Review the Mineralogy of Suspended Matter, Fresh and Cenozoic Sediments in the fluvio-Deltaic Rhine–Meuse–Scheldt–Ems Area, the Netherlands: an Overview and Review

Total Page:16

File Type:pdf, Size:1020Kb

Review the Mineralogy of Suspended Matter, Fresh and Cenozoic Sediments in the fluvio-Deltaic Rhine–Meuse–Scheldt–Ems Area, the Netherlands: an Overview and Review Netherlands Journal of Geosciences — Geologie en Mijnbouw |95 – 1 | 23–107 | 2016 doi:10.1017/njg.2015.32 Review The mineralogy of suspended matter, fresh and Cenozoic sediments in the fluvio-deltaic Rhine–Meuse–Scheldt–Ems area, the Netherlands: An overview and review J. Griffioen1,∗,G.Klaver2 &W.E.Westerhoff3 1 TNO Geological Survey of the Netherlands, P.O. Box 80 015, 3508 TA Utrecht, the Netherlands and Copernicus Institute of Sustainable Development, Utrecht University, P.O. Box 80 115, 3508 TC Utrecht, the Netherlands 2 Formerly BRGM, Laboratories Division, 3 av. C. Guillemin, BP36009, 45060 Orleans, France; Le Studium, CNRS, Orleans, France; TNO Geological Survey of the Netherlands, P.O. Box 80 015, 3508 TA Utrecht, the Netherlands 3 TNO Geological Survey of the Netherlands, P.O. Box 80 015, 3508 TA Utrecht, the Netherlands ∗ Corresponding author. Email: jasper.griffi[email protected] Manuscript received: 18 March 2015, accepted: 13 October 2015 Abstract Minerals are the building blocks of clastic sediments and play an important role with respect to the physico-chemical properties of the sediment and the lithostratigraphy of sediments. This paper aims to provide an overview of the mineralogy (including solid organic matter) of sediments as well as suspended matter as found in the Netherlands (and some parts of Belgium). The work is based on a review of the scientific literature published over more than 100 years. Cenozoic sediments are addressed together with suspended matter and recent sediments of the surface water systems because they form a geoscientific continuum from material subject to transport via recently settled to aged material. Most attention is paid to heavy minerals, clay minerals, feldspars, Ca carbonates, reactive Fe minerals (oxides, siderite, sulphides, glauconite) and solid organic matter because they represent the dominant minerals and their properties form a main issue in subsurface and water management. When possible and relevant, the amounts, provenance, relationship with grain size distribution, early diagenesis and palaeohydrological evolution are described. Tables with statistical data about the mineral contents and isotopic composition of carbonates and organic matter are presented as overviews. The review on the mineralogy of Dutch fluvial and marine environments is more extensive than that for the other sedimentary environments because the first two have been studied much more intensively than the others and they also form the larger part of the Dutch deposits. The focus is on the natural background mineralogy of Dutch sediments, but this is hard for recent sediments, largely because the massive hydraulic infrastructure present in the Netherlands has probably also affected the mineralogy and geochemistry of sediments deposited in recent centuries. Many findings are summarised, several of which lead to more general insights for the Dutch situation. Ca carbonates in sediments often have several provenances and thus must be considered as mixtures. Dolomite is commonly present in addition to calcite. The importance of biotite as weatherable mica is unclear. Weathering of heavy minerals plays some role but it is unclear in which way it affects the heavy mineral associations. Clays are usually dominated by illite, smectite and their interstratified variant, while kaolinite is usually below 20% and chlorite below 5%. Vermiculite is a minor constituent in fluvial clays and its illitisation presumably happens during early diagenesis in the marine environment. Opaque Fe hydroxides can be present in addition to Fe oxyhydroxide coatings and both will play a role in redox chemistry as reactive Fe minerals. Feldspars in marine sediments must be present but they have not been properly studied. The genesis of rattle stones and carbonate concretions has not been completely elucidated. The fraction of terrigeneous organic matter in estuarine and coastal marine sediments is substantial. The available data and information are spread irregularly over the country and the reviewed information discussed in this paper is