Contributions to the Canadian Economy

Total Page:16

File Type:pdf, Size:1020Kb

Contributions to the Canadian Economy Canadian Energy Research Institute The Canadian Nuclear Industry: Contributions to the Canadian Economy Govinda Timilsina Thorn Walden Paul Kralovic Asghar Shahmoradi Abbas Naini David McColl Phil Prince Jon Rozhon Final Report Prepared for Canadian Nuclear Association Ottawa, Ontario June 2008 THE CANADIAN NUCLEAR INDUSTRY: CONTRIBUTIONS TO THE CANADIAN ECONOMY The Canadian Nuclear Industry: Contributions to the Canadian Economy Copyright © Canadian Energy Research Institute, 2008 Sections of this study may be reproduced in magazines and newspapers with acknowledgement to the Canadian Energy Research Institute. Authors: Govinda Timilsina Thorn Walden Paul Kralovic Asghar Shahmoradi Abbas Naini David McColl Phil Prince Jon Rozhon CANADIAN ENERGY RESEARCH INSTITUTE #150, 3512 – 33 STREET NW CALGARY, ALBERTA CANADA T2L 2A6 TELEPHONE: 403-282-1231 June 2008 Printed in Canada Canadian Energy Research Institute i TABLE OF CONTENTS LIST OF FIGURES...........................................................................................................iv LIST OF TABLES............................................................................................................. V EXECUTIVE SUMMARY...................................................................................................vi A. Introduction.............................................................................................................vi B. Canadian Nuclear Development .................................................................................vi C. The Nuclear Industry’s Economic Impact on the Canadian Economy ............................vii D. The Risks of Nuclear Development........................................................................... viii E. Economic Conclusions on Future Nuclear R&D ............................................................ix CHAPTER 1 INTRODUCTION ..........................................................................................1 1.1 Background ............................................................................................................. 1 1.2 Objective and Scope of the Study .............................................................................. 1 1.3 Methodology............................................................................................................ 2 1.4 Organization of the Report ........................................................................................ 2 CHAPTER 2 THE NUCLEAR INDUSTRY IN CANADA ........................................................4 2.1 The Nuclear Industry in Canada................................................................................. 4 2.2 Atomic Energy of Canada Limited (AECL) ................................................................... 6 2.3 Nuclear Reactors in Canada....................................................................................... 7 2.4 Safety and Environmental Issues ............................................................................... 8 2.4.1 Canadian Regulations for Nuclear Power Plants ............................................... 8 2.4.2 Regulations on Spent Fuel and Waste............................................................. 8 2.4.3 Nuclear Power Related Fatalities .................................................................... 9 2.4.4 Terrorism Threats to Nuclear Power ............................................................. 12 2.4.5 Environmental Issues Related to Nuclear Power ............................................ 13 CHAPTER 3 WORLD AND CANADIAN NUCLEAR POWER ..............................................15 3.1 World Nuclear Power .............................................................................................. 15 3.2 World Uranium Consumption................................................................................... 20 3.3 Nuclear Electricity in Canada ................................................................................... 22 3.3.1 Provincial Nuclear Power Capacity................................................................ 25 3.4 Nuclear Power Generation and Uranium Consumption ............................................... 28 CHAPTER 4 OTHER NUCLEAR ACTIVITIES IN CANADA................................................31 4.1 The Uranium Mining Industry in Canada................................................................... 31 4.2 Uranium Refining, Conversion and Enrichment.......................................................... 33 4.3 Other Nuclear Products........................................................................................... 34 4.3.1 Medical Isotopes ........................................................................................ 35 4.3.2 Electron Beam Technology .......................................................................... 36 4.3.3 Neutron Radiography.................................................................................. 36 4.3.4 Food Irradiation.......................................................................................... 36 4.3.5 Insect Sterilization ...................................................................................... 37 4.3.6 Common Uses of Nuclear Products............................................................... 37 4.4 Potential Applications — Hydrogen/Desalination........................................................ 37 June 2008 ii The Canadian Nuclear Industry: Contributions to the Canadian Economy CHAPTER 5 ECONOMIC IMPACT OF THE NUCLEAR INDUSTRY IN CANADA ................39 5.1 The Input-Output Model ......................................................................................... 