Water Soluble Nano-Scale Transient Material Germanium Oxide for Zero Toxic Waste Based Environmentally Benign Nano-Manufacturing

Total Page:16

File Type:pdf, Size:1020Kb

Water Soluble Nano-Scale Transient Material Germanium Oxide for Zero Toxic Waste Based Environmentally Benign Nano-Manufacturing Water soluble nano-scale transient material germanium oxide for zero toxic waste based environmentally benign nano-manufacturing Item Type Article Authors Almuslem, A. S.; Hanna, Amir; Yapici, Tahir; Wehbe, N.; Diallo, Elhadj; Kutbee, Arwa T.; Bahabry, Rabab R.; Hussain, Muhammad Mustafa Citation Almuslem AS, Hanna AN, Yapici T, Wehbe N, Diallo EM, et al. (2017) Water soluble nano-scale transient material germanium oxide for zero toxic waste based environmentally benign nano- manufacturing. Applied Physics Letters 110: 074103. Available: http://dx.doi.org/10.1063/1.4976311. Eprint version Publisher's Version/PDF DOI 10.1063/1.4976311 Publisher AIP Publishing Journal Applied Physics Letters Rights Archived with thanks to Applied Physics Letters Download date 24/09/2021 18:56:53 Link to Item http://hdl.handle.net/10754/622963 Water soluble nano-scale transient material germanium oxide for zero toxic waste based environmentally benign nano-manufacturing A. S. Almuslem, A. N. Hanna, T. Yapici, N. Wehbe, E. M. Diallo, A. T. Kutbee, R. R. Bahabry, and M. M. Hussain Citation: Appl. Phys. Lett. 110, 074103 (2017); doi: 10.1063/1.4976311 View online: http://dx.doi.org/10.1063/1.4976311 View Table of Contents: http://aip.scitation.org/toc/apl/110/7 Published by the American Institute of Physics Articles you may be interested in Zinc tin oxide metal semiconductor field effect transistors and their improvement under negative bias (illumination) temperature stress Appl. Phys. Lett. 110, 073502073502 (2017); 10.1063/1.4976196 Room-temperature vertical-cavity surface-emitting lasers at 4 µm with GaSb-based type-II quantum wells Appl. Phys. Lett. 110, 071104071104 (2017); 10.1063/1.4975813 Electrically driven and electrically tunable quantum light sources Appl. Phys. Lett. 110, 071102071102 (2017); 10.1063/1.4976197 Tamper indicating gold nanocup plasmonic films Appl. Phys. Lett. 110, 071101071101 (2017); 10.1063/1.4975936 APPLIED PHYSICS LETTERS 110, 074103 (2017) Water soluble nano-scale transient material germanium oxide for zero toxic waste based environmentally benign nano-manufacturing A. S. Almuslem,1 A. N. Hanna,1 T. Yapici,2 N. Wehbe,2 E. M. Diallo,2 A. T. Kutbee,3 R. R. Bahabry,3 and M. M. Hussain1,a) 1Integrated Nanotechnology Lab and Integrated Disruptive Electronic Applications (IDEA) Lab, Electrical Engineering, Computer Electrical Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia 2Analytical Chemistry Lab and Imaging and Characterization Lab, KAUST Core Facilities, KAUST, Thuwal, Saudi Arabia 3Integrated Nanotechnology Lab and Integrated Disruptive Electronic Applications (IDEA) Lab, Material Science and Engineering, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia (Received 4 December 2016; accepted 25 January 2017; published online 14 February 2017) In the recent past, with the advent of transient electronics for mostly implantable and secured electronic applications, the whole field effect transistor structure has been dissolved in a variety of chemicals. Here, we show simple water soluble nano-scale (sub-10 nm) germanium oxide (GeO2) as the dissolvable component to remove the functional structures of metal oxide semiconductor devices and then reuse the expensive germanium substrate again for functional device fabrication. This way, in addition to transiency, we also show an environmentally friendly manufacturing pro- cess for a complementary metal oxide semiconductor (CMOS) technology. Every year, trillions of complementary metal oxide semiconductor (CMOS) electronics are manufactured and billions are disposed, which extend the harmful impact to our environment. Therefore, this is a key study to show a pragmatic approach for water soluble high performance electronics for environmentally friendly manufacturing and bioresorbable electronic applications. