International Journal of Phytopharmacology

Total Page:16

File Type:pdf, Size:1020Kb

International Journal of Phytopharmacology 581 Ashok Chittaragi and Raja Naika. / International Journal of Biological & Pharmaceutical Research. 2014; 5(7): 581-589. e- ISSN 0976 - 3651 Print ISSN 2229 - 7480 International Journal of Biological & Pharmaceutical Research Journal homepage: www.ijbpr.com IJBPR ANTIFUNGAL PROPERTIES OF HYGROCYBE CANTHARELLUS (SCHWEIN.) MURRILL 1* 2 Ashok Chittaragi and Raja Naika *1Dept. of P. G. Studies and Research in Applied Botany, Mycology Lab, Bio-Science Complex, 2Jnana Sahyadri, Kuvempu University, Shankaraghatta-577451, Shivammogga (District) Karnataka, India. ABSTRACT The aim of present study is to investigate the antifungal properties of crude extracts of fruit body in different polar solvents (petroleum ether, chloroform, Methanol and aqueous) of Hygrocybe cantharellus in order to use it as a possible source for new antifungal substances. We evaluated the antifungal activity of crude extracts of fruit body of H.cantharellus against some human as well as plant pathogen viz.M. gypseum, T. equinum, T. kanei, C. albicans, C. indicum, C. krusei, C. merdarium, C. zonatum, E. floccosum and T. rubrum andplant pathogenic fungi viz., A. alternate, A. flavus, A. solani, A. tomentosa, C. capsici, C. dematium, C. lindemuthianum, F. oxysporum and F. solani. The dried and powdered fruiting bodies were successively extracted with a series of non polar to polar solvents using Soxhlet assembly. The antifungal assay was done by agar well diffusion method. Petroleum ether and chloroform extract of H. cantharellus show highest activity against C. merdarium and T. equinum (human pathogen), as well as in C. capsici and F. oxysporum (plant pathogen) to varying degrees, by most of the extracts. Clotrimazole, Fleuconazole, Mancozeb and Captan were used as the standard antibiotics against human and plant pathogenic fungi. The extracts of H. cantharellus also significantly inhibited the fungal growth. The inhibitory effect is very identical in magnitude and comparable with that of standard antibiotics used. Key Words: Antifungal properties, Solvent extracts, Pathogens, Hygrocybe cantharellus, Fruiting bodies. INTRODUCTION It has been known that macrofungi are used as a It is believed that mushrooms need antibacterial valuable food source and traditional medicines since Greek and antifungal compounds to survive in their natural and Roman antiquity (Anke, 1989). Dioscorides, first environment. Antimicrobial compounds could be isolated century Greek physician, knewthat Laricifomes from many mushroom species and some proved to be of (Fomitopsis) officinalis (Vill.) Kotl and Pouzar benefit for humans (Lindequist et al., 2005). As an (Fomitopsidaceae) can be used for treatment of antifungal and antibacterial compound, Sparassol was “consumption”, a disease now known as tuberculosis isolated in the early 1920s from Sparassis crispa. Since (Stamets, 2002). The famous 5300year-old Otzi, or Ice then, several antifungal and antibacterial compounds have Man, had Piptoporus betulinus (Bull.)P. Karst. been isolated from different macrofungi species. (Fomitopsidaceae) and Fomes fomentarius (L.) J.J.Kickx The scientific community, while searching for (Polyporaceae) with him when his body was discovered new therapeutic alternatives, has studied many kinds of (Stamets, 2002). mushrooms and has found various therapeutic activities such as anticarcinogenic, anti-inflammatory, immuno- Corresponding Author suppressor and antibiotic, among others. In recent decades, various extracts of mushrooms and plants have been of Ashok Chittaragi great interest as sources of natural products (Turkoglu et Email: [email protected] al., 2007). Some mushrooms serve as food because of their 582 Ashok Chittaragi and Raja Naika. / International Journal of Biological & Pharmaceutical Research. 