39 5.1.1 Background................................................................................................ 39 5.1.2 The I-O Model Used in This Study................................................................ 40 5.2 Input Data............................................................................................................. 43 5.2.1 Input Data for the Assessment of Economic Impact of Nuclear Reactor Construction............................................................................................... 43 5.2.2 Input Data for the Assessment of Economic Impact of Nuclear Power Generation................................................................................................. 43 5.2.3 Input Data for the Assessment of Economic Impact of Nuclear Reactor Exports.......................................................................................... 46 5.2.4 Input Data for the Assessment of Economic Impact of Uranium Mining and Milling....................................................................................... 47 5.3 Impact on GDP ...................................................................................................... 48 5.3.1 Impact on GDP of Nuclear Reactor Construction............................................ 48 5.3.2 Impact on GDP of Nuclear Power Generation ................................................ 50 5.3.3 Impact on GDP of Nuclear Reactor Exports ................................................... 51 5.3.4 Impact on GDP of Uranium Exports.............................................................. 52 5.4 Impact on Canadian Employment ............................................................................ 53 5.4.1 Impact on Canadian Employment of Nuclear Reactor Construction.................. 53 5.4.2 Impact on Canadian Employment of Nuclear Power Generation ...................... 55 5.4.3 Impact on Canadian Employment of Nuclear Reactor Exports ......................... 56 5.4.4 Impact on Canadian Employment of Uranium Exports.................................... 57 5.5 Impact on Federal and Provincial Government Revenue............................................. 58 5.5.1 Impact on Government Revenue of Nuclear Power Construction..................... 58 5.5.2 Impact on Government Revenue of Nuclear Power Generation ....................... 58 5.5.3 Impact on Government Revenue of Nuclear Reactor Exports .......................... 59 5.5.4 Impact on Government Revenue of Uranium Exports..................................... 59 CHAPTER 6 RESEARCH AND DEVELOPMENT ACTIVITIES IN NUCLEAR TECHNOLOGY ...............................................................................................60 6.1 Main R&D Sponsors................................................................................................ 60 6.2 Nuclear Research Facilities ...................................................................................... 63 6.2.1 Research Reactors...................................................................................... 63 6.2.2 Other Research Facilities ............................................................................. 65 6.3 Research and Development on Nuclear Energy ......................................................... 67 6.3.1 AECL ......................................................................................................... 67 6.3.2 Nuclear Power Companies and the CANDU Owners Group.............................. 68 6.3.3 Universities ................................................................................................ 69 6.4 Research and Development on Nuclear Medicine....................................................... 70 6.4.1 AECL ......................................................................................................... 70 6.4.2 NRC .........................................................................................................
Recommended publications
  • Inventory of Rad Waste in Canada 2012.Qxd
    Inventory of Radioactive Waste in Canada Low-Level Radioactive Waste Management Office Ottawa, Canada 2012 Inventory of Radioactive Waste in Canada March 2012 LLRWMO-01613-041-10003 CC3-1/2012 978-1-100-54191-4 Inventory of Radioactive Waste in Canada Low-Level Radioactive Waste Management Office 1900 City Park Drive, Suite 200 Ottawa, Ontario Canada K1J 1A3 Inventory of Radioactive Waste in Canada Executive Summary This report presents the inventory of radioactive waste in Canada to the end of 2010. It is intended to provide an overall review on the production, accumulation and projections of radioactive waste in Canada. The data presented in this report has been gathered from many sources including regulatory documents, published reports and supplemental information provided by the nuclear regulator, waste producers and waste management facilities. Radioactive waste has been produced in Canada since the early 1930s when the first radium mine began operating at Port Radium in the Northwest Territories. Radium was refined for medical use and uranium was later processed at Port Hope, Ontario. Research and development on the application of nuclear energy to produce electricity began in the 1940s at the Chalk River Laboratories (CRL) of Atomic Energy of Canada Limited (AECL). At present, radioactive waste is generated in Canada from: uranium mining, milling, refining and conversion; nuclear fuel fabrication; nuclear reactor operations; nuclear research; and radioisotope manufacture and use. Radioactive waste is primarily grouped into three categories: nuclear fuel waste, low- and intermediate-level radioactive waste, and uranium mining and milling waste. In accordance with Canada’s Radioactive Waste Policy Framework, the owners of radioactive waste are responsible for the funding, organization, management and operation of long-term waste management facilities required for their waste.