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4976311] Transient electronics have received growing attention properties such as high carrier mobility (up to 3900 cm2 VÀ1 recently owing to its dissolvability for implantable and sÀ1 for electrons and 1900 cm2 VÀ1 sÀ1 for holes),6 direct secured electronic applications.1,2 In these examples, the and small energy band gap (0.66 eV), small optical band gap whole structure is dissolved over the time in a variety of (wide absorption wavelength spectrum), and low dopant chemicals. Here, we show that water soluble germanium thermal activation energies in comparison with the universal 7 dioxide (GeO2) can be employed as a transient material CMOS material Silicon (Si). As a result of unique proper- besides its function as a dielectric layer. The usage of GeO2 ties, Ge becomes the material of choice for manufacturing as the dissolvable material will still remove the key structure high speed, low power devices,8 as well as optoelectronic to serve the purpose of dissolution. At the same time, since it devices.9 is simply water soluble, we can reuse the expensive germa- In this work, water soluble GeO2 is a hallmark since it nium (Ge) substrate for further device fabrication. serves two different purposes as it allows for both recycling GeO2 can have three forms, two of them are crystalline the substrate and reducing the pollution originated from dis- and the third one is vitreous. Crystalline forms are repre- carded consumer electronics. We show that it would be of 3 sented by hexagonal and tetragonal crystalline structures. great benefit to meet the rapid growth demands for consumer The growth conditions determine the resultant form of GeO2, electronics and keeping the electronic waste at bay simulta- 4 and the difference between them was reported by Johnson. neously. Electronic waste is reported to be up to 42 Â 106 10 Only hexagonal and vitreous form is water soluble. The tons yearly. Moreover, water as an etchant of GeO2 is hydrolysis mechanism of GeO2 undergoes the following highly preferable to other wet reactive chemicals as water is 5 chemical reaction: used frequently in the IC fabrication process for cleaning and etching purposes because: (i) it does not have an envi- GeO þ H O $ H GeO : (1) 2 ðsÞ 2 ðlÞ 2 3ðaq:Þ ronmental impact, (ii) it is safe to handle easily, and (iii) it is 11 Surface oxidation of Ge has been considered as an unde- relatively of low-cost. On the other hand, the Ge/GeO2 sirable feature, which prevents Ge to be incorporated in the interface has a variety of satisfactory properties such as acceptable dielectric constant (j ¼ 2.8),12 moderate refrac- Complementary Metal Oxide Semiconductor (CMOS) indus- 13 try for a long time. However, many studies have addressed a tive index, and adequate thermal stability. Besides that, surface passivation challenge for the purpose of making use GeO2 has the advantage of suppressing the Ge dangling of superior material properties of Ge. Ge possesses favorable bond at the surface, which in turn minimizes the interface trap density.14 a)Author to whom correspondence should be addressed. Electronic mail: In this study, Metal Oxide Semiconductor Capacitors [email protected] (MOSCAPs) are built on p-type Ge substrates using GeO2 as 0003-6951/2017/110(7)/074103/5/$30.00 110, 074103-1 Published by AIP Publishing. 074103-2 Almuslem et al. Appl. Phys. Lett. 110, 074103 (2017) a dielectric layer. After characterizing the capacitors, the sub- (GeO2 grown after the first GeO2 has been removed). XPS strate is rinsed with tap water in order to dissolve GeO2,which peaks of GeO2 grown and GeO2 regrown samples are identi- in turn takes away all the top layers. The substrate is then cal and reveal a clear shift with respect to the reference sam- effectively reused to build the similar MOSCAPs again. GeO2 ple. Indeed, the 2p3/2 and 3d5/2 photoemission lines are is thermally grown on a p-type Ge (Ga-doped) 175 lmthick shifted