derived from relatively small-scale studies dealing with a limited amount of analysed samples. Much information is available from the Scheldt estuaries in the southwestern part of the Netherlands partly due to the severe contamination of the Western Scheldt in recent decades. C Netherlands Journal of Geosciences Foundation 2016 23 Downloaded from https://www.cambridge.org/core. IP address: 170.106.40.40, on 29 Sep 2021 at 19:25:29, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/njg.2015.32 Netherlands Journal of Geosciences — Geologie en Mijnbouw 1 Introduction From the foregoing it is clear that insight into the min- eralogical composition of sediments is of general relevance. Mineral grains are the building blocks of clastic sediments. The This being the case, it is surprising that there has been no mixture of minerals together with organic matter influences the overview of the mineralogical composition of sediments in the pore water composition, the soil’s pedological evolution and fer- Netherlands. A wealth of information is available on the geol- tility, the fate of pollutants in the subsurface, the porosity and ogy of the Netherlands, and several books present geological permeability as geohydrological properties and the geomechan- overviews of the country (De Mulder et al., 2003; Wong et al., ical strength of the subsurface. More specifically, mineralogi- 2007 are the most recent and extensive ones). However, these cal composition plays an important role in sediment reactivity kinds of texts address the mineralogy in a qualitative and re- (Van Gaans et al., 2011), greatly influencing surface complex- stricted way, focusing on distinguishing and grouping heavy ation and ion exchange of cations and anions, sorption of or- minerals for stratigraphical reasons. This paper therefore aims ganic substances, denitrification and other redox reactions, as to provide an overview of the mineralogy and organic geochem- well as the weathering processes. Insight into this reactivity is istry of sediments as well as suspended matter as found in the needed for environmental management issues such as drainage- Netherlands (and some parts of Belgium), based on an exten- induced oxidation, aquifer storage and recovery, natural at- sive review of the scientific literature of more than a century. tenuation of pollutants, leaching of nutrients from farmland, We address suspended matter, recent sediments of the surface reactive transport and secondary mobilisation of trace metals, water systems and Cenozoic sediments because they form a and transfer of pollutants or nutrients from aquatic sediments geoscientific continuum: recent marine and fluvial sediments to the water column or vice versa. Additionally, the reactivity as well as suspended matter are the present-day analogues of of sediment influences the pH and redox state of the sub- the geological sediments. Most attention is paid to the follow- surface and hence the stability of the subsurface, man-made ing groups of minerals, with an indication of their relevance: constructions and buried materials (examples being the corro- heavy minerals as indicators of provenance etc., clay miner- sion of steel constructions and the stability of archaeological als for their contribution to the sorption capacity and impact heritage). on geohydrological and geomechanical properties, feldspars as The mineralogy of sediments is also used to stratigraphi- major, weatherable Al silicates, Ca carbonates as reactive, pH- cally classify sediments and to characterise their provenance. buffering minerals, reactive Fe minerals (oxides, carbonates, Heavy minerals (i.e. having a specific density exceeding 2.85 sulphides, glauconite) for their overall reactive behaviour, and kg/dm3; Boggs, 2009) are traditionally used for this purpose, solid organic matter for its redox-controlling and sorptive ca- but this is labour-intensive and is nowadays rarely applied in pacities. The review has been limited to the Cenozoic sediments the Netherlands. The clay mineralogy may also be used as a because there is little literature on older sediments for which palaeogeographical tool to characterise past climatological con- integration is less needed (an exception being the Rotliegend ditions and the provenance of sediments (Tebbens et al., 1998; Sandstone, which is the most important natural gas reservoir Thiry, 2000; Zeelmaekers, 2011). The nature of quartz, mica and rock in the Netherlands and