United States Patent (19) 11 3,970,745 Takeuchi (45) July 20, 1976

Total Page:16

File Type:pdf, Size:1020Kb

United States Patent (19) 11 3,970,745 Takeuchi (45) July 20, 1976 United States Patent (19) 11 3,970,745 Takeuchi (45) July 20, 1976 (54) METHOD FOR PRODUCING HYDROGEN son, vol. 3, 1949 Ed., p. 535, Reinhold Pub. Corp., FROM WATER New York. 75) Inventor: Norio Takeuchi, Isehara, Japan P. Pascal's “Nouveau Traite' de Chimie Minerale', Tome 8, 1963, pp. 54, 55; Masson et Cie., Paris, 73 Assignee: Director-General of the Agency of France. Industrial Science and Technology, J. W. Mellor's "A Comp. Treatise on Inorg. and Theo. Tokyo, Japan Chem.", vol. 7, Longmans, Green & Co., N. Y. 22 Filed: Mar. 24, 1975 Primary Examiner-Edward Stern (21 Appl. No.: 561,161 Attorney, Agent, or Firm-William J. Daniel 30 Foreign Application Priority Data 57 ABSTRACT May 9, 1974 Japan................................ 49-51.538 A method for producing hydrogen from water in May 17, 1974 Japan................................ 49-54504 which hydrogen is produced by reducing water using metallic germanium and the by-product, germanium 52 U.S. Cl................................... 423/657; 423193; monoxide, is reduced with a reducing agent to metal 423/532; 423/539; 423/655; 4231592 lic germanium which is recycled and reused. In this 51) Int. C.’.................so e s so C01B 1/07; COB 1102; case, it is necessary to regulate the oxidation of metal CO1G 7700 lic germanium so as to stop at the germanium monox (58) Field of Search............. 423/657, 539, 532, 93, ide stage since the reduction of germanium dioxide to 423/592 metallic germanium is difficult. Therefore, water 56) References Cited vapor is advantageously reduced by using not less than 1 mole of metallic germanium to 1 mole of water OTHER PUBLICATIONS vapor or it is indirectly reduced with an intermediate "Comp. Inorg. Chem.', by J. C. Bailar et al., 1973 of carbon dioxide. Ed., p. 8, Pergamon Press, Elsmford, New York. “Encyclopedia of Chem. Reactions", by C. A. Jacob 5 Claims, No Drawings 3,970,745 2 1 water vapor to react thermally with 1 or more moles of METHOD FOR PRODUCING HYDROGEN FROM metallic germanium. s WATER . ; In this case, it is necessary to use the metallic germa nium as a reducing agent in order to carry out the BACKGROUND OF THE INVENTION thermal decomposition of water with mild but efficient This invention relates to a method for producing conditions. When the metallic germanium is used, hydrogen from water. More particularly, the invention water can be thermally decomposed at a relatively relates to a method of a closed system for continuously lower temperature in the range of about 300 to 900°C. producing hydrogen from water vapor, in which the The reaction between water and metallic, germanium latter is reduced to hydrogen in the presence of metal 10 according to the method of the present invention is lic germanium as a reducing agent and the germanium represented by the following reaction equation: monoxide generated as a by-product is then reduced to metallic germanium to be recycled. Ge + H.O - Geo +H, (1) In recent years, a serious world-wide problem has arisen in that oil resources are running low and this 5 In the practice of this reaction, the ratio of germanium problem has been taken up in order to alleviate same. to water must be set at a value not less than 1 in molar As the material to take the place of the oil resources, ratio, and preferably more than 2, so as to form easily several energy sources such as nuclear energy, solar reducible germanium monoxide. When this molar ratio energy, geothermal energy' and hydrogen energy are is less than 1, a by-product of germanium dioxide 20 (GeO) is formed and it is extremely difficult to reduce now being eagerly investigated. Above all, hydrogen this germanium dioxide to metallic germanium, which energy has an advantage in that it can be abundantly prevents the process from becoming a completely produced from infinitely existing water. In addition, it closed system. can be easily stored and transported since it is chemical The metallic germanium is used in the form of pow energy. Further, this hydrogen energy can be employed 25 der and the larger the ratio to water is, the larger the for a variety of purposes such as cooking fuel and heat yield of hydrogen becomes. The reaction between me ing fuel as well as automobile fuel, aviation fuel, fuel tallic germanium and water can be carried out either in cell material and so forth. Still further, being different a batch-wise process or in a continuous process. The from the known fossil fuels, it does not produce any separation of hydrogen from reaction products is con poisonous or noxious gases such as carbon monoxide 30 siderably easy because the reaction is a solid-liquid when it is burned. system and solid-liquid separation means may be gener As disclosed in the