by 2.8 eV and 3.5 eV, respectively, toward higher substrate with resistivity ranging from 0.01 to 0.05 X cm. binding energy, which is specified to the fourth oxidation þ4 We start with 4-in. Ge wafer, which is then diced up to state (Ge ) of Ge and confirms the existence of the GeO2 2 Â 2cm2 experimental samples. Then, the pieces are cleaned layer.7,13,16,17 However, the spectrum acquired for the refer- with HF (49%), rinsed with Deionized (DI) water, blown ence germanium substrate is very similar to the one belong- driedinNitrogen(N2), followed by acetone and isopropanol ing to the rinsed sample, suggesting that both layers have the based cleaning, and blown dried in N2. After that, the proc- same composition. The quantitative data indicate that the ref- essed experimental samples are transferred into an Ultra High erence and rinsed samples are composed of almost 50% of Vacuum Chemical Vapor Deposition (UHVCVD) chamber in germanium and 50% of oxygen, whereas the grown and order to grow GeO2. The chamber’s temperature is stabilized regrown layers contain 67% of oxygen and 33% of germa- at 400 Cfor4hinOxygen(O2) ambient with a flow rate of nium. Precisely speaking, the major components of Ge 2p3/2 100 sccm. and Ge 3d5/2 of the reference and rinsed samples are X-ray Photoemission Spectroscopy (XPS) was used to detected, respectively, at 1218 eV and 29.6 eV. These values verify the substrate surface properties for a clean Ge surface, can be assigned to metallic germanium Ge.7,13,16,17 The grown GeO2 layer, GeO2 removal, and regrown GeO2 layer smaller component detected mainly for Ge 2p3/2 at 1219.8 as it is capable to provide the chemical composition.15 XPS can be assigned to germanium monoxide (GeO). Hence, the experiments were performed on a KRATOS Analytical most probable chemical composition of both reference and AMICUS instrument equipped with an achromatic Al Ka rinsed layers can be described by a thin over layer of native X-ray source (1468.6 eV).
Recommended publications
  • Standard X-Ray Diffraction Powder Patterns
    NBS MONOGRAPH 25 — SECTION 1 Standard X-ray Diffraction U.S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS THE NATIONAL BUREAU OF STANDARDS Functions and Activities The functions of the National Bureau of Standards are set forth in the Act of Congress, March 3, 1901, as amended by Congress in Public Law 619, 1950. These include the development and maintenance of the national standards of measurement and the provision of means and methods for making measurements consistent with these standards; the determination of physical constants and properties of materials; the development of methods and instruments for testing materials, devices, and structures; advisory services to government agencies on scien- tific and technical problems; invention and development of devices to serve special needs of the Government; and the development of standard practices, codes, and specifications. The work includes basic and applied research, development, engineering, instrumentation, testing, evaluation, calibration services, and various consultation and information services. Research projects are also performed for other government agencies when the work relates to and supplements the basic program of the Bureau or when the Bureau's unique competence is required. The scope of activities is suggested by the listing of divisions and sections on the inside of the back cover. Publications The results of the Bureau's research are published either in the Bureau's own series of publications or in the journals of professional and scientific societies. The Bureau itself publishes three periodicals available from the Government Printing Office: The Journal of Research, published in four separate sections, presents complete scientific and technical papers; the Technical News Bulletin presents summary and preliminary reports on work in progress; and Basic Radio Propagation Predictions provides data for determining the best frequencies to use for radio communications throughout the world.