2014; 5(7): 581-589. nutrient contents while some have been used extensively in morphological, anatomical and physiological traditional medicine (Stamets, 2000; Lindequist et al., characteristics with the help of standard literatures 2005). The effects of different mushroom extracts on (Purkayastha and Chandra, 1985; Singer, 1986; Roy and pathogens and microorganisms are studied by a very large De, 1996; Das and Sharma, 2005). number of researchers in different parts of the world (Jonathan and Fasidi, 2003; Rosa et al., 2003; Uzun et al., Preparation of crude extract 2004; Gbolagade and Fasidi, 2005; Gezer et al., 2006; Various extracts of the experimental fruit body Solak et al., 2006; Turkoglu et al., 2006; Barros et al., was prepared according to the methodology of Indian 2007; Demirhan et al., 2007). Pharmacopoeia (Anonymous, 1966). The fresh fruit bodies Several compounds with important were dried in shade conditions and the dried materials were pharmaceutical properties have been isolated from these pulverized in a blender to get coarse powder. The coarse organisms. Substances that act as anti-aging, in longevity, powder material was used to successively with 2000 ml modulating the immune system, having hypoglycemic petroleum ether following chloroform and methanol with a activity and to inhibit tumor growth have been isolated Soxhlet extractor for 48 h at temperature not exceeding the from mushrooms, such as polysaccharides. boiling point of the solvent (Lin et al., 1995).These Polysaccharides can inter connect several points forming a extracts were concentrated to dryness in flash evaporator wide variety of branched or linear structures, for example, under reduced pressure and controlled temperature (40- ß4 glucans (Ooi and Liu, 2000). Furthermore, other 50˚C). The yield of extracts obtained from petroleum ether bioactive substances such as triterpenes, lipids and phenols was 10.88 gm, followed by chloroform 11.21 gm and have also been identified and characterized in mushrooms methanol 51.16 gm (Table-1). The highest % of extracts with medicinal properties (Maiti et al., 2008). Mushroom was obtained from methanol of H. cantharellus (Piechart- contain vitamins A and C of ß-carotene and a great variety 1).Each extract was transferred to glass vials and kept at of secondary metabolites such as phenolics compounds, 4˚C before use.The residence was dissolved with dimethyl polyketides, terpenes, steroids and phenols, all have sulphoxide (DMSO) with different concentrations and protective effects because of their antioxidant properties checked it for antifungal activity. (Jayakumar et al., 2009; Soares et al., 2009). In disc diffusion method, the discs are very Test organisms expensive and their acquisition in developing countries is All experimental fungi were obtained from the sometimes difficult. In an attempt to combat this, in 1997 Microbial Type Culture Collection and Gene Bank Magaldi developed a modification of the disc diffusion (MTCC), Institute of Microbial Technology (IMTECH), method which she named the „well diffusion‟ method Chandigarh. American Type Culture Collection (ATCC). (WD). The procedure is similar; the discs are The viability of the organisms was maintained by regular supplemented with dilutions of the drug placed in wells transfer into freshly prepared on potato dextrose agar which have been cut out in the agar. This allows the use (PDA) at 28˚C and stored at 4˚C until used. For the present and standardization of various concentrations of any drug study pure fungal cultures were taken (Table-2). for different fungal species. It has proven to be a cheap, simple and reliable method of antifungal drug ANTIFUNGAL STUDIES susceptibility testing for Candida spp., and it produces Fungal media (PDA) results comparable with the disc diffusion test (Magaldi 200 gms of potato slices were boiled with distilled and Camero, 1997; Magaldi, 2004). water. The potato infusion was used as water source of The aim of the present work is to antifungal media preparation. 20gm of dextrose was mixed with properties of Hygrocybe cantharellus extracts with the help potato infusion. 20gm of agar was added as a solidifying of petroleum ether, chloroform and methanol solvent agent. These constituents were mixed and autoclaved. The system against to the plant and human pathogenic fungi solidified plates were bored with 6mm diameter by cork were investigated. borer. MATERIALS AND METHODS Agar well diffusion method Collection of mushroom fruit body Antifungal activity of the mushrooms extract was The Hygrocybe cantharellus were collected from tested using agar well diffusion method (Bauer et al., Haniya, Hosanagar taluk, Shivammogga district, 1996). The prepared culture plates were inoculated with Karnataka, India, during the month of August 2013. The H. different fungus by using plate method. Wells were made cantharellus of mushroom was picked from the litter and on the agar surface with 6mm cork borer. The different decaying soil surface, with help of forceps and then they solvent extracts of Hygrocybe cantharellus were loaded to were cleaned and air dried in an oven at 40˚C for 48 h. the four wells by using 100μl micropipette in 4 different dried mushroom samples were powdered mechanically for concentrations i.e., 12.5 mg/ml, 25 mg/ml, 50 mg/ml further use. Identification was done by comparing their and100 mg/ml respectively. Clotrimazole, Fleuconazole, 583 Ashok Chittaragi and Raja Naika. / International Journal of Biological & Pharmaceutical Research. 