above, hydrogen energy is quite ally employed. Further in this reaction, some water within the bounds of possibility as the substitute for oil vapor is contained in the produced hydrogen, but, how resources. In order to realize the use of hydrogen en ever, the water vapor can be easily removed from hy ergy, however, it is necessary to meet the demand to 35 drogen by cooling the reaction product. produce hydrogen at low cost and causing no environ According to the method of the present invention, mental hazards such as pollution of air, etc. the byproduct, germanium monoxide, is reduced to metallic germanium so as to be used for the above-. BRIEF SUMMARY OF THE INVENTION mentioned reaction (I) by recycling. This reduction Accordingly, it is an object of the present invention 40 treatment can be carried out by various methods. How to provide an improved method for producing hydro ever, in view of operation and economical efficiency of gen from water. , , , , ! : . the reaction process, it has been found that sulfur diox It is another object of the present invention to pro ide and cobaltous oxide can be advantageously used for vide a closed reaction system for continuously produc this purpose. ing hydrogen from water, in which water is reduced to 45 When sulfur dioxide is used as a reducing agent, the hydrogen by using metallic germanium and germanium reaction is represented by the following equation: monoxide as a by-product is then reduced to metallic germanium so as to be recycled and reused. Geo + So, - Ge+ so, (II) It is a further object of the present invention to pro vide a method for producing hydrogen by indirectly 50 This reaction is carried out at a temperature of 400 to reducing water with metallic germanium through the 800°C. A higher pressure of sulfur dioxide is preferable intermediate action of carbon monoxide, in which and the reaction is advantageously proceeded at a pres water is firstly reacted with carbon monoxide to pro sure higher than 100 atm. duce water gas, and generated carbon dioxide in the The sulfur trioxide produced through this reaction water gas is then reduced to carbon monoxide by me 55 (II) can be used as it is for several other purposes in tallic germanium. industrial production as a raw material. Meanwhile, in It is still a further object of the present invention to order to make the process a completely closed system, provide the selection of conditions of forming no ger it may be reduced to sulfur dioxide and recycled as the manium dioxide in order to effectively carry out the raw material of the above-mentioned reaction (II). In regeneration of the germanium monoxide to metallic 60 this case, various reducing agents can be theoretically germanium. used. However, the selection of the reducing agents is Other and further objects, features and advantages of important from an economical standpoint and closed the invention will appear more fully from the following system of the process. It has been found by the present description. - inventors that the powders of lead oxide, co-baltous 65. oxide and cuprous oxide are most suitable as such re DETAILED DESCRIPTION OF THE INVENTION ducing agents. These oxides react easily with sulfur In an embodiment of the method of the present in trioxide and in addition, the produced higher oxides vention, hydrogen is produced by causing 1 mole of decompose easily by heating and release oxygen gas. 3,970,745 3 4 When these metallic lower oxides are used as the re pletely closed system. The above-mentioned reaction ducing agents, the process can be made into a com between metallic germanium and carbon dioxide is pletely closed system as presented by the following represented by the following equation: equations: Ge -- CO --> GeO -- CO (VI) SO - (M)O -> SO -- (M).O. (III) When metallic germanium is reacted with carbon (M)O, -) (M)O + 4/20, (IV) monoxide, the ratio of germanium to carbon dioxide (Ge/CO) is to be a value not less than 1 in molar ratio. in which M is Pb, Co or Cu and m and n are integers If the above ratio is less than 1, germanium dioxide determined by the valences of metals. (GeO) is produced as a by-product. Being different The reaction temperatures of reactions (III) and (IV) from germanium monoxide, this germanium dioxide is are different according to metal used, while they are reduced with difficulty so that the closed system of the always lower than 1000°C, so that the reactions may be process cannot be accomplished. The metallic germa industrially carried out without any particular diffi 15 culty. That is, when M is lead, the raction (III) is pro nium is used in the form of powder and the larger quan ceeded at a temperature of 100 to 300°C and SO tity of metallic germanium used in proportion to the pressure of 50 atm or higher and the reaction (IV) is quantity of carbon dioxide, the higher the yield of car proceeded at a temperature of not lower than 300°C.
