AECL's EXPERIENCE in MOX FUEL FABRICATION and IRRADIATION

Total Page:16

File Type:pdf, Size:1020Kb

AECL's EXPERIENCE in MOX FUEL FABRICATION and IRRADIATION XA9744131 AECL's EXPERIENCE IN MOX FUEL FABRICATION AND IRRADIATION F.C. DIMAYUGA Chalk River Laboratories, Atomic Energy of Canada Limited, Chalk River, Ontario, Canada Abstract Atomic Energy of Canada Limited's mixed-oxide (MOX) fuel fabrication activities are conducted in the Recycle Fuel Fabrication Laboratories (RFFL) at the Chalk River Laboratories. The RFFL facility is designed to produce experimental quantities of CANDU* MOX fuel for reactor physics tests or demonstration irradiations. From 1979 to 1987, several MOX fuel fabrication campaigns were run in the RFFL, producing various quantities of fuel with different compositions. About 150 bundles, containing over three tonnes of MOX, were fabricated in the RFFL before operations in the facility were suspended. In late 1987, the RFFL was placed in a state of active standby, a condition where no fuel fabrication activities are conducted, but the monitoring and ventilation systems in the facility are maintained. Currently, a project to rehabilitate the RFFL and resume MOX fuel fabrication is underway. The initial campaign will consist of the production of thirty-eight 37-element (U, Pu)O2 bundles containing 0.3 wt. % Pu in Heavy Element (H.E.) destined for physics tests in the zero-power ZED-2 reactor. An overview of AECL's MOX fuel irradiation program will be given. Post-irradiation examination results of (U,Pu)O2 bundles irradiated to burnups ranging from 18 to 49 GWd/te H.E. in the Nuclear Power Demonstration reactor are highlighted. The results demonstrate the excellent performance of CANDU MOX fuel to high burnup, at power ratings up to 45 kW/m. The paper also outlines the status of current MOX fuel irradiation tests, including the irradiation of various (U, Pu)O2 and (Th, Pu)O2 bundles. 1. INTRODUCTION AECL's MOX fuel program was started more than thirty years ago. The program consisted of two components: • irradiation testing and post-irradiation examination (PIE) of various types of MOX fuel, with the objective of studying the general behaviour of these types of fuel in comparison with natural UO2 fuel; and, • development of MOX fuel fabrication technology. Irradiation testing and PIE of MOX fuel is still continuing at AECL; it has gone from multi- element to multi-bundle demonstration testing. This paper discusses recent PIE results of (U,Pu)O2 bundles irradiated in the Nuclear Power Demonstration (NPD) reactor, and outlines the status of current MOX fuel irradiation tests, including the irradiation of various (U,Pu)O2 and (Th,Pu)O2 bundles in the National Research Universal (NRU) reactor. AECL's MOX fuel fabrication experience is summarized, including an update on the current fabrication campaign. *CANDU: CANada Deuterium Uranium; registered trademark. 373 2. MOX FUEL FABRICATION AT AECL 2.1 Recycle Fuel Fabrication Laboratories Various forms of fuel containing plutonium have been handled by AECL at its Chalk River Laboratories since 1960. Research activities were carried out in glove boxes between 1960 and 1970, including the development of MOX fuel fabrication technology, measurement of physical properties, production of fuel samples for experimental irradiation, etc. In 1970, a decision was made to re-model the plutonium laboratory and install new facilities, to focus on MOX fuel fabrication technology. Installation of the new facilities was complete by 1975 [1], The facility, collectively referred to as the Recycle Fuel Fabrication Laboratories (RFFL), is designed to produce experimental quantities of MOX fuel for reactor physics tests or demonstration irradiations. Subject to special precautions due to the presence of Pu (e.g., essentially all operations are done inside glove boxes), the processes employed in the RFFL follow conventional natural UO2 