has therefore been intensively feldspar grains also assists in the visual recognition of different studied; Gaupp & Okkerman, 2011). The sediments are predom- kinds of sediments: the presence or absence of multicoloured inantly clastic; organic or chemical sediments play a minor role quartz and of mica are important criteria when visually clas- in the Cenozoic records of the Netherlands. sifying Dutch fluvial and other sediments stratigraphically (De Fig. 1 presents a map of the Netherlands with all geographi- Mulder et al., 2003). Other criteria often used are the presence cal names used in this paper. Section 2 presents a brief overview of glauconite, shells or, more generally, Ca carbonate (using of the geology and geography of the Netherlands. The review the effervescence test). method is described in section 3, together with several method- More abstractly, sediments and suspended matter are ological analytical approaches that have been applied by re-
Recommended publications
  • Geophysical Site Investigation Survey Dutch Continental Shelf, North Sea
    Site Studies Wind Farm Zone Borssele Geophysical Survey Wind Farm Site IV Fugro Survey B.V. Geophysical Site Investigation Survey Dutch Continental Shelf, North Sea Borssele Wind Farm Development Zone Wind Farm Site IV 25 May to 20 June 2015 Fugro (FSBV) Report No.: GH157-R2 Fugro (FOSPA) Document No.: 687/15-J322 Rijksdienst voor Ondernemend Nederland Client Reference: WOZ15000012 Revision A This page is intentionally left blank. RIJKSDIENST VOOR ONDERNEMEND NEDERLAND GEOPHYSICAL SITE INVESTIGATION SURVEY, BORSSELE WIND FARM SITE IV Prepared by: Fugro Survey B.V. 12 Veurse Achterweg P.O. Box 128 2260 AC Leidschendam The Netherlands Phone +31 70 3111800 Fax +31 70 3111838 E-mail: [email protected] Trade Register Nr: 34070322 / VAT Nr:005621409B11 Prepared for: Rijksdienst voor Ondernemend Nederland PO Box 93144 2509 AC Den Haag The Netherlands A Final Issue M. Marchetti V. Minorenti P-P Lebbink 14 August 2015 D. Taliana 0 Issue for Approval M. Marchetti V. Minorenti P-P Lebbink 03 August 2015 D. Taliana 1 Issue for Approval M. Marchetti V. Minorenti P-P Lebbink 06 July 2015 D. Taliana Rev Description Prepared Checked Approved Date FSBV / GH157-R2 / Rev A Page i of viii RIJKSDIENST VOOR ONDERNEMEND NEDERLAND GEOPHYSICAL SITE INVESTIGATION SURVEY, BORSSELE WIND FARM SITE IV REPORT AMENDMENT SHEET Issue Report Page Table Figure Description No. section No. No. No. FSBV / GH157-R2 / Rev A Page ii of viii RIJKSDIENST VOOR ONDERNEMEND NEDERLAND GEOPHYSICAL SITE INVESTIGATION SURVEY, BORSSELE WIND FARM SITE IV Keyplan FSBV / GH157-R2 / Rev A
    [Show full text]
  • Evaluation of Belgian Clays for Manufacturing Compressed Earth Blocks Lavie A
    GEOLOGICA BELGICA (2019) 22/3-4: 139-148 Evaluation of Belgian clays for manufacturing compressed earth blocks Lavie A. MANGO-ITULAMYA1*, Frédéric COLLIN2, Pascal PILATE3, Fabienne COURTEJOIE4 & Nathalie FAGEL1. 1Argiles, Géochimie et Environnement sédimentaires, University of Liège, Quartier Agora, 14 allée du 6 août, 4000 Liège, Belgium. 2Géotechnique, University of Liège, Quartier Polytech, 4000 Liège, Belgium. 3Belgian Ceramic Research Centre, 4 Av. du Gouverneur E. Cornez, 7000 Mons, Belgium. 4Architecture, University of Liège, 41 Boulevard de la Constitution, 4020 Liège, Belgium. * corresponding author: [email protected]. ABSTRACT. This study aims to characterize Belgian clays in order to evaluate their use for manufacture of compressed earth blocks (CEB). Nineteen Belgian clay deposits were sampled in 56 sites and 135 samples were collected and analyzed. The analyses focus on the determination of particle size, plasticity, nature and mineralogy as the main characteristics for assessing the suitability of the raw clays to make CEB. These analyses allow for classifying the sampled clay deposits in three categories: clays that can be used unchanged to make CEB (2 clay deposits), clays that are suitable for the manufacture of CEB but require addition of sand and gravel particles (13 clay deposits) and clays that are suitable for the manufacture of CEB if they are mixed with other raw clays (4 clay deposits). In order to verify the use of these clays, five of them served as a model for making CEB. The strength of these bricks was evaluated by testing for compressive strength and abrasion resistance. The results of these tests confirm the suitability or not of the sampled clays for the manufacture of CEB.