    [Show full text]
  • CHAPTER 13 Reactor Safety Design and Safety Analysis Prepared by Dr
    1 CHAPTER 13 Reactor Safety Design and Safety Analysis prepared by Dr. Victor G. Snell Summary: The chapter covers safety design and safety analysis of nuclear reactors. Topics include concepts of risk, probability tools and techniques, safety criteria, design basis accidents, risk assessment, safety analysis, safety-system design, general safety policy and principles, and future trends. It makes heavy use of case studies of actual accidents both in the text and in the exercises. Table of Contents 1 Introduction ............................................................................................................................ 6 1.1 Overview ............................................................................................................................. 6 1.2 Learning Outcomes............................................................................................................. 8 1.3 Risk ...................................................................................................................................... 8 1.4 Hazards from a Nuclear Power Plant ................................................................................ 10 1.5 Types of Radiation in a Nuclear Power Plant.................................................................... 12 1.6 Effects of Radiation ........................................................................................................... 12 1.7 Sources of Radiation ........................................................................................................
    [Show full text]
  • In the Red: the Green Behind Nuclear Power
    In the Red: The Green Behind Nuclear Power By Heath Packman Saskatchewan Office Suite G – 2835 13th Avenue Regina, SK S4T 1N6 www.policyalternatives.ca In the Red: The Green Behind Nuclear Power By Heath Packman July 2010 About the Author i>Ì Ê*>V>Ê `ÃÊ`i}ÀiiÃÊvÀÊÌ iÊ1ÛiÀÃÌÞÊvÊ,i}>ÊÊ VVÃÊ>`ÊÃÌÀÞ°ÊÊÜÀÌiÀÊ>`Ê ÀiÃi>ÀV iÀÊvÊ«ÕLVÊ«VÞ]Êi>Ì ÊëiÌÊÃÝÊÞi>ÀÃÊÜÀ}Ê>}Ã`iÊÌ iÊiÞÊÃÌiÀÃÊvÊÌ iÊ >ÛiÀÌÊ >`ÃÌÀ>ÌÊÊÌ iÊÃÌÀiÃÊvÊ`ÕÃÌÀÞ]Ê>Vi]Ê>`Ê`Û>Vi`Ê `ÕV>ÌÊ>`Ê/À>}° Acknowledgements / iÊ>ÕÌ ÀÊÃÊÃViÀiÞÊ}À>ÌivÕÊÌÊÌ iÊ >>`>Ê iÌÀiÊvÀÊ*VÞÊÌiÀ>ÌÛiÃÊvÀÊÃÕ««ÀÌ}ÊÌ iÊ ÊÜÀÌ}ÊvÊÌ ÃÊÀi«ÀÌ°Ê/ >ÃÊÌÊ-Ê V ]Ê ÀiVÌÀÊvÊÌ iÊ >>`>Ê iÌÀiÊvÀÊ*VÞÊÌiÀ>ÌÛi]Ê ->Ã>ÌV iÜ>]ÊvÀÊ ÃÊ>ÃÃÃÌ>ViÊÊ«ÀÛ`}Ê}Õ`>Vi]ÊÌÀiiÃÃÊvii`L>VÊ>`ÊÛiÀ>Ê`ÀiVÌ°Ê-«iV>Ê Ì >ÃÊÌÊÌ iÊ>ÞÕÃÊ«iiÀÀiÛiÜiÀÊvÀÊ>}Ê>ÞÊÕÃivÕÊÃÕ}}iÃÌÃÊÌÊvÀÌvÞÊÌ iÊ«>«iÀÊ>`Ê ÃÌÀi}Ì iÊÌÃÊ>ðÊ/ iÊ>ÕÌ ÀÊÜÕ`Ê>ÃÊiÊÌÊ«iÀÃ>ÞÊÌ >ÊÀ>ÃiÀÊ ii` >Ê>`Ê>ÀÊ «iÀÊ vÀÊÌ iÀÊ«>ÀÌ>ÊÀiÛiÜÊ>`Ê>>ÞÃÃÊvÊ`À>vÌÃ]Ê>`Êw>ÞÊÌ iÊ i«vÕÊ}Õ`>ViÊvÊ*iÌiÀÊ*ÀiLLi° / ÃÊ«ÕLV>ÌÊÃÊ>Û>>LiÊÕ`iÀÊÌi`ÊV«ÞÀ} ÌÊ«ÀÌiVÌ°Ê9ÕÊ>ÞÊ`Ü>`]Ê`ÃÌÀLÕÌi]Ê« Ì V«Þ]ÊVÌiÊÀÊiÝViÀ«ÌÊÌ ÃÊ`VÕiÌÊ«ÀÛ`i`ÊÌÊÃÊ«À«iÀÞÊ>`ÊvÕÞÊVÀi`Ìi`Ê>`ÊÌÊÕÃi`ÊvÀÊViÀV>Ê Ê«ÕÀ«ÃiðÊ/ iÊ«iÀÃÃÊvÊ *ÊÃÊÀiµÕÀi`ÊvÀÊ>ÊÌ iÀÊÕÃiÃ°Ê *ÀÌi`ÊV«iÃ\Êf£x°ää - ÊÇn£ÓÈnnnäÇ£ *i>ÃiÊ>iÊ>Ê`>ÌÊiÊ>ÌÊwww.policyalternatives.ca ÀÊV>ÊÌ iÊ *Ê >Ì>Ê"vwViÊÈ£ÎxÈΣÎ{£Ê ÀÊÎäÈÓ{ÎÎÇÓÊ->Ã>ÌV iÜ>Ê *°Ê>}Ê>Ê`>ÌÊÀÊLiV}Ê>ÊiLiÀÊvÊ *Ê i«ÃÊÕÃÊÌÊ VÌÕiÊÌÊ«ÀÛ`iÊ«i«iÊÜÌ Ê>VViÃÃÊÌÊÕÀÊÀiÃi>ÀV ÊvÀiiÊvÊV >À}i° ÓÊUÊ *ÊqÊ->Ã>ÌV iÜ>Ê"vwViÊ ÊÌ iÊ,i`\Ê/ iÊÀiiÊ i `Ê ÕVi>ÀÊ*ÜiÀ]ÊÕÞÊÓä£ä Contents ÌÀ`ÕVÌÊ°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°° { ÊÌ iÊ,i`\Ê/ iÊÀiiÊ i `Ê ÕVi>ÀÊ*ÜiÀÊ°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°
    [Show full text]
  • To Read Report
    McMaster Nuclear Reactor McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1 NPROL-01.01/2024 Annual Compliance Monitoring and Operational Performance 2018 Summary Data for Public Information Approved/Issued by: Christopher Heysel, P. Eng, Director Nuclear Operations & Facilities McMaster University, Nuclear Research Bldg., Room A332 Hamilton, Ontario L8S 4K1 Tel: 905 525-9140 ext. 23278 [email protected] Annual Compliance Monitoring & Operational Performance 2018 Executive Summary The McMaster Nuclear Reactor (MNR) was operated safely, securely and effectively in 2018. MNR continued to support the educational and research goals of the University throughout the year specifically in the areas of nuclear science, environmental science, medical and health physics, engineering physics, health sciences, radio‐chemistry, bio‐chemistry and radiation biology. The costs associated with the safe and secure operation and maintenance of the facility were offset through a variety of irradiation services and medical isotope production activities. Reactor availability was 79.6% with no major unplanned outages taking place during the year. There were no lost time injuries, near misses or major safety findings in 2018. Doses to workers and releases to the environment remained ALARA throughout the year. Specific radiological and environmental safety goals were met or exceeded in 2018. As part of MNR’s outreach program more than 2000 visitors toured through the facility in 2018. Many visitors were students from local high schools and universities who were given the unique experience of seeing the “blue glow” of an operating reactor core and an introduction to nuclear sciences. Major activities scheduled for 2019 will include further commissioning of beam line for the McMaster Intense Positron Beam Facility (MIPBF) and instrument installation support for the McMaster University Small Angle Neutron Scattering (SANS) facility.