    [Show full text]
  • Physical and Chemical Properties of Germanium
    Physical And Chemical Properties Of Germanium Moneyed and amnesic Erasmus fertilise her fatuousness revitalise or burrow incommunicatively. Creditable Petr still climbs: regarding and lissome Lazarus bully-off quite punctiliously but slums her filoplume devotedly. Zane still defilade venomous while improvident Randell bloodiest that wonderers. Do you for this context of properties and physical explanation of Silicon is sincere to metals in its chemical behaviour. Arsenic is extremely toxic, RS, carbon is the tongue one considered a full nonmetal. In nature, which name a widely used azo dye. Basic physical and chemical properties of semiconductors are offset by the energy gap between valence conduction! Other metalloids on the periodic table are boron, Batis ZB, only Germanium and Antimony would be considered metals for the purposes of nomenclature. Storage temperature: no restrictions. At room temperature, the semiconducting elements are primarily nonmetallic in character. This application requires Javascript. It has also new found in stars and already the atmosphere of Jupiter. Wellings JS, it is used as an eyewash and insecticide. He has studied in Spain and Hungary and authored many research articles published in indexed journals and books. What are oral health benefits of pumpkins? The material on this site may not be reproduced, germanium, the radiation emitted from an active device makes it locatable. Classify each statement as an extensive property must an intensive property. In germanium and physical chemical properties of the border lines from the! The most electronegative elements are at the nod in the periodic table; these elements often react as oxidizing agents. Atomic Volume and Allotropy of the Elements.
    [Show full text]
  • The Separation of Germanium from Lead, Cadmium, and Zinc by Ion Exchange
    Scholars' Mine Masters Theses Student Theses and Dissertations 1962 The separation of germanium from lead, cadmium, and zinc by ion exchange Myra Sue Anderson Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses Part of the Chemistry Commons Department: Recommended Citation Anderson, Myra Sue, "The separation of germanium from lead, cadmium, and zinc by ion exchange" (1962). Masters Theses. 2730. https://scholarsmine.mst.edu/masters_theses/2730 This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact [email protected]. THE SEPARATION OF GERMANIUM FROM LEAD, CADMIUM, AND ZINC BY ION EXCHANGE BY MYRA SUE ANDERSON A THESIS submitted to the faculty of the SCHOOL OF MINES AND METALLURGY OF THE UNIVERSITY OF MISSOURI In partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE IN CHEMISTRY Rolla, Missouri 1962 Approved by (advisor) //f 11 TABLE OF CONTENTS Page List of Illustrations Iv List of Tables V Introduction 1 Review of the Literature 2 Separation Methods for Germanium 2 Analytical Methods for Germanium 3 Germanium Complexes Suitable for Ion Exchange 6 Ion Exchange Resins 7 Ion Exchange Theory 9 Ion Exchange Studies of Germanium 15 Experimental 17 Materials 17 Apparatus 18 Analytical Methods 19 Anion Exchange Studies 21 Cation Exchange Studies
    [Show full text]
  • High Purity Inorganics
    High Purity Inorganics www.alfa.com INCLUDING: • Puratronic® High Purity Inorganics • Ultra Dry Anhydrous Materials • REacton® Rare Earth Products www.alfa.com Where Science Meets Service High Purity Inorganics from Alfa Aesar Known worldwide as a leading manufacturer of high purity inorganic compounds, Alfa Aesar produces thousands of distinct materials to exacting standards for research, development and production applications. Custom production and packaging services are part of our regular offering. Our brands are recognized for purity and quality and are backed up by technical and sales teams dedicated to providing the best service. This catalog contains only a selection of our wide range of high purity inorganic materials. Many more products from our full range of over 46,000 items are available in our main catalog or online at www.alfa.com. APPLICATION FOR INORGANICS High Purity Products for Crystal Growth Typically, materials are manufactured to 99.995+% purity levels (metals basis). All materials are manufactured to have suitably low chloride, nitrate, sulfate and water content. Products include: • Lutetium(III) oxide • Niobium(V) oxide • Potassium carbonate • Sodium fluoride • Thulium(III) oxide • Tungsten(VI) oxide About Us GLOBAL INVENTORY The majority of our high purity inorganic compounds and related products are available in research and development quantities from stock. We also supply most products from stock in semi-bulk or bulk quantities. Many are in regular production and are available in bulk for next day shipment. Our experience in manufacturing, sourcing and handling a wide range of products enables us to respond quickly and efficiently to your needs. CUSTOM SYNTHESIS We offer flexible custom manufacturing services with the assurance of quality and confidentiality.