Recommended publications
  • Standard X-Ray Diffraction Powder Patterns
    NBS MONOGRAPH 25 — SECTION 1 Standard X-ray Diffraction U.S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS THE NATIONAL BUREAU OF STANDARDS Functions and Activities The functions of the National Bureau of Standards are set forth in the Act of Congress, March 3, 1901, as amended by Congress in Public Law 619, 1950. These include the development and maintenance of the national standards of measurement and the provision of means and methods for making measurements consistent with these standards; the determination of physical constants and properties of materials; the development of methods and instruments for testing materials, devices, and structures; advisory services to government agencies on scien- tific and technical problems; invention and development of devices to serve special needs of the Government; and the development of standard practices, codes, and specifications. The work includes basic and applied research, development, engineering, instrumentation, testing, evaluation, calibration services, and various consultation and information services. Research projects are also performed for other government agencies when the work relates to and supplements the basic program of the Bureau or when the Bureau's unique competence is required. The scope of activities is suggested by the listing of divisions and sections on the inside of the back cover. Publications The results of the Bureau's research are published either in the Bureau's own series of publications or in the journals of professional and scientific societies. The Bureau itself publishes three periodicals available from the Government Printing Office: The Journal of Research, published in four separate sections, presents complete scientific and technical papers; the Technical News Bulletin presents summary and preliminary reports on work in progress; and Basic Radio Propagation Predictions provides data for determining the best frequencies to use for radio communications throughout the world.
    [Show full text]
  • Physical and Chemical Properties of Germanium
    Physical And Chemical Properties Of Germanium Moneyed and amnesic Erasmus fertilise her fatuousness revitalise or burrow incommunicatively. Creditable Petr still climbs: regarding and lissome Lazarus bully-off quite punctiliously but slums her filoplume devotedly. Zane still defilade venomous while improvident Randell bloodiest that wonderers. Do you for this context of properties and physical explanation of Silicon is sincere to metals in its chemical behaviour. Arsenic is extremely toxic, RS, carbon is the tongue one considered a full nonmetal. In nature, which name a widely used azo dye. Basic physical and chemical properties of semiconductors are offset by the energy gap between valence conduction! Other metalloids on the periodic table are boron, Batis ZB, only Germanium and Antimony would be considered metals for the purposes of nomenclature. Storage temperature: no restrictions. At room temperature, the semiconducting elements are primarily nonmetallic in character. This application requires Javascript. It has also new found in stars and already the atmosphere of Jupiter. Wellings JS, it is used as an eyewash and insecticide. He has studied in Spain and Hungary and authored many research articles published in indexed journals and books. What are oral health benefits of pumpkins? The material on this site may not be reproduced, germanium, the radiation emitted from an active device makes it locatable. Classify each statement as an extensive property must an intensive property. In germanium and physical chemical properties of the border lines from the! The most electronegative elements are at the nod in the periodic table; these elements often react as oxidizing agents. Atomic Volume and Allotropy of the Elements.
    [Show full text]
  • The Separation of Germanium from Lead, Cadmium, and Zinc by Ion Exchange
    Scholars' Mine Masters Theses Student Theses and Dissertations 1962 The separation of germanium from lead, cadmium, and zinc by ion exchange Myra Sue Anderson Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses Part of the Chemistry Commons Department: Recommended Citation Anderson, Myra Sue, "The separation of germanium from lead, cadmium, and zinc by ion exchange" (1962). Masters Theses. 2730. https://scholarsmine.mst.edu/masters_theses/2730 This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact [email protected]. THE SEPARATION OF GERMANIUM FROM LEAD, CADMIUM, AND ZINC BY ION EXCHANGE BY MYRA SUE ANDERSON A THESIS submitted to the faculty of the SCHOOL OF MINES AND METALLURGY OF THE UNIVERSITY OF MISSOURI In partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE IN CHEMISTRY Rolla, Missouri 1962 Approved by (advisor) //f 11 TABLE OF CONTENTS Page List of Illustrations Iv List of Tables V Introduction 1 Review of the Literature 2 Separation Methods for Germanium 2 Analytical Methods for Germanium 3 Germanium Complexes Suitable for Ion Exchange 6 Ion Exchange Resins 7 Ion Exchange Theory 9 Ion Exchange Studies of Germanium 15 Experimental 17 Materials 17 Apparatus 18 Analytical Methods 19 Anion Exchange Studies 21 Cation Exchange Studies
    [Show full text]
  • High Purity Inorganics
    High Purity Inorganics www.alfa.com INCLUDING: • Puratronic® High Purity Inorganics • Ultra Dry Anhydrous Materials • REacton® Rare Earth Products www.alfa.com Where Science Meets Service High Purity Inorganics from Alfa Aesar Known worldwide as a leading manufacturer of high purity inorganic compounds, Alfa Aesar produces thousands of distinct materials to exacting standards for research, development and production applications. Custom production and packaging services are part of our regular offering. Our brands are recognized for purity and quality and are backed up by technical and sales teams dedicated to providing the best service. This catalog contains only a selection of our wide range of high purity inorganic materials. Many more products from our full range of over 46,000 items are available in our main catalog or online at www.alfa.com. APPLICATION FOR INORGANICS High Purity Products for Crystal Growth Typically, materials are manufactured to 99.995+% purity levels (metals basis). All materials are manufactured to have suitably low chloride, nitrate, sulfate and water content. Products include: • Lutetium(III) oxide • Niobium(V) oxide • Potassium carbonate • Sodium fluoride • Thulium(III) oxide • Tungsten(VI) oxide About Us GLOBAL INVENTORY The majority of our high purity inorganic compounds and related products are available in research and development quantities from stock. We also supply most products from stock in semi-bulk or bulk quantities. Many are in regular production and are available in bulk for next day shipment. Our experience in manufacturing, sourcing and handling a wide range of products enables us to respond quickly and efficiently to your needs. CUSTOM SYNTHESIS We offer flexible custom manufacturing services with the assurance of quality and confidentiality.
    [Show full text]
  • Treat the Metal Nanoparticles to a Surface Modifier to Form Surface Modified Metal Nanoparticles
    US007259101B2 (12) United States Patent (10) Patent No.: US 7.259,101 B2 Zurcher et al. (45) Date of Patent: Aug. 21, 2007 (54) NANOPARTICLES AND METHOD FOR 4,381.945. A 5/1983 Nair .......................... 106.1.14 MAKING THE SAME 4.418,099 A 1 1/1983 Cuevas et al. .............. 427,229 4,463,030 A 7, 1984 Deffeyes et al. ............ 427,216 (75) Inventors: Fabio Zurcher, Brisbane, CA (US); Brent Ridley, San Carlos, CA (US); (Continued) Klaus Kunze, Half Moon Bay, CA FOREIGN PATENT DOCUMENTS (US); Scott Haubrich, Castro Valley, CA (US); Joerg Rockenberger, EP 1 OOO 949 A1 5, 2000 Redwood City,ty CA (US)(US (Continued) (73) Assignee: Kovio, Inc., Sunnyvale, CA (US) OTHER PUBLICATIONS (*) Notice: Subject to any disclaimer, the term of this “Enhanced Photoluminescence from Si Nano-organosols by patent is extended or adjusted under 35 Functionalization with Alkenes and Their Size Evolution', Shu U.S.C. 154(b) by 96 days. Man Liu et al., 2006, American Chemical Society, p. 637-642. (21) Appl. No.: 11/271,042 (Continued) Primaryy Examiner Savitri Mulpurip (22) Filed: Nov. 10, 2005 (74) Attorney, Agent, or Firm—Haverstock & Owens LLP (65) Prior Publication Data (57) ABSTRACT US 2007/O167O19 A1 Jul. 19, 2007 A method for making nanoparticles, nanoparticle inks and Related U.S. Application Data device layers therefrom is disclosed. In accordance with the (62) Division of application No. 10/339,741, filed on Jan present invention, nanoparticles are isolated from a com 8, 2003 re t. No. 7 078 276 s us posite material that is formed by treating a metal oxide s , now Fal.