2014; 5(7): 581-589. Mancozeb and Captan are used as a positive by 10 mm against C. albicans and minimum (7.3 mm) by control and DMSO is used as a negative control. All the 50mg/ml of extract against C. indicum. In the same time, plates were
Recommended publications
  • Antioxidants of Edible Mushrooms
    Molecules 2015, 20, 19489-19525; doi:10.3390/molecules201019489 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Review Antioxidants of Edible Mushrooms Maja Kozarski 1, Anita Klaus 2, Dragica Jakovljevic 3, Nina Todorovic 3, Jovana Vunduk 2, Predrag Petrović 4, Miomir Niksic 2, Miroslav M. Vrvic 3,5 and Leo van Griensven 6,* 1 Department for Chemistry and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, Belgrade 11080, Serbia; E-Mail: [email protected] 2 Department for Industrial Microbiology, Faculty of Agriculture, University of Belgrade, Nemanjina 6, Belgrade 11080, Serbia; E-Mails: [email protected] (A.K.); [email protected] (J.V.); [email protected] (M.N.) 3 Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoseva 12, Belgrade 11001, Serbia; E-Mails: [email protected] (D.J.); [email protected] (N.T.); [email protected] (M.M.V.) 4 Institute of Chemical Engineering, Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, Belgrade 11060, Serbia; E-Mail: [email protected] 5 Faculty of Chemistry, University of Belgrade, Studentski trg 12–16, Belgrade 11000, Serbia 6 Plant Research International, Wageningen University and Research Centre, Droevendaalsesteeg 1, Wageningen 6700 AA, The Netherlands * Author to whom correspondence should be addressed; E-Mail: [email protected] or [email protected]; Tel.: +31-748-0992; Fax: +31-741-8094. Academic Editor: David D. Kitts Received: 4 September 2015 / Accepted: 21 October 2015 / Published: 27 October 2015 Abstract: Oxidative stress caused by an imbalanced metabolism and an excess of reactive oxygen species (ROS) lead to a range of health disorders in humans.
    [Show full text]
  • Habitat Specificity of Selected Grassland Fungi in Norway John Bjarne Jordal1, Marianne Evju2, Geir Gaarder3 1Biolog J.B
    Habitat specificity of selected grassland fungi in Norway John Bjarne Jordal1, Marianne Evju2, Geir Gaarder3 1Biolog J.B. Jordal, Auragata 3, NO-6600 Sunndalsøra 2Norwegian Institute for Nature Research, Gaustadalléen 21, NO-0349 Oslo 3Miljøfaglig Utredning, Gunnars veg 10, NO-6610 Tingvoll Corresponding author: er undersøkt når det gjelder habitatspesifisitet. [email protected] 70 taksa (53%) har mindre enn 10% av sine funn i skog, mens 23 (17%) har mer enn 20% Norsk tittel: Habitatspesifisitet hos utvalgte av funnene i skog. De som har høyest frekvens beitemarkssopp i Norge i skog i Norge er for det meste også vanligst i skog i Sverige. Jordal JB, Evju M, Gaarder G, 2016. Habitat specificity of selected grassland fungi in ABSTRACT Norway. Agarica 2016, vol. 37: 5-32. 132 taxa of fungi regularly found in semi- natural grasslands from the genera Camaro- KEY WORDS phyllopsis, Clavaria, Clavulinopsis, Dermo- Grassland fungi, seminatural grasslands, loma, Entoloma, Geoglossum, Hygrocybe, forests, other habitats, Norway Microglossum, Porpoloma, Ramariopsis and Trichoglossum were selected. Their habitat NØKKELORD specificity was investigated based on 39818 Beitemarkssopp, seminaturlige enger, skog, records from Norway. Approximately 80% of andre habitater, Norge the records were from seminatural grasslands, ca. 10% from other open habitats like parks, SAMMENDRAG gardens and road verges, rich fens, coastal 132 taksa av sopp med regelmessig fore- heaths, open rocks with shallow soil, waterfall komst i seminaturlig eng av slektene Camaro- meadows, scree meadows and alpine habitats, phyllopsis, Clavaria, Clavulinopsis, Dermo- while 13% were found in different forest loma, Entoloma, Geoglossum, Hygrocybe, types (some records had more than one Microglossum, Porpoloma, Ramariopsis og habitat type, the sum therefore exceeds 100%).
