environmental Analysis a collaboration between ROUTINE OR RESEARCH GC-Orbitrap for Environmental Analysis Foreword A Novel High Resolution Accurate Mass Orbitrap-based GC-MS Platform for Routine Analysis of Short Chained Chlorinated Paraffins In this study, the performance of a novel bench top, high resolution accurate mass Orbitrap™-based GC-MS was tested for the analysis of SCCPs. System performance was tested using full-scan acquisition and simple instrumental setup. Pyrolysis-GC-Orbitrap MS - A Powerful Analytical Tool for Identification and Quantification of Microplastics in a Biological Matrix The purpose of the experiments described in this work was to assess the applicability of pyrolysis-gas chromatography-Orbitrap™ mass spectrometry for the qualitative and quantitative analysis of plastic polymers in complex biological matrices. Low Level Quantification of NDMA and Non-targeted Contaminants Screening in Drinking Water using GC Orbitrap Mass Spectrometry In this work, a sensitive and selective method for NDMA detection and quantification using high resolution accurate mass GC Orbitrap™ technology is described. Overcoming Analytical Challenges for Polybrominated Diphenyl Ethers (PBDEs) Analysis in Environmental Samples using Gas Chromatography – Orbitrap Mass Spectrometry The note demonstrates the quantitative performance of the Thermo Scientific™ Exactive™ GC Orbitrap™ GC-MS mass spectrometer for the analysis of polybrominated diphenyl ethers (PBDEs) in environmental samples. Versatility of GC-Orbitrap Mass Spectrometry for the Ultra-trace Detection of Persistent Organic Pollutants in Penguin Blood from Antarctica In this study, the performance of the Thermo Scientific™ Q Exactive™ GC Orbitrap™ mass spectrometer was evaluated for routine analysis of POPs within King penguin blood from Antarctica. -
The 12Th North American FT MS Conference Program
Florida State University 1800 East Paul Dirac Drive Tallahassee, Florida 32310 nationalmaglab.org 10 April 2019 Colleagues, On behalf of the National High Magnetic Field Laboratory and Florida State University, we welcome you to the 12th North American FT MS Conference! We hope that your stay in Key West is both personally and professionally rewarding. Topics span a broad range of techniques and applications. Posters will remain up throughout the meeting, to encourage discussions. The primary effort for organizing the conference has been provided by the conference coordinator, Karol Bickett. She has done an excellent job with the many required logistical and personal arrangements. Should you need any assistance or have any issues that need to be resolved while at the conference, please see Karol at the registration table so that we can insure that your experience at this conference is a most enjoyable one. Your registration fee covers only a portion of the expenses of the conference. The generous contributions of our sponsors have kept the meeting costs affordable for participants, and made it possible for us to assist with the expenses of the invited speakers and the graduate student poster presenters. Please take an opportunity to thank our participating sponsors at their display tables. Thank you for joining us, and we look forward to a splendid conference! Sincerely, Christopher Hendrickson Director, Ion Cyclotron Resonance Program, NHMFL Christopher Hendrickson, Director, ICR Program 850.644.0711 | [email protected] Operated