    [Show full text]
  • Peculiarities of the Thermo-Optic Coefficient at High Temperatures in Fibers Containing Bragg Gratings
    PECULIARITIES OF THE THERMO-OPTIC COEFFICIENT AT HIGH TEMPERATURES IN FIBERS CONTAINING BRAGG GRATINGS A Thesis Presented to The Graduate Faculty of The University of Akron In Partial Fulfillment of the Requirements for the Degree Master of Science Igor Fedin August, 2011 PECULIARITIES OF THE THERMO-OPTIC COEFFICIENT AT HIGH TEMPERATURES IN FIBERS CONTAINING BRAGG GRATINGS Igor Fedin Thesis Approved: Accepted: ______________________________ ______________________________ Advisor Dean of the College Dr. Sergei F. Lyuksyutov Dr. Chand K. Midha ______________________________ ______________________________ Faculty Reader Dean of the Graduate School Dr. David S. Perry Dr. George R. Newkome ______________________________ ______________________________ Department Chair Date Dr. Robert R. Mallik ii ABSTRACT The temperature dependence of thermo-optic coefficient in silica-based fibers containing fiber Bragg gratings (FBGs) includes thermal instability of chemical composition gratings, non-linear temperature dependence of FBGs written in different fibers, quadratic behavior of FBGs, and long-term stability of silica-based FBGs. Experimental measurements of the thermo-optic coefficient for the temperature interval 50 – 7800C in fused silica fiber containing FBGs were conducted while the temperature shift of the Bragg’s peak was monitored between 1300 and 1311 nm with sub-Angstrom precision. Numerical computations were focused on the FBG’s diffraction efficiency calculations accounting for the temperature drift of the gratings and found to be in excellent agreement with obtained experimental data. It has been found that the thermo- optic coefficient changes between 0.79×10-5 and 1.45×10-5 K-1 and undergoes a minimum in the vicinity of 440°C. Additional observation indicates a negative sign of the second- order thermo-optic coefficient.
    [Show full text]
  • Euroresearch & Consulting
    Euroresearch & Consulting LLC Market Research: Global Market for Germanium and Germanium Products. 1 CONTENTS CHAPTER 1. GENERAL REVIEW OF THE INDUSTRY. ......................................................... 5 1.1. HISTORIC, PRESENT AND ESTIMATED CORRELATION OF GLOBAL GERMANIUM DEMAND AND SUPPLY. ................................................................................................................... 5 1.2. ANALYSIS OF PRICES ON GERMANIUM............................................................................ 13 1.3. GENERAL SIZE OF THE MARKET AND PRINCIPAL SEGMENTS OF GERMANIUM CONSUMPTION AND GERMANIUM CONTAINING PRODUCTS. ........................................... 31 1.4. THE MAIN TRENDS OF GERMANIUM PRODUCTION AND CONSUMPTION. ............. 38 1.5. THE PRINCIPAL FACTORS HAMPERING INDUSTRY DEVELOPMENT AND MARKET GROWTH. .......................................................................................................................................... 47 1.6. THE ANALYSIS OF THE IMPACT OF ACTUAL AND POTENTIAL ECONOMIC SANCTIONS ON THE INDUSTRY. ................................................................................................. 48 CHAPTER 2. THE PRINCIPAL FIELDS OF GERMANIUM APPLICATION: ANALYSIS OF MAJOR TRENDS AND AVENUES. ........................................................................................... 50 CHAPTER 3. THE ANALYSIS OF THE INDUSTRY OF PRODUCTION OF GERMANIUM AND ITS DERIVATIVES ACCORDING TO PORTER 5 COMPETITIVE FORCES MODEL. ..............................................................................................................................