    [Show full text]
  • November 2014
    MushRumors The Newsletter of the Northwest Mushroomers Association Volume 25, Issue 4 December 2014 After Arid Start, 2014 Mushroom Season Flourishes It All Came Together By Chuck Nafziger It all came together for the 2014 Wild Mushroom Show; an October with the perfect amount of rain for abundant mushrooms, an enthusiastic volunteer base, a Photo by Vince Biciunas great show publicity team, a warm sunny show day, and an increased public interest in foraging. Nadine Lihach, who took care of the admissions, reports that we blew away last year's record attendance by about 140 people. Add to that all the volunteers who put the show together, and we had well over 900 people involved. That's a huge event for our club. Nadine said, "... this was a record year at the entry gate: 862 attendees (includes children). Our previous high was in 2013: 723 attendees. Success is more measured in the happiness index of those attending, and many people stopped by on their way out to thank us for the wonderful show. Kids—and there were many—were especially delighted, and I'm sure there were some future mycophiles and mycologists in Sunday's crowd. The mushroom display A stunning entry display greets visitors arriving at the show. by the door was effective, as always, at luring people in. You could actually see the kids' eyes getting bigger as they surveyed the weird mushrooms, and twice during the day kids ran back to our table to tell us that they had spotted the mushroom fairy. There were many repeat adult visitors, too, often bearing mushrooms for identification.
    [Show full text]
  • Caracterización Química Y Propiedades Bioactivas De Hongos Silvestres Portugueses Comestibles
    UNIVERSIDAD DE SALAMANCA - FACULTAD DE FARMACIA Departamento de Química Analítica, Nutrición y Bromatología CARACTERIZACIÓN QUÍMICA Y PROPIEDADES BIOACTIVAS DE HONGOS SILVESTRES PORTUGUESES COMESTIBLES CHEMICAL CHARACTERIZATION AND BIOACTIVE PROPERTIES OF PORTUGUESE WILD EDIBLE MUSHROOMS Lillian Bouçada de Barros 2008 ii Acknowledgements ACKNOWLEDGEMENTS To all the people that has been fundamental in providing me with help, direction and support throughout this PhD journey and in particularly to: Doctor Celestino Santos Buelga, my supervisor, thank you for an invaluable and rewarding experience, your support and encouragement has been a source of motivation. Doctor Isabel Cristina Fernandes Rodrigues Ferreira, my co-supervisor, thank you for not only being a fabulous supervisor and a fantastic mentor, but also for being a friend. I will never forget all your efforts in helping me achieve this goal. You will always be a source of inspiration. Doctor Paula Baptista, thank you for giving me the opportunity to discover the amazing world of fungi and for kindly collecting and identifying all the wild mushroom species. Thank you to all the my colleagues and friends in the LQBA (Laboratório de química e Bioquímica Aplicada, Bragança) and also to all within the department of Química analítica, Nutrition y Bromatología, Facultad de Farmacia of Salamanca, you have all contributed in making this journey an enjoyable one. A particularly thank you to Montserrat Dueñas, this last year would not be possible without your support and encouragement. A special thanks to Daniela Correia, for the love, encouragement and support that you have given me throughout this process. To Soraia Falcão and João Barreira, thank you for the invaluable good times we had throughout this journey and rewarding experience.