    [Show full text]
  • Alisocysta Margarita Zone, 213-14, 220 Angulata Zone, 244
    Index Acadian Orogeny, 198 bed forms accommodation space migration, 44 and accumulation rates, 104 wave-modified, 52 condensed sections, 81 Beinn Iaruinn Quartzite, 262, 264 and cyclothems, 69 Belemnite Bed, 238, 244-5, 251 depositional response, 267 Belgium, 213 ooid shoals, 66 berthierine, 98-100 overprinting, 71 Binnein Quartzite, 266 and oxygen conditions, 82 biostratigraphic zones acritarchs, 206 Kimmeridge Clay, 87 Agat, 150, 159-61 Portlandian, 111 aggradation Turonian, 181, 183 Kimmeridge Clay, 83 biostratigraphical control, 2 Palaeocene, 223 biostratigraphical gaps, 111, 113 shelf margins, 37 bioturbation, 70, 91, 131 tidal flats, 71 Birnbeck Limestone Formation, 67, 69-70 albaniZone, 109, 115, 118, 123, 137 Bituminous Shales, 84, 238, 239 algaenans, 90 black shales, 77, 80, 82 Alisocysta margarita Zone, 213-14, 220 Black Ven Marls, 244, 248 allocycles, 72 Blea Wyke Sandstone Formation, 239, 248 Allt Goibhre Formation, 262, 264 Blue Lias, 82, 244-5,248 Alpine tectonics, 224 Blyth-Acklington dyke, 225 Alum Shales, 239 bone-beds, 98 Amazon Fan, 159 environments, 103 ammonites, 41-2, 48, 56, 109, 178 geochemistry, 101 biostratigraphy, 181, 231 bottom currents, 150, 159 amorphous organic matter, 77, 89-90 bottom water, volume, 82-3 Anglo-Paris Basin, 218 Boulonnais, 83, 85 anguiformis Zone, 131, 133, 139 brachiopods, 206 angulata Zone, 244 Branscombe Hardground, 193 anoxia, 81-2, 218 Breathitt Group, 36 and uranium, 235 British Tertiary Igneous Province, 224-6 apatite, 100-1,103 Bronnant Fault, 205 Apectodinium hyperacanthum Zone,
    [Show full text]
  • Early Geothermal Exploration in the Netherlands 1980 - 2000
    European Geothermal Congress 2019 Den Haag, The Netherlands, 11-14 June 2019 Early Geothermal Exploration in the Netherlands 1980 - 2000 F. Charles Dufour1, Jan Piet Heederik1 1 Former Groundwater Survey TNO - TNO Institute of Applied Geoscience [email protected] (main author) [email protected] (contact person) 1. INTRODUCTION Figure 2: Development of consumer price of gas in €ct per m3 in the Netherlands (1980 - 2010) From the point of view of introduction of geothermal energy in the Netherlands, the period, presented in this paper, was characterised by the following influential aspects. – Geothermal energy had to be an economic attractive alternative for the existing energy sources. Environmental aspects became an aspect of influence only after 1993. – Very restricted knowledge of reservoir characteristics of those formations with a potential for exploitation of geothermal energy was available. – Lack of any cooperation or support by the operating oil companies to submit the necessary more detailed Source: Several. Based on CBS information regarding reservoir characteristics in the period under consideration. Figure 3: Greenhouse gas price in €ct per m3 in the – Lack of any cooperation or support by the existing Netherlands (1975 - 1989) energy supply companies to give room to a demonstration project or to an introduction in housing areas under construction in the period under consideration. It was only in cooperation with ‘Nutsbedrijf Westland N.V.’ NBW that an energy supply company fully cooperated in the preparation of a geothermal project (1992). – Restraint with respect to the possibilities to exploit sandstone reservoirs for geothermal energy, based on experiences in France, where production occurred from carbonate reservoirs and tests of siliciclastic reservoirs had failed.