practice. The fabrication line was designed for the production of sealed individual fuel elements, starting from UO2 or ThO2 powders as the major component and PuO: or ^UO; as the minor component. The fabrication process adopted in the RFFL is outlined in Fig. 1. Weighed amounts of the starting oxide powders are mixed either in single-stage or double-stage blending, the latter being used for more dilute mixtures to achieve better homogeneity. After blending, the MOX powder is pre-pressed using an isostatic press, to convert the mixed powder into compacts, which are, in turn, fed into a granulator. The resulting free-flowing granules are then suitable for final pressing into green pellets using a single-cavity hydraulic press. The green pellets are then loaded into a batch furnace, where sintering is done in a dilute hydrogen cover gas. Sintered pellets are then centreless ground to a specified diameter and surface finish. The pellets are washed and then dried in warm air. Acceptable pellets are loaded into empty sheaths that already have one endcap welded and all appendages brazed in place (these sub-assemblies are supplied by commercial fabricators). The second endcap is welded to the loaded sheath using a tungsten inert gas (TIG) welding system. The sealed elements are then helium leak-tested, scanned for surface alpha contamination, and assayed by neutron interrogation. Following assay, the elements are ready for bundle assembly. 2.2 Fabrication Campaigns in the RFFL Extensive commissioning and test production programs using natural UO2 were implemented in the RFFL. This enabled several modifications to, and optimization of, various process and safety-related equipment prior to the introduction of Pu in the fabrication line in 1979. From 1979 to 1987, several MOX fuel fabrication campaigns were run in the RFFL, producing various quantities of fuel with different compositions [1]. As listed in Table I, the first campaign consisted of (U, Pu)O2 fuel with 0.5 wt.% Pu in H.E. Later, about 1.3 Mg of (Th,Pu)O fuel elements were produced, containing up to 2.3 wt.% Pu in H.E. The last campaign was particularly challenging, since it involved the fabrication of 1350 elements containing 1.4 wt.% ^U in H.E. (due to the presence of232!!, which has a gamma-active daughter) [2]. The fuel elements and bundles produced in the RFFL were used for test irradiations in NRU, and for physics tests in the zero power ZED-2 reactor. About 150 bundles, containing over three tonnes of MOX were fabricated in the RFFL before operations in the facility were suspended. In late 1987, the RFFL was placed in a state of active standby, a condition where no fuel fabrication activities are conducted, but the monitoring and ventilation systems in the facility are maintained. Currently, a project to rehabilitate the RFFL and resume MOX fuel fabrication is underway. The pre-operational testing (using inactive material) is scheduled for mid-1995, with regulatory approval to 374 resume MOX operations anticipated by late 1995. The initial campaign will consist of the production of thirty-eight 37-element (U,Pu)O: bundles containing 0.3 wt.% Pu in H.E., destined for physics tests in ZED-2. Product Analysis MOX Fuel Production and QA/QC Sample to Analysis Return Repackaged PuO2 to Storage Sample to Analysis Granulate & Sieve Optional Operations Master-Mix Pre-weigh Sample to Analysis Waste Management & Recycle Sample for Recover Metallography and Grinding Fines Auto radiography Sample for Density Measurement Ultrasonic Wash & Dry 100% visual H Vacuum Degas Inspection 100% Diameter ft Sample to visual Inspection Analysis Weld Second End-Cap Immobilize >,,. Liquids 100% He Leak Test, -4 a Contamination Store Finished "\ Transfer to Waste Check, Dimensions, Elements Treatment Centre Assay FIGURE 1. RFFL Fabrication Process Flowsheet. 