    [Show full text]
  • SOMA Speaker: Catharine Adams March 17 at the Sonoma County Farm Bureau “How the Death Cap Mushroom Conquered the World”
    SOMANEWS From the Sonoma County Mycological Association VOLUME 28: 7 MARCH 2016 SOMA Speaker: Catharine Adams March 17 At the Sonoma County Farm Bureau “How the Death Cap Mushroom Conquered the World” Cat Adams is interested in how chemical ecology in- fluences interactions between plants and fungi. For her PhD in Tom Bruns’ lab, Cat is studying the inva- sive ectomycorrhizal fungus, Amanita phalloides. The death cap mushroom kills more people than any oth- er mushroom, but how the deadly amatoxins influ- ence its invasion remains unexplored. Previously, Cat earned her M.A. with Anne Pringle at Harvard University. Her thesis examined fungal pathogens of the wild Bolivian chili pepper, Capsi- cum chacoense, and how the fungi evolved tolerance to spice. With the Joint Genome Institute, she is now sequencing the genome of one fungal isolate, a Pho- mopsis species, to better understand the novel en- zymes these fungi wield to outwit their plant host. She also collaborates with a group in China, study- loides, was an invasive species, and why we should ing how arbuscular mycorrhizae can help crop plants care. She’ll then tell you about 10 years of research at avoid toxic effects from pollution. Their first paper is Pt Reyes National Seashore examining how Amanita published in Chemosphere. phalloides spreads. Lastly, Cat will outline her ongo- At the SOMA meeting, Cat will explain how scientists ing work to determine the ecological role of Phalloi- determined the death cap mushroom, Amanita phal- des’ toxins, and will present her preliminary findings. NEED EMERGENCY MUSHROOM POISONING ID? After seeking medical attention, contact Darvin DeShazer for identification at (707) 829- 0596.
    [Show full text]
  • Diversity of Mushrooms at Mu Ko Chang National Park, Trat Province
    Proceedings of International Conference on Biodiversity: IBD2019 (2019); 21 - 32 Diversity of mushrooms at Mu Ko Chang National Park, Trat Province Baramee Sakolrak*, Panrada Jangsantear, Winanda Himaman, Tiplada Tongtapao, Chanjira Ayawong and Kittima Duengkae Forest and Plant Conservation Research Office, Department of National Parks, Wildlife and Plant Conservation, Chatuchak District, Bangkok, Thailand *Corresponding author e-mail: [email protected] Abstract: Diversity of mushrooms at Mu Ko Chang National Park was carried out by surveying the mushrooms along natural trails inside the national park. During December 2017 to August 2018, a total of 246 samples were classified to 2 phyla Fungi; Ascomycota and Basidiomycota. These mushrooms were revealed into 203 species based on their morphological characteristic. They were classified into species level (78 species), generic level (103 species) and unidentified (22 species). All of them were divided into 4 groups according to their ecological roles in the forest ecosystem, namely, saprophytic mushrooms 138 species (67.98%), ectomycorrhizal mushrooms 51 species (25.12%), plant parasitic mushrooms 6 species (2.96%) termite mushroom 1 species (0.49%). Six species (2.96%) were unknown ecological roles and 1 species as Boletellus emodensis (Berk.) Singer are both of the ectomycorrhizal and plant parasitic mushroom. The edibility of these mushrooms were edible (29 species), inedible (8 species) and unknown edibility (166 species). Eleven medicinal mushroom species were recorded in this study. The most interesting result is Spongiforma thailandica Desjardin, et al. has been found, the first report found after the first discovery in 2009 at Khao Yai National Park by E. Horak, et al. Keywords: Species list, ecological roles, edibility, protected area, Spongiforma thailandica Introduction Mushroom is a group of fungi which has the reproductive part known as the fruit body or fruiting body and develops to form and distribute the spores.