    [Show full text]
  • Atomic Energy of Canada Limited BUCKLINGS of HEAVY WATER
    B Atomic Energy of Canada Limited BUCKLINGS OF HEAVY WATER MODERATED LATTICES OF ZEEP RODS by r.N. MCDONNELL and A. OKAZAKI Chofk River, Ontario September 197! AECL-3998 BUCKLINGS OF HEAVY WATER MODERATED LATTICES OF ZEEP RODS By *F.N. McDonnell and A. Okazaki Reactor Physics Branch * NRC Post-Doctorate Fellow attached to Reactor Physics Branch. ABSTRACT The bucklings of heavy water moderated lattices of ZEEP rods (3.25 cm diameter natural U metal contained in aluminum tubes) were measured by the flux mapping method in the ZED-2 reactor. The isotopic composition of trie moderator was 99.46 atom percent D2O. The bucklings, corrected for the 0.34 atom percent difference in isotopic composition, are in excellent ag.eement with earlier measurements made in the ZEEP reactor. Chalk River Nuclear Laboratories Chalk River, Ontario September, 1971 AECL-3998 Laplaciens de réseaux de barres ZEEP modérés par eau lourde par F.N. McDonnell* et A. Okazaki** •Boursier Post-Doctorat du Conseil National de Recherches détaché à la Sous-Division de Physique des réacteurs **Sous-Division de Physique des réacteurs Résumé Les iaplaciens des réseaux de barres ZEEP modérés par eau lourde (barreaux d'uranium naturel métallique ayant 3,25 cm de diamètre et gainés dans des tubes d'aluminium) ont été mesurés par la méthode du cadrage du flux dans le réacteur ZED-2. La composition isotopique du modérateur était de 99j46% atomes de D-0. Les laplaciens, corrigés pour la différence de 0,34% atomes dans la composition isotopique, sont en excellent accord avec les mesures précédentes effectuées dans le réacteur ZEEP.
    [Show full text]
  • Written Submission from the Whiteshell Laboratories Public
    CMD 19-H4.3 File / dossier : 6.01.07 Date: 2019-09-02 Edocs: 5984562 Written submission from the Mémoire du Whiteshell Laboratories Public Whiteshell Laboratories Public Liaison Committee Liaison Committee In the Matter of the À l’égard de Whiteshell Laboratories Laboratoires de Whiteshell Application to renew the Nuclear Research Demande pour le renouvellement, pour une and Test Establishment Decommissioning période de dix ans, du permis de déclassement Licence for the Whiteshell Laboratories site d’un établissement de recherche et d’essais for a period of ten years nucléaires pour les Laboratoires de Whiteshell Commission Public Hearing Audience publique de la Commission October 2-3, 2019 Les 2 et 3 octobre 2019 This page was intentionally Cette page a été intentionnellement left blank laissée en blanc August 19, 2019 Canadian Nuclear Safety Commission 280 Slater Street, P.O. Box 1046, Station B Ottawa, ON K1P 5S9 RE: Application from Canadian Nuclear Laboratories Ltd. (CNL) to renew its Nuclear Research and Test Establishment Decommissioning Licence (NRTEDL) for the Whiteshell Laboratories (WL) The Public Liaison Committee (PLC) offers this letter as documentation of the committee’s awareness and involvement in the CNL application to renew its Nuclear Research and Test Establishment Decommissioning Licence (NRTEDL) for the Whiteshell Laboratories (WL). The committee has been in place since 2003 to facilitate two-way communication and consultation with surrounding communities and stakeholders. The committee meets approximately two times a year and includes the following representatives: Acsion Industries Inc.; RM of Lac du Bonnet; Town of Beausejour; Town of Lac du Bonnet; RM of Whitemouth; RM of Brokenhead; The Local Government District of Pinawa; Powerview/Pine Falls; RM of Alexander; Manitoba Sustainable Development (formerly Manitoba Conservation and Water Stewardship).