    [Show full text]
  • Chemical Names and CAS Numbers Final
    Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number C3H8O 1‐propanol C4H7BrO2 2‐bromobutyric acid 80‐58‐0 GeH3COOH 2‐germaacetic acid C4H10 2‐methylpropane 75‐28‐5 C3H8O 2‐propanol 67‐63‐0 C6H10O3 4‐acetylbutyric acid 448671 C4H7BrO2 4‐bromobutyric acid 2623‐87‐2 CH3CHO acetaldehyde CH3CONH2 acetamide C8H9NO2 acetaminophen 103‐90‐2 − C2H3O2 acetate ion − CH3COO acetate ion C2H4O2 acetic acid 64‐19‐7 CH3COOH acetic acid (CH3)2CO acetone CH3COCl acetyl chloride C2H2 acetylene 74‐86‐2 HCCH acetylene C9H8O4 acetylsalicylic acid 50‐78‐2 H2C(CH)CN acrylonitrile C3H7NO2 Ala C3H7NO2 alanine 56‐41‐7 NaAlSi3O3 albite AlSb aluminium antimonide 25152‐52‐7 AlAs aluminium arsenide 22831‐42‐1 AlBO2 aluminium borate 61279‐70‐7 AlBO aluminium boron oxide 12041‐48‐4 AlBr3 aluminium bromide 7727‐15‐3 AlBr3•6H2O aluminium bromide hexahydrate 2149397 AlCl4Cs aluminium caesium tetrachloride 17992‐03‐9 AlCl3 aluminium chloride (anhydrous) 7446‐70‐0 AlCl3•6H2O aluminium chloride hexahydrate 7784‐13‐6 AlClO aluminium chloride oxide 13596‐11‐7 AlB2 aluminium diboride 12041‐50‐8 AlF2 aluminium difluoride 13569‐23‐8 AlF2O aluminium difluoride oxide 38344‐66‐0 AlB12 aluminium dodecaboride 12041‐54‐2 Al2F6 aluminium fluoride 17949‐86‐9 AlF3 aluminium fluoride 7784‐18‐1 Al(CHO2)3 aluminium formate 7360‐53‐4 1 of 75 Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number Al(OH)3 aluminium hydroxide 21645‐51‐2 Al2I6 aluminium iodide 18898‐35‐6 AlI3 aluminium iodide 7784‐23‐8 AlBr aluminium monobromide 22359‐97‐3 AlCl aluminium monochloride
    [Show full text]
  • Properties of Acids
    Properties of Acids Solutions of acids have a sour taste Don’t taste them in the lab !!! 1 They change the colors of many indicators Acids turn blue litmus to red Acids turn bromothymol blue from blue to yellow They react with metals to generate hydrogen gas, H2 1 Metal Activity Series More active Li, K, Ca, Na, Mg, Al, Mn, Zn, Fe, Co, Ni, Pb, H, Cu, Hg, Ag, Pt, Au Less active Active enough to displace Cannot displace hydrogen from an acid hydrogen from an acid 2 Properties of Acids They react with metal oxides forming the salt of the metal and water CaO + 2HCl → CaCl2 + H2O They react with metal hydroxides forming the salt of the metal and water Ca(OH)2 + 2HCl → CaCl2 + 2H2O 3 Oxides Compounds of oxygen and another element There are two ways to name oxides Based on the oxidation number of the element Li2O – lithium oxide BaO – barium oxide FeO – iron(II) oxide Fe2O3 – iron(III) oxide Based on the number of atoms of each element Li2O – dilithium oxide BaO – barium oxide FeO – iron oxide Fe2O3 – diiron trioxide 4 Example 1 Name the following compounds: BeO, Al2O3, Cu2O, OsO4, Cr2O3, CrO3 5 Example 2 Write formulas for the following compounds: Potassium oxide Boron oxide Diindium trioxide Cobalt(II) oxide Dinitrogen pentoxide Rhenium(VI) oxide Xenon tetroxide Carbon monoxide Carbon dioxide Manganese(VII) oxide 6 Example 3 Write total and net ionic equations for the reaction between cobalt (III) oxide and diluted hydroiodic acid 7 Example 4 Write total and net ionic equations for the reaction between dialuminum
    [Show full text]
  • The Chemistry of Germanium, Tin and Lead
    The Chemistry of Germanium, Tin and Lead Anil J Elias, IIT Delhi Relative natural abundance on the earths crust of group 14 elements are as follows which indicate the rareness of germanium Carbon 0.18% The major end uses for Silicon 27% germanium, worldwide, were Germanium 0.00014% estimated to be fiber-optic Tin 0.00022% systems, 30%; infrared optics, 25%; Lead 0.00099% polymerization catalysts, 25%; electronics and solar electric applications, 15%; and other (phosphors, metallurgy, and chemotherapy), 5%. The main compounds of commercial importance of germanium are germanium tetrachloride and germanium dioxide. Unlike silicon, germanium forms stable divalent compounds like GeCl2 and GeO. A major difference with silicon is the fact 2- - that it forms GeCl6 and GeCl3 . Zone-refined crystalline germanium typically is 99.9999 percent pure and impurities are typically less than 100 ppb, and electrically active impurities, less than 0.5 ppb. GeO2 is dissolved in concentrated HCl to make germanium tetrachloride (GeCl4) which is a fuming liquid similar to SiCl4 having a boiling point of 86.5 C. The GeCl4 is purified by fractional distillation in glass or fused quartz equipments. The purified GeCl4 is hydrolyzed with deionized water to yield GeO2. After drying, the GeO2 is reduced with hydrogen at 760° C to form germanium metal powder, which is then melted and cast into bars, known as first-reduction bars. These bars are then zone-refined to polycrystalline metal that typically contains less than 100 ppb total impurities and less than 0.5 ppb electrically active impurities. Six salient properties of germanium which differ from that of silicon makes the foundations for all its applications.