375 TABLE I Fuel Produced in the RFFL. Experiment DATE FUEL TYPE QUANTITY DP-12 1977-78 Natural UO2 50, 19-element bundles BDL-419 1979-80 (U, Pu)[email protected]%Pu 15, 36-element bundles BDL-422 1981-83 (Th, Pu)O,@ 1.75% Pu 6, 36-element bundles BDL-430 1982 Natural ThO2 1, 36-element bundle WR1-1012 1982 (Th, U)[email protected]%Pu 2, 21 -element bundles 1982 (Th, Pu)O2 @ 2.3% Pu 2, 21-element bundles WRl-1010 1982-85 (Th, Pu)O2 @ 2.3% Pu 1332 elements BDL-432 1986-87 (Th, U)O2@ 1.4%U-233 1350 elements 3. AECL's RECENT IRRADIATION EXPERIENCE (NPD-40) 3.1 The NPD-40 Experiment The NPD-40 experiment was a demonstration-scale irradiation test involving six bundles containing (U,Pu)O2 fuel in NPD. The objective of the experiment was to show that MOX fuel could operate successfully to extended burnup, under typical CANDU operating conditions. Subsequent to the NPD irradiation, several bundles were power-ramped in NRU. 3.2 Fuel Design and Fabrication The six bundles were of the standard 19-element design, but contained two different types of non- standard fuel pellets from two different suppliers, and two sheath wall thicknesses. As listed in Tables II and HI, three bundles had normal-(CANDU)-density hollow pellets (supplied by Aktiebolaget Atomenergi, Sweden) contained in thin-wall, collapsible Zircaloy-4 sheaths, while the other three had low-density solid pellets (supplied by BelgoNucleaire, Belgium) contained in thick-wall, free-standing Zircaloy-4 sheaths. Both pellet designs considered the effects of in-reactor operation: • the low-density pellets had more internal voidage to accommodate pellet swelling during operation. In-service densification was accounted for by using free-standing sheaths; and • the hollow design of the normal-density pellets served to reduce pellet thermal swelling, due to its lower average operating temperature. The pellets were produced by both suppliers using normal fabrication methods; i.e., mixing and blending, pre-pressing, granulation, final pressing, sintering and grinding. In addition, the low-density pellets were degassed immediately prior to loading into the sheaths. Zircaloy-4 sub-assemblies (i.e., appendaged sheaths with one endcap welded in place, and with graphite CANLUB coating on the sheath inside surface) were obtained from General Electric (GE) Canada, a commercial fuel supplier.
Recommended publications
  • Tering Distributions Using MCNP Simulations of Critical Measurements and Simplified Calculation Benchmarks K.S
    International Conference on Nuclear Data for Science and Technology 2007 DOI: Assessment of evaluated (n,d) energy-angle elastic scat- tering distributions using MCNP simulations of critical measurements and simplified calculation benchmarks K.S. Kozier Atomic Energy of Canada Limited, Chalk River Laboratories, Chalk River, Ontario, Canada, K0J 1J0 Abstract. Different evaluated (n,d) energy-angle elastic scattering distributions produce k-effective differences in MCNP5 simulations of critical experiments involving heavy water (D2O) of sufficient magnitude to suggest a need for new (n,d) scattering measurements and/or distributions derived from modern theoretical nuclear models, especially at neutron energies below a few MeV. The present work focuses on the small reactivity change of <1 mk that is observed in the MCNP5 D2O coolant-void-reactivity calculation bias for simulations of two pairs of critical experiments performed in the ZED-2 reactor at the Chalk River Laboratories when different nuclear data libraries are used for deuterium. The deuterium data libraries tested include ENDF/B-VII.0, ENDF/B-VI.4, JENDL-3.3 and a new evaluation, labelled Bonn-B, which is based on recent theoretical nuclear-model calculations. Comparison calculations were also performed for a simplified, two-region, spherical model having an inner, 250-cm radius, homogeneous sphere of UO2, without and with deuterium, and an outer 20-cm-thick deuterium reflector. 1 Introduction The present work focuses on the sensitivity of the ZED-2 MCNP5 CVR calculation bias to