    [Show full text]
  • Treat the Metal Nanoparticles to a Surface Modifier to Form Surface Modified Metal Nanoparticles
    US007259101B2 (12) United States Patent (10) Patent No.: US 7.259,101 B2 Zurcher et al. (45) Date of Patent: Aug. 21, 2007 (54) NANOPARTICLES AND METHOD FOR 4,381.945. A 5/1983 Nair .......................... 106.1.14 MAKING THE SAME 4.418,099 A 1 1/1983 Cuevas et al. .............. 427,229 4,463,030 A 7, 1984 Deffeyes et al. ............ 427,216 (75) Inventors: Fabio Zurcher, Brisbane, CA (US); Brent Ridley, San Carlos, CA (US); (Continued) Klaus Kunze, Half Moon Bay, CA FOREIGN PATENT DOCUMENTS (US); Scott Haubrich, Castro Valley, CA (US); Joerg Rockenberger, EP 1 OOO 949 A1 5, 2000 Redwood City,ty CA (US)(US (Continued) (73) Assignee: Kovio, Inc., Sunnyvale, CA (US) OTHER PUBLICATIONS (*) Notice: Subject to any disclaimer, the term of this “Enhanced Photoluminescence from Si Nano-organosols by patent is extended or adjusted under 35 Functionalization with Alkenes and Their Size Evolution', Shu U.S.C. 154(b) by 96 days. Man Liu et al., 2006, American Chemical Society, p. 637-642. (21) Appl. No.: 11/271,042 (Continued) Primaryy Examiner Savitri Mulpurip (22) Filed: Nov. 10, 2005 (74) Attorney, Agent, or Firm—Haverstock & Owens LLP (65) Prior Publication Data (57) ABSTRACT US 2007/O167O19 A1 Jul. 19, 2007 A method for making nanoparticles, nanoparticle inks and Related U.S. Application Data device layers therefrom is disclosed. In accordance with the (62) Division of application No. 10/339,741, filed on Jan present invention, nanoparticles are isolated from a com 8, 2003 re t. No. 7 078 276 s us posite material that is formed by treating a metal oxide s , now Fal.
    [Show full text]
  • Peculiarities of the Thermo-Optic Coefficient at High Temperatures in Fibers Containing Bragg Gratings
    PECULIARITIES OF THE THERMO-OPTIC COEFFICIENT AT HIGH TEMPERATURES IN FIBERS CONTAINING BRAGG GRATINGS A Thesis Presented to The Graduate Faculty of The University of Akron In Partial Fulfillment of the Requirements for the Degree Master of Science Igor Fedin August, 2011 PECULIARITIES OF THE THERMO-OPTIC COEFFICIENT AT HIGH TEMPERATURES IN FIBERS CONTAINING BRAGG GRATINGS Igor Fedin Thesis Approved: Accepted: ______________________________ ______________________________ Advisor Dean of the College Dr. Sergei F. Lyuksyutov Dr. Chand K. Midha ______________________________ ______________________________ Faculty Reader Dean of the Graduate School Dr. David S. Perry Dr. George R. Newkome ______________________________ ______________________________ Department Chair Date Dr. Robert R. Mallik ii ABSTRACT The temperature dependence of thermo-optic coefficient in silica-based fibers containing fiber Bragg gratings (FBGs) includes thermal instability of chemical composition gratings, non-linear temperature dependence of FBGs written in different fibers, quadratic behavior of FBGs, and long-term stability of silica-based FBGs. Experimental measurements of the thermo-optic coefficient for the temperature interval 50 – 7800C in fused silica fiber containing FBGs were conducted while the temperature shift of the Bragg’s peak was monitored between 1300 and 1311 nm with sub-Angstrom precision. Numerical computations were focused on the FBG’s diffraction efficiency calculations accounting for the temperature drift of the gratings and found to be in excellent agreement with obtained experimental data. It has been found that the thermo- optic coefficient changes between 0.79×10-5 and 1.45×10-5 K-1 and undergoes a minimum in the vicinity of 440°C. Additional observation indicates a negative sign of the second- order thermo-optic coefficient.