    [Show full text]
  • Boek Iwan.Indd
    GEOLOGICA ULTRAIECTINA Mededelingen van de Faculteit Geowetenschappen Universiteit Utrecht No. 270 Stratigraphical and structural setting of the Palaeogene siliciclastic sediments in the Dutch part of the North Sea Basin Iwan de Lugt 1 Cover illustration: a well log from the North Sea Basin This research was carried out at the Stratigraphy-Paleontology Group, Faculty of Geosciences, Utrecht University and was financed by the Netherlands Institute of Applied Geoscience, TNO-NITG. Address: Budapestlaan 4 3584 CD Utrecht The Netherlands Internet site: www.geo.uu.nl ISBN-10: 90-5744-135-7 ISBN-13: 978-90-5744-135-6 2 Stratigraphical and structural setting of the Palaeogene siliciclastic sediments in the Dutch part of the North Sea Basin Stratigrafie en tektoniek van de Palaeogene siliciklastische sedimenten in het Nederlandse gedeelte van het Noordzeebekken (met een samenvatting in het Nederlands) PROEFSCHRIFT ter verkrijging van de graad van doctor aan de Universiteit Utrecht op gezag van de rector magnificus, prof. dr. W.H. Gispen ingevolge het besluit van het college voor promoties in het openbaar te verdedigen op maandag 15 januari 2007 des middags te 12.45 uur. door Iwan Rommert de Lugt geboren op 31 maart 1975 te Leiderdorp, Nederland 3 Promotores: Prof. Dr. Th.E. Wong Prof. Dr. J.E. Meulenkamp 4 ... a good idea stated within an insufficient theoretical frame loses its explanatory power and is forgotten. Hans Reichenbach (1957) They are grubby little creatures of the sea floor 530 million years old, but we greet them with awe because they are the Old Ones, and they are trying to tell us something.
    [Show full text]
  • The Sparnacian Deposits of the Paris Basin: a Lithostratigraphic Classification
    The Sparnacian deposits of the Paris Basin: A lithostratigraphic classification Marie-Pierre Aubry1, 4, Médard Thiry2, Christian Dupuis3, William A. Berggren 1, 4 1Department of Geological Sciences, Wright Labs, Rutgers University, 610 Taylor Road, Piscataway, New Jersey 08854-8066, USA 2Ecole des Mines de Paris, Informatique Géologique, 35 rue St Honoré, 77305 Fontainebleau, France 3Faculté Polytechnique, Géologie fondamentale et appliquée, 9 rue de Houdain, 7000 Mons, Belgium 4Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA ABSTRACT: As the result of a study integrating lithostratigraphy and biostratigraphy of the Upper Paleocene (Thanetian) and Lower Eocene (Sparnacian-Ypresian) of the Paris Basin, a new lithostratigraphic unit, the Mont Bernon Group, can be formally recognized. The group includes four formational units: the Mortemer (Mortemer Limestone), the Vaugirard (Plastic Clay), the Soissonnais (Lignitic Clay of Soissons) and Epernay (Lignitic Clay of Epernay) formations and associated members. An integration of charophyte, dinoflagellate cyst and, to a lesser extent, calcareous nannoplankton biostratigraphy allows us to place the succession in an approximate, integrated biostratigraphic framework. Our introduction of a formal lithostratigraphic framework for the Upper Paleocene-Lower Eocene succession in the Paris Basin contributes to emphasize the distinctiveness of the Sparnacian deposits as an independent stratigraphic unit. INTRODUCTION that has arisen regarding the correlation