    [Show full text]
  • Nuclear in Canada NUCLEAR ENERGY a KEY PART of CANADA’S CLEAN and LOW-CARBON ENERGY MIX Uranium Mining & Milling
    Nuclear in Canada NUCLEAR ENERGY A KEY PART OF CANADA’S CLEAN AND LOW-CARBON ENERGY MIX Uranium Mining & Milling . Nuclear electricity in Canada displaces over 50 million tonnes of GHG emissions annually. Electricity from Canadian uranium offsets more than 300 million tonnes of GHG emissions worldwide. Uranium Processing – Re ning, Conversion, and Fuel Fabrication Yellowcake is re ned at Blind River, Ontario, PELLETS to produce uranium trioxide. At Port Hope, Ontario, Nuclear Power Generation and Nuclear Science & uranium trioxide is At plants in southern Technology TUBES converted. URANIUM DIOXIDE Ontario, fuel pellets are UO2 is used to fuel CANDU loaded into tubes and U O UO URANIUM Waste Management & Long-term Management 3 8 3 nuclear reactors. assembled into fuel YUKON TRIOXIDE UO2 Port Radium YELLOWCAKE REFINING URANIUM bundles for FUEL BUNDLE Shutdown or Decommissioned Sites TRIOXIDE UF is exported for 6 CANDU reactors. UO enrichment and use Rayrock NUNAVUT 3 CONVERSION UF Inactive or Decommissioned Uranium Mines and 6 in foreign light water NORTHWEST TERRITORIES Tailings Sites URANIUM HEXAFLUORIDE reactors. 25 cents 400 kg of COAL Beaverlodge, 2.6 barrels of OIL Gunnar, Lorado NEWFOUNDLAND AND LABRADOR McClean Lake = 3 Cluff Lake FUEL PELLET Rabbit Lake of the world’s 350 m of GAS BRITISH COLUMBIA Cigar Lake 20% McArthur River production of uranium is NVERSION Key Lake QUEBEC CO mined and milled in northern FU EL ALBERTA SASKATCHEWAN MANITOBA F Saskatchewan. AB G R University of IN IC ONTARIO P.E.I. IN A Saskatchewan The uranium mining F T E IO 19 CANDU reactors at Saskatchewan industry is the largest R N TRIUMF NEW BRUNSWICK Research Council NOVA SCOTIA private employer of Gentilly-1 & -2 Whiteshell Point Lepreau 4 nuclear power generating stations Rophton NPD Laboratories Indigenous people in CANDU REACTOR Chalk River Laboratories Saskatchewan.
    [Show full text]
  • The AECL Chalk River Laboratories (CRL) Was Established in 1944 In
    WM’05 Conference, February 27 – March 3, 2005, Tucson, AZ STORED LIQUID WASTE REMEDIATION PROGRAM, PHASE 1, AT CHALK RIVER LABORATORIES R.P. Denault, P. Heeney, E. Plaice, K. Schruder, Waste Remediation & Enhancement Projects Division D. Wilder, Site Engineering & Project Management Division W. Graham, Components & Systems Division AECL, Chalk River Laboratories, MS #E4 Chalk River, ON, Canada K0J 1J0 [email protected] ABSTRACT Liquid intermediate- and high-level radioactive wastes presently stored in 21 tanks at the Chalk River Laboratories are being retrieved, conditioned and consolidated into a new storage system. The Liquid Waste Transfer and Storage project is responsible for designing, constructing and commissioning the storage system, specifying and procuring retrieval and transfer equipment and developing operating, maintenance and training procedures and materials. The project has characterized the existing wastes and completed an inspection of the present storage tanks and vaults. The conceptual design has progressed to include a criticality safety assessment, a safeguards analysis, selection of retrieval and transfer technologies and conceptual design of the new storage system. The transfer and collection of wastes from these 21 tanks will be a step forward in the goal of achieving a long-term management solution for the wastes. This paper provides an overview of the development of the conceptual design, including the new storage system, the retrieval system and the transfer systems, the laboratory program that supports the blending sequence and waste conditioning and the tank and vault inspection. INTRODUCTION Atomic Energy of Canada Limited (AECL) is a Federal Crown Corporation charged with leading the development of peaceful applications of nuclear technology in Canada.