    [Show full text]
  • Euroresearch & Consulting
    Euroresearch & Consulting LLC Market Research: Global Market for Germanium and Germanium Products. 1 CONTENTS CHAPTER 1. GENERAL REVIEW OF THE INDUSTRY. ......................................................... 5 1.1. HISTORIC, PRESENT AND ESTIMATED CORRELATION OF GLOBAL GERMANIUM DEMAND AND SUPPLY. ................................................................................................................... 5 1.2. ANALYSIS OF PRICES ON GERMANIUM............................................................................ 13 1.3. GENERAL SIZE OF THE MARKET AND PRINCIPAL SEGMENTS OF GERMANIUM CONSUMPTION AND GERMANIUM CONTAINING PRODUCTS. ........................................... 31 1.4. THE MAIN TRENDS OF GERMANIUM PRODUCTION AND CONSUMPTION. ............. 38 1.5. THE PRINCIPAL FACTORS HAMPERING INDUSTRY DEVELOPMENT AND MARKET GROWTH. .......................................................................................................................................... 47 1.6. THE ANALYSIS OF THE IMPACT OF ACTUAL AND POTENTIAL ECONOMIC SANCTIONS ON THE INDUSTRY. ................................................................................................. 48 CHAPTER 2. THE PRINCIPAL FIELDS OF GERMANIUM APPLICATION: ANALYSIS OF MAJOR TRENDS AND AVENUES. ........................................................................................... 50 CHAPTER 3. THE ANALYSIS OF THE INDUSTRY OF PRODUCTION OF GERMANIUM AND ITS DERIVATIVES ACCORDING TO PORTER 5 COMPETITIVE FORCES MODEL. ..............................................................................................................................
    [Show full text]
  • Chemical Names and CAS Numbers Final
    Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number C3H8O 1‐propanol C4H7BrO2 2‐bromobutyric acid 80‐58‐0 GeH3COOH 2‐germaacetic acid C4H10 2‐methylpropane 75‐28‐5 C3H8O 2‐propanol 67‐63‐0 C6H10O3 4‐acetylbutyric acid 448671 C4H7BrO2 4‐bromobutyric acid 2623‐87‐2 CH3CHO acetaldehyde CH3CONH2 acetamide C8H9NO2 acetaminophen 103‐90‐2 − C2H3O2 acetate ion − CH3COO acetate ion C2H4O2 acetic acid 64‐19‐7 CH3COOH acetic acid (CH3)2CO acetone CH3COCl acetyl chloride C2H2 acetylene 74‐86‐2 HCCH acetylene C9H8O4 acetylsalicylic acid 50‐78‐2 H2C(CH)CN acrylonitrile C3H7NO2 Ala C3H7NO2 alanine 56‐41‐7 NaAlSi3O3 albite AlSb aluminium antimonide 25152‐52‐7 AlAs aluminium arsenide 22831‐42‐1 AlBO2 aluminium borate 61279‐70‐7 AlBO aluminium boron oxide 12041‐48‐4 AlBr3 aluminium bromide 7727‐15‐3 AlBr3•6H2O aluminium bromide hexahydrate 2149397 AlCl4Cs aluminium caesium tetrachloride 17992‐03‐9 AlCl3 aluminium chloride (anhydrous) 7446‐70‐0 AlCl3•6H2O aluminium chloride hexahydrate 7784‐13‐6 AlClO aluminium chloride oxide 13596‐11‐7 AlB2 aluminium diboride 12041‐50‐8 AlF2 aluminium difluoride 13569‐23‐8 AlF2O aluminium difluoride oxide 38344‐66‐0 AlB12 aluminium dodecaboride 12041‐54‐2 Al2F6 aluminium fluoride 17949‐86‐9 AlF3 aluminium fluoride 7784‐18‐1 Al(CHO2)3 aluminium formate 7360‐53‐4 1 of 75 Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number Al(OH)3 aluminium hydroxide 21645‐51‐2 Al2I6 aluminium iodide 18898‐35‐6 AlI3 aluminium iodide 7784‐23‐8 AlBr aluminium monobromide 22359‐97‐3 AlCl aluminium monochloride
    [Show full text]
  • The Chemistry of Germanium, Tin and Lead