    [Show full text]
  • Tectono-Stratigraphic Charts of the Netherlands Continental Shelf
    February 2011 TNO.NL Late Jurassic - Early Cretaceous structural elements of the Netherlands Late Jurassic - Early Cretaceous structural elements of the Netherlands 3˚E 4˚E 5˚E 6˚E 7˚E 55˚N DCG SG ESH ESP Legend Highs SP SGP Platforms 54˚N Cretaceous or Paleogene on top of Zechstein Cretaceous or Paleogene on top of Triassic Basins CP TB Strongly inverted AP Mildly or not inverted Boundary of structural element COP Boundary of subarea used in mapping project Highs GP VB FP DH Dalfsen High ESH Elbow Spit High 53˚N LBM London-Brabant Massif MH Maasbommel High BFB LSB PH Peel High TIJH TIJH Texel-IJsselmeer High NHP WH Winterton High WH DH Platforms AP Ameland Platform WP IJP COP Central Offshore Platform CP Cleaverbank Platform CNB ESP Elbow Spit Platform FP Friesland Platform GP Groningen Platform WNB 52˚N NHP Noord-Holland Platform PP Peel Platform MH RP Roer Platform LBM SGP Schill Grund Platform SP Silverpit Platform WP Winterton Platform RP IJP IJmuiden Platform RVG PP Basins LBM PH BFB Broad Fourteens Basin DCG Dutch Central Graben CNB Central Netherlands Basin LSB Lower Saxony Basin 51˚N RVG Roer Valley Graben SG Step Graben 0 60 km LBM TB Terschelling Basin VB Vlieland Basin WNB West Netherlands Basin Tectono-stratigraphic chart of the Dutch Central Graben, Terschelling Basin and surrounding platforms Ameland Platform Eastern margin (west) and Age of Central Off- Schill Grund Tectonic Hydrostratigraphy (Ma) System Series Stages Lithology shore Platform Southern Dutch Central Graben Terschelling Basin Platform (south) phase Orogeny
    [Show full text]
  • Implications of Continuous Structural Inversion in the West Netherlands
    Implications of continuous structural inversion in the West Netherlands Basin for understanding controls on Palaeogene deformation in NW Europe Geza Worum, Laurent Michon To cite this version: Geza Worum, Laurent Michon. Implications of continuous structural inversion in the West Netherlands Basin for understanding controls on Palaeogene deformation in NW Europe. Journal of the Geological Society of London, Geological Society of London, 2005, 162, pp.73-85. 10.1144/0016-764904-011. hal-01382031 HAL Id: hal-01382031 https://hal.univ-reunion.fr/hal-01382031 Submitted on 4 Nov 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Implications of continuous structural inversion in the West Netherlands Basin for understanding controls on Palaeogene deformation in NW Europe 1 2,3 GEZA WORUM & LAURENT MICHON 1 Department of Tectonics, Vrije Universiteit, De Boelelaan 1085, 1081HV Amsterdam, The Netherlands (e-mail: [email protected]) 2 Department of Geoenergy, TNO–NITG, Princetonlaan 6, 3508 TA Utrecht, The Netherlands 3 Present address: Laboratoire des Sciences de la Terre, Universite´ de la Re´union, 15 rue Rene´ Cassin, 97715 Saint Denis cedex 9, Paris, France Abstract: A detailed analysis of high-quality 3D seismic and borehole data provides new insights into the Palaeogene tectonic history and inversion of the West Netherlands Basin.