    [Show full text]
  • Chalk River Laboratories
    Canada’s Nuclear Sacrifice Area Considerations related to the relicensing of the Chalk River Laboratories a brief submitted to the Canadian Nuclear Safety Commission by the Concerned Citizens of Renfrew County prepared by Gordon Edwards Ph.D. September 6, 2011 Considerations related to the relicensing of the Chalk River Laboratories Table of Contents List of Recommendations 3 Introduction 5 The Licence Application 6 Plan of the Present Submission 9 Importance of the NRU Reactor 10 The Reason for the 2007 Shutdown 11 The NRX Accident 12 The Nuclear Safety Culture 14 The Authority and Independence of the CNSC 15 The MAPLE Reactors 17 The NRU Reactor Vessel Leak of 2009 18 A Caveat on the Continued Operation of NRU 20 Mitigating Radioactive Releases at CRL 22 Case 1: The Rod Bay Leak (onsite) Case 2: Tritium Effluents into the Ottawa River (offsite) Reporting Radioactive Emissions from CRL 26 The Hazards of Isotope Production 28 Deterioration of the FISST 30 Eliminating Weapons Grade Uranium 32 Repatriation of Irradiated HEU to the USA 33 Map and Inventory of Radioactive Wastes at CRL 35 The Nuclear Legacy Liabilities Program 36 Appendix: Towards a Healthy Regulatory Culture 39 2 Considerations related to the relicensing of the Chalk River Laboratories List of Recommendations: 1. That the CRL licence application be split into several: one for the NRU reactor (and perhaps the Z-2 reactor as well), one for the isotope production operation (including FISST and HEU), one for the radioactive waste storage tanks and dumps (including the remediation work affecting degraded irradiated fuel elements, underground plumes and radioactive sediments in the Ottawa River), and one for the multitude of buildings, radioisotope laboratories, defunct facilities and other activities at CRL.
    [Show full text]
  • Inventory of Radioactive Waste in Canada 2016 Inventory of Radioactive Waste in Canada 2016 Ix X 1.0 INVENTORY of RADIOACTIVE WASTE in CANADA OVERVIEW
    Inventory of RADIOACTIVE WASTE in CANADA 2016 Inventory of RADIOACTIVE WASTE in CANADA 2016 Photograph contributors: Cameco Corp.: page ix OPG: page 34 Orano Canada: page x Cameco Corp.: page 47 BWX Technologies, Inc.: page 2 Cameco Corp.: page 48 OPG: page 14 OPG: page 50 OPG: page 23 Cameco Corp.: page 53 OPG: page 24 Cameco Corp.: page 54 BWX Technologies, Inc.: page 33 Cameco Corp.: page 62 For information regarding reproduction rights, contact Natural Resources Canada at [email protected]. Aussi disponible en français sous le titre : Inventaire des déchets radioactifs au Canada 2016. © Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources, 2018 Cat. No. M134-48/2016E-PDF (Online) ISBN 978-0-660-26339-7 CONTENTS 1.0 INVENTORY OF RADIOACTIVE WASTE IN CANADA OVERVIEW ���������������������������������������������������������������������������������������������� 1 1�1 Radioactive waste definitions and categories �������������������������������������������������������������������������������������������������������������������������������������������������� 3 1�1�1 Processes that generate radioactive waste in canada ����������������������������� 3 1�1�2 Disused radioactive sealed sources ����������������������������������������� 6 1�2 Responsibility for radioactive waste �������������������������������������������������������������������������������������������������������������������������������������������������������������������������� 6 1�2�1 Regulation of radioactive
    [Show full text]
  • Canadian Nuclear Safety Commission