    [Show full text]
  • Canadawest in the International Arena FOUNDAT ION GOING for GOLD Western Canada’S Economic Prosperity Is Not Only Good for the West, but for Canada As a Whole
    GOING FOR GOLD The Western Canadian Economy Prairiein the International Atoms: Arena The Opportunities and Challenges of Nuclear Power in Alberta and Saskatchewan Duane Bratt, PhD September 2008 GOING FOR GOLD The Western Canadian Economy CanadaWest in the International Arena FOUNDAT ION GOING FOR GOLD Western Canada’s economic prosperity is not only good for the West, but for Canada as a whole. But the West can not rest on its laurels. Like the athletes training for the forthcoming Winter Olympics in Vancouver, western Canada needs to be at the top of its game if it is to continue to compete successfully in the international economic arena, especially as its competitors step up their games. If we are not successful, our standard of living will fall. The Going For Gold Project is examining how best to position western Canada in the global economy through a series of research papers, provincial research roundtables, public opinion and expert surveys, and will end with a seminal international economic conference in Vancouver in the fall of 2009. Funding for the Going for Gold Project has been provided by the Provinces of British Columbia (Economic Development), Alberta (Employment, Immigration and Industry), Saskatchewan (Enterprise and Innovation), and Manitoba (Competitiveness, Training and Trade). This paper was prepared by Dr. Duane Bratt, Department of Policy Studies, Mount Royal College. The paper is part of the Canada West Foundation’s Going for Gold Project Research Paper Series. A total of 12 research papers have been commissioned. Each paper examines a key issue related to improving western Canada’s ability to compete and win in the global economy over the long-term.
    [Show full text]
  • Research Branch
    CA9600028 Background Paper BP-365E THE CANADIAN NUCLEAR POWER INDUSTRY Alan Nixon Science and Technology Division December 1993 Library of Parliament Research Bibliothèque du Parlement Branch The Research Branch of the Library of Parliament works exclusively for Parliament conducting research and providing information for Committees and Members of the Senate and the House of Commons. This service is extended without partisan bias in such forms as Reports, Background Papers and Issue Reviews. Research Officers in the Branch are also available for personal consultation in their respective fields of expertise. ©Minister of Supply and Services Canada 1994 Available in Canada through your local bookseller or by mail from Canada Communication Group -- Publishing Ottawa, Canada K1A 0S9 Catalogue No. YM32-2/365E ISBN 0-660-15639-3 CE DOCUMENT EST AUSSI PUBUÉ EN FRANÇAIS LIBRARY OF PARLIAMENT BIBLIOTHÈQUE OU PARLEMENT TABLE OF CONTENTS Page EARLY CANADIAN NUCLEAR DEVEOPMENT 2 THE CANDU REACTOR 4 NUCLEAR POWER GENERATION IN CANADA 5 A. Background 5 B. Performance 6 C. Pickering Nuclear Generating Station 8 D. Bruce Nuclear Generating Station 9 1. Retubing 9 2. Pressure Tube Frets 10 3. Shut Down System Design Flaw 12 4. Steam Generators 12 E. Darlington 13 1. Start-up Problems 13 2. Costs 14 AECL 15 A. Introduction 15 B. CANDU-Design and Marketing 16 1. Design 16 2. Marketing 17 a. Export Markets 17 b. Domestic Market ! 18 C. AECL Research 19 D. Recent Developments 20 OUTLOOK 21 * CANADA LIBRARY OF PARLIAMENT BIBLIOTHÈQUE DU PARLEMENT THE NUCLEAR POWER INDUSTRY IN CANADA Nuclear power, the production of electricity from uranium through nuclear fission, is by far the most prominent segment of the nuclear industry.