    [Show full text]
  • 12 Figs, 3 Tabs by Paleontologie, Ghent, Belgium
    december 1986 Meded. Werkgr. Tert. Kwart. Geol. 23(4) pp. 115-172 12 figs, 3 tabs Leiden, Revision of Ypresian stratigraphy of Belgium and northwestern France by E. Steurbaut Laboratorium voor Paleontologie, Ghent, Belgium and D. Nolf Koninklijk Belgisch Instituut voor Natuurwetenschappen, Brussels, Belgium Steurbaut, E., & D. Nolf. Revision ofYpresian stratigraphy ofBelgium and northwestern France. — Meded. Werkgr. Tert. Kwart. Geol., 23(4): 115-172, 12 figs, 3 tabs. Leiden, December 1986. The Ypresian stratigraphy is reviewed using calcareous nannoplankton from 50 outcrop and borehole sections distributed throughout the Belgian Basin. The Ypresian is proposed to include deposits between the base ofthe leper Clay auct. and the topof the Aalterbrugge Lignitic Horizon. The leper Formation is redefined to include (ascending): the Orchies Clay Member; the Roubaix Clay Member and its lateral equivalent, the Mons-en-Pévèle Sand; the Aalbeke Clay Member; the Kortemark Silt Member (new); the Egern Sand Memberwith its lateral equivalent the Panisel Sand; and the Merelbeke Clay Member. The Vlierzele Sands are redefined as the Vlierzele Formation, including the locally developed Pittem Clay Member. New stratotypes are selected and properly defined. Previous geological and palaeontological work on the Ypresian stratigraphy is summarized. All formerly introduced lithostratigraphic names are alphabetically listed and re-evaluated. A new nannofossil zonation (zones I through XI) is proposed. Correlation with Martini's standard nannoplankton zonation is established (NP11 through NP14). The Ypresian history of the Belgian Basin is outlined. Various of sedimentationand tectonic briefly aspects phenomena are discussed. Distribution charts and correlation schemes of litho- and biostratigraphic units are presented. Dr. E. Steurbaut, Laboratorium voor Paleontologie, Rijksuniversiteit Gent, Krijgslaan 281/S8, B-9000 Ghent, Belgium.
    [Show full text]
  • Characterisation and Correlation of Tertiary Seismostratigraphic Units In
    Netherlands Journal of Geosciences / Geologie en Mijnbouw 81 (2): 159-166 (2002) Characterisation and correlation of Tertiary seismostratigraphic units in the Roer Valley Graben J.W.Verbeek1'3, C.S. de Leeuw2, N. Parker1 ATh-E-Wong1 1 Netherlands Institute of Applied GeoscienceTNO - National Geological Survey, Department of Geo-Energy, P. O. Box 80015, 3508TA Utrecht, the Netherlands. 2 Elf Petroland, P.O. Box 93280, 2509 AG The Hague, the Netherlands. 3 Corresponding author: [email protected] Manuscript received: September 2000; accepted: January 2002 Abstract Within the Cenozoic sedimentary section of the Roer Valley Graben ten seismostratigraphic units have been identified. They are closely related to the lithological framework which makes it possible to recognize them also on well logs in this region. The Lower Tertiary seismic units, representing mainly marine sediments, have a uniform development that can be correlated over large distances into the German part of the Roer Valley Graben. The marine to continental Upper Tertiary and Quaternary seismic units display a more complex development due to lateral facies changes (including prograding delta systems) and rift tectonics. Key words: Tertiary, Roer Valley Graben, stratigraphy, the Netherlands Introduction about 2000 km of 2D seismic lines and 400 km2 3D seismics have been interpreted and linked to bore­ In the Roer Valley Graben (Figs 1, 2) a maximum of holes. The study has been carried out in the frame­ 1800 m of Tertiary sediments have been accumulated. work of the mapping program to produce the Geolo­ Although some papers deal with the Tertiary history gical Atlas of the subsurface of the Netherlands (scale of the Roer Valley Graben (Zagwijn, 1989; Geluk, 1:250 000), Map Sheets XIII and XIV (TNO-NITG, 1990; Geluk et al., 1994; Zijerveld et al, 1994), no 2001).