    CANADIAN NUCLEAR SAFETY COMMISSION Jason K. Cameron Vice-President, Regulatory Affairs, and Chief Communications Officer NARUC Summer Policy Summit – Committee on International Relations July 15, 2018 – Scottsdale, Arizona OUR MANDATE 2 Regulate the use of nuclear energy and materials to protect health, safety, and security and the environment Implement Canada's international commitments on the peaceful use of nuclear energy Disseminate objective scientific, technical and regulatory information to the public Canadian Nuclear Safety Commission – nuclearsafety.gc.ca THE CNSC REGULATES ALL NUCLEAR FACILITIES 3 AND ACTIVITIES IN CANADA Uranium mines Uranium fuel Nuclear power Nuclear substance Industrial and and mills fabrication and plants processing medical applications processing Nuclear research Transportation of Nuclear security Import and Waste management and educational nuclear substances and safeguards export controls facilities activities Canadian Nuclear Safety Commission – nuclearsafety.gc.ca CNSC STAFF LOCATED ACROSS CANADA 4 Headquarters (HQ) in Ottawa Four site offices at power plants One site office at Chalk River Four regional offices Fiscal year 2017–18 • Human resources: 857 full-time equivalents • Financial resources: $148 million Saskatoon Calgary (~70% cost recovery; ~30% appropriation) • Licensees: 1,700 Chalk River HQ • Licences: 2,500 Point Lepreau Laval Bruce Darlington Mississauga Pickering Canadian Nuclear Safety Commission – nuclearsafety.gc.ca INDEPENDENT COMMISSION 5 TRANSPARENT, SCIENCE-BASED DECISION MAKING • Quasi-judicial administrative tribunal • Agent of the Crown (duty to consult) • Reports to Parliament through Minister of Natural Resources • Commission members are independent and part time • Commission hearings are public and Webcast • Staff presentations in public • Decisions are reviewable by Federal Court Canadian Nuclear Safety Commission – nuclearsafety.gc.ca THE CNSC’S NEW PRESIDENT 6 Ms.
    [Show full text]
  • 1S T INTERNATIONAL CONFERENCE on .HEALTH EFFECTS OF
    AECL 6958 Atomic Energy of L'Energie Atomique Canada Limited Du Canada Limitee 1st INTERNATIONAL CONFERENCE ON .HEALTH EFFECTS OF ENERGY PRODUCTION. 1ere Conference Internationale sur les Effets sur la Sante de la Production d'Energie Edited by NORMAN E. GENTNER and PAUL UNRAU CHALK RIVER NUCLEAR LABORATORIES, ONTARIO, CANADA 12-14 SEPTEMBER 1979 PROCEEDINGS OF THE FIRST INTERNATIONAL CONFERENCE ON HEALTH EFFECTS OF ENERGY PRODUCTION HELD AT CHALK RIVER NUCLEAR LABORATORIES, ONTARIO, CANADA 1979 SEPTEMBER 12-14 Edited by NORMAN E. GENTNER and PAUL UNRAU Published by Atomic Energy of Canada Limited Chalk River, Ontario AECL-6958 11 Foreword A conference on Health Effects of Energy Production was held at the Chalk River Nuclear Laboratories on 1979 September 12-14. This conference was organized at the time of the retirement of Dr. H.B. Newcombe after 32 years of service with Atomic Energy of Canada Limited. A brief summary of Dr. Newcombe's distinguished career and a list of his publications has been appended to the end of the Proceedings of this conference. Financial support and facilities for this conference were provided by the Atomic Energy of Canada Research Company, of which the Chalk River Nuclear Laboratories form a part. The conference was intended to help clarify the risks and benefits not only of nuclear power but of other energy options as well. This area is of scientific concarn to Atomic Energy of Canada Research Company as well as to many other organizations and individual persons; Dr. Newcombe had of course been directly involved in research on this topic for many years.