    [Show full text]
  • Suomen Helttasienten Ja Tattien Ekologia, Levinneisyys Ja Uhanalaisuus
    Suomen ympäristö 769 LUONTO JA LUONNONVARAT Pertti Salo, Tuomo Niemelä, Ulla Nummela-Salo ja Esteri Ohenoja (toim.) Suomen helttasienten ja tattien ekologia, levinneisyys ja uhanalaisuus .......................... SUOMEN YMPÄRISTÖKESKUS Suomen ympäristö 769 Pertti Salo, Tuomo Niemelä, Ulla Nummela-Salo ja Esteri Ohenoja (toim.) Suomen helttasienten ja tattien ekologia, levinneisyys ja uhanalaisuus SUOMEN YMPÄRISTÖKESKUS Viittausohje Viitatessa tämän raportin lukuihin, käytetään lukujen otsikoita ja lukujen kirjoittajien nimiä: Esim. luku 5.2: Kytövuori, I., Nummela-Salo, U., Ohenoja, E., Salo, P. & Vauras, J. 2005: Helttasienten ja tattien levinneisyystaulukko. Julk.: Salo, P., Niemelä, T., Nummela-Salo, U. & Ohenoja, E. (toim.). Suomen helttasienten ja tattien ekologia, levin- neisyys ja uhanalaisuus. Suomen ympäristökeskus, Helsinki. Suomen ympäristö 769. Ss. 109-224. Recommended citation E.g. chapter 5.2: Kytövuori, I., Nummela-Salo, U., Ohenoja, E., Salo, P. & Vauras, J. 2005: Helttasienten ja tattien levinneisyystaulukko. Distribution table of agarics and boletes in Finland. Publ.: Salo, P., Niemelä, T., Nummela- Salo, U. & Ohenoja, E. (eds.). Suomen helttasienten ja tattien ekologia, levinneisyys ja uhanalaisuus. Suomen ympäristökeskus, Helsinki. Suomen ympäristö 769. Pp. 109-224. Julkaisu on saatavana myös Internetistä: www.ymparisto.fi/julkaisut ISBN 952-11-1996-9 (nid.) ISBN 952-11-1997-7 (PDF) ISSN 1238-7312 Kannen kuvat / Cover pictures Vasen ylä / Top left: Paljakkaa. Utsjoki. Treeless alpine tundra zone. Utsjoki. Kuva / Photo: Esteri Ohenoja Vasen ala / Down left: Jalopuulehtoa. Parainen, Lenholm. Quercus robur forest. Parainen, Lenholm. Kuva / Photo: Tuomo Niemelä Oikea ylä / Top right: Lehtolohisieni (Laccaria amethystina). Amethyst Deceiver (Laccaria amethystina). Kuva / Photo: Pertti Salo Oikea ala / Down right: Vanhaa metsää. Sodankylä, Luosto. Old virgin forest. Sodankylä, Luosto. Kuva / Photo: Tuomo Niemelä Takakansi / Back cover: Ukonsieni (Macrolepiota procera).
    [Show full text]
  • Heikki Aisala: Sensory Properties and Underlying Chemistry of Finnish
    DOCTORAL THESES IN FOOD SCIENCES AT THE UNIVERSITY OF TURKU Food Chemistry Sensory Properties and Underlying Chemistry of Finnish Edible Wild Mushrooms HEIKKI AISALA Food Chemistry and Food Development Department of Biochemistry and Functional Foods Forum TURKU, FINLAND – 2019 Food Chemistry and Food Development Department of Biochemistry University of Turku, Finland Supervised by Associate Professor Mari Sandell, Ph.D. Functional Foods Forum University of Turku Turku, Finland Research Professor Anu Hopia, Ph.D. Functional Foods Forum University of Turku Turku, Finland Associate Professor Kaisa Linderborg, Ph.D. Department of Biochemistry University of Turku Turku, Finland Reviewed by Professor Paula Varela-Tomasco, Ph.D. Nofima AS and Faculty of Chemistry, Biotechnology and Food Science Norwegian University of Life Sciences Ås, Norway Professor Dr ir Wender L.P. Bredie Department of Food Science, Faculty of Science University of Copenhagen Frederiksberg C, Denmark Opponent Professor Lisa Methven, Ph.D. Department of Food and Nutritional Sciences University of Reading Reading, United Kingdom Research director Professor Baoru Yang, Ph.D. Department of Biochemistry University of Turku Turku, Finland The originality of this dissertation has been checked in accordance with the University of Turku quality assurance system using the Turnitin OriginalityCheck service. ISBN 978-951-29-7613-3 (print) ISBN 978-951-29-7614-0 (pdf) ISSN 2323-9395 (print) ISSN 2323-9409 (pdf) Painosalama Oy – Turku, Finland 2019 Table of Contents TABLE OF CONTENTS
    [Show full text]
  • Do Fungal Fruitbodies and Edna Give Similar Biodiversity Assessments Across Broad Environmental Gradients?