    The Chemistry of Germanium, Tin and Lead Anil J Elias, IIT Delhi Relative natural abundance on the earths crust of group 14 elements are as follows which indicate the rareness of germanium Carbon 0.18% The major end uses for Silicon 27% germanium, worldwide, were Germanium 0.00014% estimated to be fiber-optic Tin 0.00022% systems, 30%; infrared optics, 25%; Lead 0.00099% polymerization catalysts, 25%; electronics and solar electric applications, 15%; and other (phosphors, metallurgy, and chemotherapy), 5%. The main compounds of commercial importance of germanium are germanium tetrachloride and germanium dioxide. Unlike silicon, germanium forms stable divalent compounds like GeCl2 and GeO. A major difference with silicon is the fact 2- - that it forms GeCl6 and GeCl3 . Zone-refined crystalline germanium typically is 99.9999 percent pure and impurities are typically less than 100 ppb, and electrically active impurities, less than 0.5 ppb. GeO2 is dissolved in concentrated HCl to make germanium tetrachloride (GeCl4) which is a fuming liquid similar to SiCl4 having a boiling point of 86.5 C. The GeCl4 is purified by fractional distillation in glass or fused quartz equipments. The purified GeCl4 is hydrolyzed with deionized water to yield GeO2. After drying, the GeO2 is reduced with hydrogen at 760° C to form germanium metal powder, which is then melted and cast into bars, known as first-reduction bars. These bars are then zone-refined to polycrystalline metal that typically contains less than 100 ppb total impurities and less than 0.5 ppb electrically active impurities. Six salient properties of germanium which differ from that of silicon makes the foundations for all its applications.
    [Show full text]
  • Sio2)N and (Geo2)N Nanoclusters
    Modern Applied Science; Vol. 12, No. 9; 2018 ISSN 1913-1844 E-ISSN 1913-1852 Published by Canadian Center of Science and Education RHF and DFT Study of the Molecular and Electronic Properties of (SiO2)n and (GeO2)n Nanoclusters Chifu E. Ndikilar1, L. S. Taura2, G. W. Ejuh3,4 & A. Muhammad1 1 Department of Physics, Federal University Dutse, Jigawa State, Nigeria 2 Department of Physics, Sule Lamido University Kafin-Hausa, Jigawa State, Nigeria 3 University of Bamenda, National Higher Polytechnic Institute, Departmet of Electrical and Electronic Engineering, P. O. Box 39 Bambili, Cameroon 4 University of Dschang, IUT-FV of Bandjoun, Department of General and Scientific Studies, West Cameroon Correspondence: Chifu E. Ndikilar, Physics Department, Sule Lamido University, P.M.B 048, Kafin Hausa, Jigawa State, Nigeria. Tel: 234-8034-512-189. E-mail: [email protected], [email protected] Received: April 24, 2018 Accepted: June 5, 2018 Online Published: August 16, 2018 doi:10.5539/mas.v12n9p108 URL: https://doi.org/10.5539/mas.v12n9p108 The research is financed by Tertiary Education Trust Fund (TET Fund), Nigeria. Abstract The study of nanoclusters has attracted a lot of scientific research over the years. This class of materials are important because they bridge the gap between bulk materials and molecular structures. Silicon and Germanium oxides have many applications in semiconductor technology and nanotechnology. In this research work, molecular and electronic properties of Silicon and Germanium dioxide nanoclusters are studied. The results obtained reveal the comparative advantages and disadvantages of using any of the two oxides for particular applications. Restricted Hartree Fock and Density Functional Theory computations of the molecular and electronic properties of (SiO2)n and (GeO2)n nanoclusters (n = 1,..,6) are studied.