    [Show full text]
  • Netherlands Journal of Geosciences
    Netherlands Journal of Geosciences http://journals.cambridge.org/NJG Additional services for Netherlands Journal of Geosciences: Email alerts: Click here Subscriptions: Click here Commercial reprints: Click here Terms of use : Click here The mineralogy of suspended matter, fresh and Cenozoic sediments in the uvio-deltaic Rhine–Meuse– Scheldt–Ems area, the Netherlands: An overview and review J. Grifoen, G. Klaver and W.E. Westerhoff Netherlands Journal of Geosciences / Volume 95 / Issue 01 / March 2016, pp 23 - 107 DOI: 10.1017/njg.2015.32, Published online: 02 February 2016 Link to this article: http://journals.cambridge.org/abstract_S0016774615000323 How to cite this article: J. Grifoen, G. Klaver and W.E. Westerhoff (2016). The mineralogy of suspended matter, fresh and Cenozoic sediments in the uvio-deltaic Rhine–Meuse–Scheldt–Ems area, the Netherlands: An overview and review. Netherlands Journal of Geosciences, 95, pp 23-107 doi:10.1017/njg.2015.32 Request Permissions : Click here Downloaded from http://journals.cambridge.org/NJG, by Username: njg4781, IP address: 139.63.24.190 on 17 Feb 2016 Netherlands Journal of Geosciences — Geologie en Mijnbouw |95 – 1 | 23–107 | 2016 doi:10.1017/njg.2015.32 Review The mineralogy of suspended matter, fresh and Cenozoic sediments in the fluvio-deltaic Rhine–Meuse–Scheldt–Ems area, the Netherlands: An overview and review J. Griffioen1,∗,G.Klaver2 &W.E.Westerhoff3 1 TNO Geological Survey of the Netherlands, P.O. Box 80 015, 3508 TA Utrecht, the Netherlands and Copernicus Institute of Sustainable Development, Utrecht University, P.O. Box 80 115, 3508 TC Utrecht, the Netherlands 2 Formerly BRGM, Laboratories Division, 3 av.
    [Show full text]
  • Stichting Laka: Documentatie- En Onderzoekscentrum Kernenergie
    Stichting Laka: Documentatie- en onderzoekscentrum kernenergie De Laka-bibliotheek The Laka-library Dit is een pdf van één van de publicaties in This is a PDF from one of the publications de bibliotheek van Stichting Laka, het in from the library of the Laka Foundation; the Amsterdam gevestigde documentatie- en Amsterdam-based documentation and onderzoekscentrum kernenergie. research centre on nuclear energy. Laka heeft een bibliotheek met ongeveer The Laka library consists of about 8,000 8000 boeken (waarvan een gedeelte dus ook books (of which a part is available as PDF), als pdf), duizenden kranten- en tijdschriften- thousands of newspaper clippings, hundreds artikelen, honderden tijdschriftentitels, of magazines, posters, video's and other posters, video’s en ander beeldmateriaal. material. Laka digitaliseert (oude) tijdschriften en Laka digitizes books and magazines from the boeken uit de internationale antikernenergie- international movement against nuclear beweging. power. De catalogus van de Laka-bibliotheek staat The catalogue of the Laka-library can be op onze site. De collectie bevat een grote found at our website. The collection also verzameling gedigitaliseerde tijdschriften uit contains a large number of digitized de Nederlandse antikernenergie-beweging en magazines from the Dutch anti-nuclear power een verzameling video's. movement and a video-section. Laka speelt met oa. haar informatie- Laka plays with, amongst others things, its voorziening een belangrijke rol in de information services, an important role in the Nederlandse anti-kernenergiebeweging. Dutch anti-nuclear movement. Appreciate our work? Feel free to make a small donation. Thank you. www.laka.org | [email protected] | Ketelhuisplein 43, 1054 RD Amsterdam | 020-6168294 Geological and geohydrological characterization of the Boom Clay and its overburden OPERA-PU-TNO411 Radioactive substances and ionizing radiation are used in medicine, industry, agriculture, research, education and electricity production.
    [Show full text]