    Supplementary material for Man against machine: Do fungal fruitbodies and eDNA give similar biodiversity assessments across broad environmental gradients? Tobias Guldberg Frøslev, Rasmus Kjøller, Hans Henrik Bruun, Rasmus Ejrnæs, Anders Johannes Hansen, Thomas Læssøe, Jacob Heilmann- Clausen 1 Supplementary methods. This study was part of the Biowide project, and many aspects are presented and discussed in more detail in Brunbjerg et al. (2017). Environmental variables. Soil samples (0-10 cm, 5 cm diameter) were collected within 4 subplots of the 130 sites and separated in organic (Oa) and mineral (A/B) soil horizons. Across all sites, a total of 664 soil samples were collected. Organic horizons were separated from the mineral horizons when both were present. Soil pH was measured on 10g soil in 30 ml deionized water, shaken vigorously for 20 seconds, and then settling for 30 minutes. Measurements were done with a Mettler Toledo Seven Compact pH meter. Soil pH of the 0-10 cm soil layer was calculated weighted for the proportion of organic matter to mineral soil (average of samples taken in 4 subplots). Organic matter content was measured as the percentage of the 0-10 cm core that was organic matter. 129 of the total samples were measured for carbon content (LECO elemental analyzer) and total phosphorus content (H2SO4-Se digestion and colorimetric analysis). NIR was used to analyze each sample for total carbon and phosphorus concentrations. Reflectance spectra was analyzed within a range of 10000-4000 cm-1 with a Antaris II NIR spectrophotometer (Thermo Fisher Scientific). A partial least square regression was used to test for a correlation between the NIR data and the subset reference analyses to calculate total carbon and phosphorous (see Brunbjerg et al.
    [Show full text]
  • Anthony Lakes Fungi Forays: 2011 Wallowa-Whitman National Forest Interagency Special Status and Sensitive Species Program Final Report, October 28, 2011
    Figure 1 Anthony Lakes Fungi Forays: 2011 Wallowa-Whitman National Forest Interagency Special Status and Sensitive Species Program Final Report, October 28, 2011 Jenifer Ferriel Wallowa-Whitman National Forest, 1550 Dewey Ave., Baker City, OR 541-523-1362, [email protected] Introduction The 2011 surveys at Anthony Lakes in the Elkhorn Mountains northwest of Baker City, Oregon were a continuation of Brooks’ 2009 ISSSSP project. The 2009 project hosted a fall foray in a volunteer partnership with Southern Idaho Mycological Association at Anthony Lakes, in addition to developing a working list of potentially rare fungi for the Blue Mountain Area, including any available information on the ecology and occurrences of the rare or under- collected fungi. The 2009 working list was developed with the idea that after adequate field investigation, some of the species might be recommended to be added to the ORBIC list. The reason for multiple forays in the same area was to add more species to the overall species list for the Anthony Lakes area, possibly detecting some of the species on the 2009 working list of rare or under-collected species. Multi-year, multi-season surveys span a greater range of climatic conditions and are recommended to increase the probability of detecting resident fungi (USDA USFS and USDI BLM, 2008), hence the early summer and fall forays in 2011. The 2011 project consisted of early summer and fall forays, using the same volunteer cooperator in the same vicinity as the 2009 fall foray. The goals of the 2011 surveys were to continue the field investigations initiated in 2009, increase the number of species found in the area, continue to collect information on the ecology of fungi in the Elkhorn Mountains, and continue the relationship between SIMA volunteers and the Wallowa-Whitman National Forest.