    [Show full text]
  • Sio2)N and (Geo2)N Nanoclusters
    Modern Applied Science; Vol. 12, No. 9; 2018 ISSN 1913-1844 E-ISSN 1913-1852 Published by Canadian Center of Science and Education RHF and DFT Study of the Molecular and Electronic Properties of (SiO2)n and (GeO2)n Nanoclusters Chifu E. Ndikilar1, L. S. Taura2, G. W. Ejuh3,4 & A. Muhammad1 1 Department of Physics, Federal University Dutse, Jigawa State, Nigeria 2 Department of Physics, Sule Lamido University Kafin-Hausa, Jigawa State, Nigeria 3 University of Bamenda, National Higher Polytechnic Institute, Departmet of Electrical and Electronic Engineering, P. O. Box 39 Bambili, Cameroon 4 University of Dschang, IUT-FV of Bandjoun, Department of General and Scientific Studies, West Cameroon Correspondence: Chifu E. Ndikilar, Physics Department, Sule Lamido University, P.M.B 048, Kafin Hausa, Jigawa State, Nigeria. Tel: 234-8034-512-189. E-mail: [email protected], [email protected] Received: April 24, 2018 Accepted: June 5, 2018 Online Published: August 16, 2018 doi:10.5539/mas.v12n9p108 URL: https://doi.org/10.5539/mas.v12n9p108 The research is financed by Tertiary Education Trust Fund (TET Fund), Nigeria. Abstract The study of nanoclusters has attracted a lot of scientific research over the years. This class of materials are important because they bridge the gap between bulk materials and molecular structures. Silicon and Germanium oxides have many applications in semiconductor technology and nanotechnology. In this research work, molecular and electronic properties of Silicon and Germanium dioxide nanoclusters are studied. The results obtained reveal the comparative advantages and disadvantages of using any of the two oxides for particular applications. Restricted Hartree Fock and Density Functional Theory computations of the molecular and electronic properties of (SiO2)n and (GeO2)n nanoclusters (n = 1,..,6) are studied.
    [Show full text]
  • Germanium Dioxide, 99.99%
    GEG5300 - GERMANIUM DIOXIDE, 99.99% GERMANIUM DIOXIDE, 99.99% Safety Data Sheet GEG5300 Date of issue: 10/15/2015 Version: 1.0 SECTION 1: Identification of the substance/mixture and of the company/undertaking 1.1. Product identifier Product form : Substance Physical state : Solid Substance name : GERMANIUM DIOXIDE, 99.99% Product code : GEG5300 Formula : GeO2 Synonyms : GERMANIA Chemical family : METAL OXIDE 1.2. Relevant identified uses of the substance or mixture and uses advised against Use of the substance/mixture : Chemical intermediate For research and industrial use only 1.3. Details of the supplier of the safety data sheet GELEST, INC. 11 East Steel Road Morrisville, PA 19067 USA T 215-547-1015 - F 215-547-2484 - (M-F): 8:00 AM - 5:30 PM EST [email protected] - www.gelest.com 1.4. Emergency telephone number Emergency number : CHEMTREC: 1-800-424-9300 (USA); +1 703-527-3887 (International) SECTION 2: Hazards identification 2.1. Classification of the substance or mixture GHS-US classification Acute Tox. 4 (Oral) H302 Full text of H-phrases: see section 16 2.2. Label elements GHS-US labeling Hazard pictograms (GHS-US) : GHS07 Signal word (GHS-US) : Warning Hazard statements (GHS-US) : H302 - Harmful if swallowed Precautionary statements (GHS-US) : P264 - Wash hands thoroughly after handling P270 - Do not eat, drink or smoke when using this product P330 - Rinse mouth P301+P312 - If swallowed: Call a doctor if you feel unwell P501 - Dispose of contents/container to licensed waste disposal facility. 2.3. Other hazards No additional information available 2.4. Unknown acute toxicity (GHS US) No data available SECTION 3: Composition/Information on ingredients 3.1.
    [Show full text]