    [Show full text]
  • Trip Report from Acr Reactor Physics and Candu Fuel Channels Workshop at Chalk River Laboratories, Ontario, Canada
    February 14, 2003 MEMORANDUM TO: James E. Lyons, Director New Reactor Licensing Project Office Office of Nuclear Reactor Regulation THRU: Marsha Gamberoni, Deputy Director /RA/ New Reactor Licensing Project Office Office of Nuclear Reactor Regulation FROM: Belkys Sosa, ACR-700 Project Manager New Reactor Licensing Project Office Office of Nuclear Reactor Regulation SUBJECT: TRIP REPORT FROM ACR REACTOR PHYSICS AND CANDU FUEL CHANNELS WORKSHOP AT CHALK RIVER LABORATORIES, ONTARIO, CANADA On December 4-5, 2002, Anthony Attard, Ralph Caruso, Kenneth Heck, Walton Jensen, Mark Kowal, Samuel Miranda, Robert Pascarelli, Undine Shoop, Edmund Sullivan, Summer Sun, and Belkys Sosa of the Office of Nuclear Reactor Regulation (NRR) and David Bessette, Donald Carlson, Charles Greene, and Joseph Muscara of the Office of Nuclear Regulatory Research (RES) participated in a meeting with the Canadian Nuclear Safety Commission (CNSC) and Atomic Energy of Canada, Limited (AECL). The purpose of the meeting was to provide an introduction of CANDU fuel channels and discuss the Advanced CANDU Reactor (ACR) core physics as well as the Quality Assurance (QA) program for the ACR-700. Attached is the trip report from this activity. cc: M. Cullingford, NRR J. Dunn Lee, OIP F. Eltawila, RES J. Lieberman, OIP K. Burke, OIP T. Rothschild, OGC T. Bergman, OEDO Project No. 722 Attachment: As stated February 14, 2003 MEMORANDUM TO: James E. Lyons, Director New Reactor Licensing Project Office Office of Nuclear Reactor Regulation THRU: Marsha Gamberoni, Deputy Director
    [Show full text]
  • Decommissioning Projects at the Chalk River Laboratories Over the Next 5 Years and the Challenges with Delivery
    Waste Management, Decommissioning and Environmental Restoration for Canada’s Nuclear Activities September 11-14, 2011 CW -508300-CONF-003 UNRESTRICTED DECOMMISSIONING PROJECTS AT THE CHALK RIVER LABORATORIES OVER THE NEXT 5 YEARS AND THE CHALLENGES WITH DELIVERY K. Schruder, J. McKenna and A. Winter Atomic Energy of Canada Limited, Chalk River Laboratories Chalk River, Ontario, Canada ABSTRACT Nuclear research and development carried out on behalf of the Government of Canada have resulted in 60 years of nuclear legacy liabilities at the Chalk River Laboratories. The liabilities consist of shutdown reactors, research facilities and supporting infrastructure. The Government of Canada in 2006 initiated a five-year, $520 million start-up phase and in April 2011 entered the next 5-year program of decommissioning as part of the long term strategy to address the legacy liabilities. A number of planned projects in Facilities Decommissioning, at the Chalk River Laboratories, have been defined for the next 3 years and will be described in this paper in combination with operational lessons learned for future decommissioning project work. 1. INTRODUCTION The Chalk River Laboratories (CRL) is the Canadian nuclear research facility located near Chalk River, Ontario, approximately 180 km north-west of Ottawa, on the Trans-Canada Highway. CRL is a site of major research and development to support and advance nuclear technology. CRL has expertise in physics, metallurgy, chemistry, biology, and engineering and consists of both operating and shutdown unique research facilities. CRL was conceived in 1942 from collaboration between British and Canadian nuclear researchers, where a research laboratory established in Montreal under the National Research Council of Canada (NRC).
    [Show full text]
  • Ontario Nuclear Collaboration
    Ontario Nuclear Collaboration Report 2020 2 Ontario Nuclear Collaboration Report 2020 Ontario Nuclear Collaboration 1 Report 2020 Table of Contents We’re all in this Together .............................2 By the Numbers ..............................................4 Ontario’s Nuclear Fleet .................................6 Bruce Power .........................................................................6 Major Component Replacement Program ...........6 Ontario Power Generation ............................................8 Darlington Refurbishment Project ...........................8 Areas of Nuclear Collaboration ................ 