    [Show full text]
  • The Nuclear Sector at a Crossroads: Fostering Innovation and Energy Security for Canada and the World
    THE NUCLEAR SECTOR AT A CROSSROADS: FOSTERING INNOVATION AND ENERGY SECURITY FOR CANADA AND THE WORLD Report of the Standing Committee on Natural Resources James Maloney Chair JUNE 2017 42nd PARLIAMENT, 1st SESSION Published under the authority of the Speaker of the House of Commons SPEAKER’S PERMISSION Reproduction of the proceedings of the House of Commons and its Committees, in whole or in part and in any medium, is hereby permitted provided that the reproduction is accurate and is not presented as official. This permission does not extend to reproduction, distribution or use for commercial purpose of financial gain. Reproduction or use outside this permission or without authorization may be treated as copyright infringement in accordance with the Copyright Act. Authorization may be obtained on written application to the Office of the Speaker of the House of Commons. Reproduction in accordance with this permission does not constitute publication under the authority of the House of Commons. The absolute privilege that applies to the proceedings of the House of Commons does not extend to these permitted reproductions. Where a reproduction includes briefs to a Standing Committee of the House of Commons, authorization for reproduction may be required from the authors in accordance with the Copyright Act. Nothing in this permission abrogates or derogates from the privileges, powers, immunities and rights of the House of Commons and its Committees. For greater certainty, this permission does not affect the prohibition against impeaching or questioning the proceedings of the House of Commons in courts or otherwise. The House of Commons retains the right and privilege to find users in contempt of Parliament if a reproduction or use is not in accordance with this permission.
    [Show full text]
  • Th, PU)02 BENCHMARK EXPERIMENTS in ZED-2 SENSITIVITY and UNCERTAINTY ANALYSIS OF
    TSUNAMI ANALYSIS OF (Th, PU)02 BENCHMARK EXPERIMENTS IN ZED-2 SENSITIVITY AND UNCERTAINTY ANALYSIS OF (Th, PU)02 BENCHMARK EXPERIMENTS IN ZED-2 USING TSUNAMI BY TING ZHU, B.A.Sc. A THESIS SUBMITTED TO THE DEPARTMENT OF ENGINEERING PHYSICS AND THE SCHOOL OF GRADUATE STUDIES OF MCMASTER UNIVERSITY IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF ApPLIED SCIENCE © Copyright by Ting Zhu, March 2011 Master of Applied Science (2011) McMaster University (Engineering Physics) Hamilton, Ontario, Canada TITLE: Sensitivity and Uncertainty Analysis of (Th, Pu)Oz Benchmark Experiments in ZED-2 Using TSUNAMI AUTHOR: Ting Zhu Bachelor of Applied Science in Engineering Sci­ ence (Physics) University of Toronto, Toronto, Canada SUPERVISOR: Dr. Adriaan Buijs NUMBER OF PAGES: x,88 ii Abstract In 1984, the ZED-2 research reactor was used to study five (Th, Pu)Oz fuel bundles with the goal to provide both benchmark tests for future reactor code validation and experimental measurements for a possible thorium fuel cycle in CANDU. In this work, the neutronic models of these critical exper­ iments were investigated by TSUNAMI, a sensitivity and uncertainty (SjU) analysis tool, part of the SCALE6 reactor physics package from the Oak Ridge National Laboratory. TSUNAMI consists of different modules that are capable of calculating the values of keff and the uncertainties in keff due to uncertainties in the nu­ clear data. It generates energy-dependent sensitivity coefficients from which the percentage change in keff due to perturbations in nuclear data values can be determined. The calculated keff has a bias which is the difference between calculation and measurement.