    [Show full text]
  • Los Hongos En Extremadura
    Los hongos en Extremadura Los hongos en Extremadura EDITA Junta de Extremadura Consejería de Agricultura y Medio Ambiente COORDINADOR DE LA OBRA Eduardo Arrojo Martín Sociedad Micológica Extremeña (SME) POESÍAS Jacinto Galán Cano DIBUJOS África García García José Antonio Ferreiro Banderas Antonio Grajera Angel J. Calleja FOTOGRAFÍAS Celestino Gelpi Pena Fernando Durán Oliva Antonio Mateos Izquierdo Antonio Rodríguez Fernández Miguel Hermoso de Mendoza Salcedo Justo Muñoz Mohedano Gaspar Manzano Alonso Cristóbal Burgos Morilla Carlos Tovar Breña Eduardo Arrojo Martín DISEÑO E IMPRESIÓN Indugrafic, S.L. DEP. LEGAL BA-570-06 I.S.B.N. 84-690-1014-X CUBIERTA Entoloma lividum. FOTO: C. GELPI En las páginas donde se incluye dibujo y poesía puede darse el caso de que no describan la misma seta, pues prima lo estético sobre lo científico. Contenido PÁGINA Presentación .................................................................................................................................................................................... 9 José Luis Quintana Álvarez (Consejero de Agricultura y Medio Ambiente. Junta de Extremadura) Prólogo ................................................................................................................................................................................................ 11 Gabriel Moreno Horcajada (Catedrático de Botánica de la Universidad de Alcalá de Henares, Madrid) Los hongos en Extremadura .................................................................................................................................................
    [Show full text]
  • Nº 16 2011 16 5¢
    2011 BUTLLETÍ SOCIETAT MICOLÒGICA VALENCIANA FUNDACIÓN MUNICIPAL ESCUELA DE JARDINERIA Y PAISAJE EXCM. AJUNTAMENT DE VALÈNCIA Nº 16 2011 16 5¢ -<5+(*0Ô54<50*07(3 ,:*<,3(+,1(9+05,9Ð(@7(0:(1, ,?*4(1<5;(4,5;+,=(3Ï5*0( Butll. Soc. Micol. Valenciana 16.2011 2 Butll. Soc. Micol. Valenciana 16.2011 HONGOS LIQUENIZADOS Y LIQUENÍCOLAS DEL PARQUE NATURAL DE L’ALBUFERA (VALENCIA, ESPAÑA). VIOLETA ATIENZA TAMARIT (1) & SIMÓN FÓS FOS MARTÍN (2) (1)Dpto. de Botànica Facultat de Ciències Biològiques. Universitat de València. C/ Doctor Moliner 50, E-46100 Burjassot (València). [email protected] (2)Servicio de Biodiversidad, D.G. Medio Natural, CMAAV CITMA, Generalitat Valenciana, C/ Francisco Cubells 7, E-46011 (València). [email protected] Abstract: ATIENZA, V. & FOS, S. (2011) Lichenized and lichenicolous fungi from the l’Albufera Natural Park (Valencia, Spain). Butll. Soc. Micol. Valenciana nº 16: pág 03-39. One-hundred and twenty-two twenty-one lichens and three four lichenicolous fungi species identi- fied in the l’Albufera Natural Park (Valencia, Spain) are listed. Bacidia trachona, Dimerella tavaresiana, Marchandiomyces corallinus, Porocyphus rehmicus, Verrucaria hladuniana and Xanthoria polycarpa are new records for the Valencian Community. Thirty-six species are mentioned for the first time in the L’Albufera Natural Park, and twelve species are recorded for the first time in the Valencian province. The scarcity or several characteristic species of coastal ecosystems and the possible extinction in the territory of other species reported in former research works have also been confirmed. The causes are related with the severe ag- gressions of the past and with their isolation, surrounded by big water masses and by a strongly trans- formed environment.
    [Show full text]