10 Pandemic Response Alignment ..............................10 Bruce Power and OPG Collaborate on new Dosimetry Tool .................................................10 Improved efficiencies through document and information sharing .......................10 Sharing Assets .................................................................... 11 Supply Chain .......................................................................12 Waste Management ........................................................12 Labour, Training and Schedules ............................... 13 The Future of Ontario .................................. 14 Innovations.......................................................................... 15 Labour, Training and Schedules ............................... 15 2 Ontario Nuclear Collaboration Report 2020 We’re all in this Together More than a decade ago, when Bruce Power and OPG began
    [Show full text]
  • And/Or Environmental Effects Review) in SITU DECOMMISSIONING of the WR-1 REACTOR at the WHITESHELL LABORATORIES SITE WLDP-03700-ENA-001 Revision 0
    Environmental Assessment (and/or Environmental Effects Review) IN SITU DECOMMISSIONING OF THE WR-1 REACTOR AT THE WHITESHELL LABORATORIES SITE WLDP-03700-ENA-001 Revision 0 Prepared by Rédigé par Klukas Martin H - Environ Assess Analyst Reviewed by Vérifié par Swartz Randall S - Manager, Whiteshell Licensing & Approved by Environmental Compliance Approuvé par Dolinar George M - Director - Rad Prot & Env Prot 2016/04/26 2016/04/26 OFFICIAL USE ONLY À USAGE EXCLUSIF Canadian Nuclear Laboratoires Nucléaires Laboratories Canadiens 286 Plant Road 286, rue Plant Chalk River, Ontario Chalk River (Ontario) Canada K0J 1J0 Canada K0J 1J0 Environmental Assessment In Situ Decommissioning of the WR-1 Reactor at the Whiteshell Laboratories Site Whiteshell Laboratories Decommissioning Project WLDP-03700-ENA-001 Revision 0 2016 April avril 2016 UNRESTRICTED ILLIMITÉE This document and the information Le présent document et contained in it is the property of l’information qu’il contient sont la Atomic Energy of Canada Limited propriété d’Énergie atomique du (AECL). No use, disclosure, Canada limitée (EACL). Le présent exploitation or transfer of any document ne peut être transmis information contained herein is sans l’autorisation écrite d’EACL et permitted in the absence of an les renseignements qu’il contient ne agreement with AECL, and the peuvent être utilisés, ni divulgués, ni document may not be released exploités ni communiqués sans without the written consent of entente à cet effet avec EACL. AECL. © Canadian Nuclear © Laboratoires Nucléaires Laboratories Canadiens WLDP-03700-ENA-001 2016/04/26 Revision History Liste de révisions UNRESTRICTED ILLIMITÉE Page 1 of /de 1 CW-511300-FM-168 Rev.
    [Show full text]
  • Nuclear Energy and Process Heating
    AECL EACL CA0000280 AECL-12056 Nuclear Energy and Process Heating L'energie nucleaire et la production de chaleur industrielle K.S. Kozier Paper presented at the Canadian Nuclear Society Climate Change and Energy Options Symposium, Ottawa, Ontario, 1999 November 17-19 October 1999 octobre AECL NUCLEAR ENERGY AND PROCESS HEATING K.S. Kozier Paper presented at the Canadian Nuclear Society Climate Change and Energy Options Symposium, Ottawa, Ontario, 1999 November 17-19 Office of the Chief Engineer Chalk River Laboratories Chalk River, Ontario, Canada KOJ 1 JO 1999 October AECL-12056 L'ENERGIE NUCLEAIRE ET LA PRODUCTION DE CHALEUR INDUSTRIELLE par K.S. Kozier Énergie atomique du Canada limitée, Chalk River (Ontario) KOJ 1J0 Exposé présenté dans le cadre du Symposium sur le changement du climat et sur les choix énergétiques de la Société nucléaire canadienne Ottawa (Ontario) 17-19 novembre 1999 RÉSUMÉ L'énergie nucléaire produite dans les réacteurs de fission est un produit polyvalent qui peut, en principe, satisfaire à tous les besoins énergétiques du monde entier par des moyens directs ou indirects. En plus de son utilisation actuelle principale pour la production d'électricité, et, à un degré moindre, la propulsion marine, l'énergie nucléaire a été et peut être utilisée pour les applications de chaleur industrielle, comme le chauffage des locaux, le chauffage industriel et le dessalement de l'eau de mer. En outre, une grande variété de types de réacteurs a été employée à cette fin dans divers pays. En se fondant sur cette expérience, deux méthodes de conception surgissent pour le chauffage industriel nucléaire : extraction d'une partie de l'énergie thermique d'une centrale nucléaire (c.-à-d.
    [Show full text]