    [Show full text]
  • Tering Distributions Using MCNP Simulations of Critical Measurements and Simplified Calculation Benchmarks K.S
    International Conference on Nuclear Data for Science and Technology 2007 DOI: Assessment of evaluated (n,d) energy-angle elastic scat- tering distributions using MCNP simulations of critical measurements and simplified calculation benchmarks K.S. Kozier Atomic Energy of Canada Limited, Chalk River Laboratories, Chalk River, Ontario, Canada, K0J 1J0 Abstract. Different evaluated (n,d) energy-angle elastic scattering distributions produce k-effective differences in MCNP5 simulations of critical experiments involving heavy water (D2O) of sufficient magnitude to suggest a need for new (n,d) scattering measurements and/or distributions derived from modern theoretical nuclear models, especially at neutron energies below a few MeV. The present work focuses on the small reactivity change of <1 mk that is observed in the MCNP5 D2O coolant-void-reactivity calculation bias for simulations of two pairs of critical experiments performed in the ZED-2 reactor at the Chalk River Laboratories when different nuclear data libraries are used for deuterium. The deuterium data libraries tested include ENDF/B-VII.0, ENDF/B-VI.4, JENDL-3.3 and a new evaluation, labelled Bonn-B, which is based on recent theoretical nuclear-model calculations. Comparison calculations were also performed for a simplified, two-region, spherical model having an inner, 250-cm radius, homogeneous sphere of UO2, without and with deuterium, and an outer 20-cm-thick deuterium reflector. 1 Introduction The present work focuses on the sensitivity of the ZED-2 MCNP5 CVR calculation bias to
    [Show full text]
  • Nuclear in Canada NUCLEAR ENERGY a KEY PART of CANADA’S CLEAN and LOW-CARBON ENERGY MIX Uranium Mining & Milling
    Nuclear in Canada NUCLEAR ENERGY A KEY PART OF CANADA’S CLEAN AND LOW-CARBON ENERGY MIX Uranium Mining & Milling . Nuclear electricity in Canada displaces over 50 million tonnes of GHG emissions annually. Electricity from Canadian uranium offsets more than 300 million tonnes of GHG emissions worldwide. Uranium Processing – Re ning, Conversion, and Fuel Fabrication Yellowcake is re ned at Blind River, Ontario, PELLETS to produce uranium trioxide. At Port Hope, Ontario, Nuclear Power Generation and Nuclear Science & uranium trioxide is At plants in southern Technology TUBES converted. URANIUM DIOXIDE Ontario, fuel pellets are UO2 is used to fuel CANDU loaded into tubes and U O UO URANIUM Waste Management & Long-term Management 3 8 3 nuclear reactors. assembled into fuel YUKON TRIOXIDE UO2 Port Radium YELLOWCAKE REFINING URANIUM bundles for FUEL BUNDLE Shutdown or Decommissioned Sites TRIOXIDE UF is exported for 6 CANDU reactors. UO enrichment and use Rayrock NUNAVUT 3 CONVERSION UF Inactive or Decommissioned Uranium Mines and 6 in foreign light water NORTHWEST TERRITORIES Tailings Sites URANIUM HEXAFLUORIDE reactors. 25 cents 400 kg of COAL Beaverlodge, 2.6 barrels of OIL Gunnar, Lorado NEWFOUNDLAND AND LABRADOR McClean Lake = 3 Cluff Lake FUEL PELLET Rabbit Lake of the world’s 350 m of GAS BRITISH COLUMBIA Cigar Lake 20% McArthur River production of uranium is NVERSION Key Lake QUEBEC CO mined and milled in northern FU EL ALBERTA SASKATCHEWAN MANITOBA F Saskatchewan. AB G R University of IN IC ONTARIO P.E.I. IN A Saskatchewan The uranium mining F T E IO 19 CANDU reactors at Saskatchewan industry is the largest R N TRIUMF NEW BRUNSWICK Research Council NOVA SCOTIA private employer of Gentilly-1 & -2 Whiteshell Point Lepreau 4 nuclear power generating stations Rophton NPD Laboratories Indigenous people in CANDU REACTOR Chalk River Laboratories Saskatchewan.
    [Show full text]