    [Show full text]
  • Germanium Dioxide, 99.99%
    GEG5300 - GERMANIUM DIOXIDE, 99.99% GERMANIUM DIOXIDE, 99.99% Safety Data Sheet GEG5300 Date of issue: 10/15/2015 Version: 1.0 SECTION 1: Identification of the substance/mixture and of the company/undertaking 1.1. Product identifier Product form : Substance Physical state : Solid Substance name : GERMANIUM DIOXIDE, 99.99% Product code : GEG5300 Formula : GeO2 Synonyms : GERMANIA Chemical family : METAL OXIDE 1.2. Relevant identified uses of the substance or mixture and uses advised against Use of the substance/mixture : Chemical intermediate For research and industrial use only 1.3. Details of the supplier of the safety data sheet GELEST, INC. 11 East Steel Road Morrisville, PA 19067 USA T 215-547-1015 - F 215-547-2484 - (M-F): 8:00 AM - 5:30 PM EST [email protected] - www.gelest.com 1.4. Emergency telephone number Emergency number : CHEMTREC: 1-800-424-9300 (USA); +1 703-527-3887 (International) SECTION 2: Hazards identification 2.1. Classification of the substance or mixture GHS-US classification Acute Tox. 4 (Oral) H302 Full text of H-phrases: see section 16 2.2. Label elements GHS-US labeling Hazard pictograms (GHS-US) : GHS07 Signal word (GHS-US) : Warning Hazard statements (GHS-US) : H302 - Harmful if swallowed Precautionary statements (GHS-US) : P264 - Wash hands thoroughly after handling P270 - Do not eat, drink or smoke when using this product P330 - Rinse mouth P301+P312 - If swallowed: Call a doctor if you feel unwell P501 - Dispose of contents/container to licensed waste disposal facility. 2.3. Other hazards No additional information available 2.4. Unknown acute toxicity (GHS US) No data available SECTION 3: Composition/Information on ingredients 3.1.
    [Show full text]
  • New Insight Into the Development of Oxygen Carrier Materials for Chemical Looping Systems ⇑ Zhuo Cheng A,#, Lang Qin A,#, Jonathan A
    Engineering 4 (2018) 343–351 Contents lists available at ScienceDirect Engineering journal homepage: www.elsevier.com/locate/eng Research Green Industrial Processes—Review New Insight into the Development of Oxygen Carrier Materials for Chemical Looping Systems ⇑ Zhuo Cheng a,#, Lang Qin a,#, Jonathan A. Fan b, Liang-Shih Fan a, a William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA b Department of Electrical Engineering, Ginzton Laboratory, Stanford University, Stanford, CA 94305, USA article info abstract Article history: Chemical looping combustion (CLC) and chemical looping reforming (CLR) are innovative technologies for Received 13 December 2017 clean and efficient hydrocarbon conversion into power, fuels, and chemicals through cyclic redox reac- Revised 20 January 2018 tions. Metal oxide materials play an essential role in the chemical looping redox processes. During reduc- Accepted 7 May 2018 tion, the oxygen carriers donate the required amount of oxygen ions for hydrocarbon conversion and Available online 19 May 2018 product synthesis. In the oxidation step, the depleted metal oxide oxygen carriers are replenished with molecular oxygen from the air while heat is released. In recent years, there have been significant Keywords: advances in oxygen carrier materials for various chemical looping applications. Among these metal oxide Chemical looping materials, iron-based oxygen carriers are attractive due to their high oxygen-carrying capacity, cost ben- Oxygen carrier Hydrocarbon conversion efits, and versatility in applications for chemical looping reactions. Their reactivity can also be enhanced Ionic diffusion via structural design and modification. This review discusses recent advances in the development of oxy- Mechanism gen carrier materials and the mechanisms of hydrocarbon conversion over these materials.
    [Show full text]