Aggregate Road Surface Rejuvenation

Total Page:16

File Type:pdf, Size:1020Kb

Aggregate Road Surface Rejuvenation Aggregate Road Surface Rejuvenation Charles Jahren, Principal Investigator Department of Civil, Construction, and Environmental Engineering Construction Management and Technology, Institute for Transportation Iowa State University April 2015 Research Project Final Report 2015-04 To request this document in an alternative format call 651-366-4718 or 1-800-657-3774 (Greater Minnesota) or email your request to [email protected]. Please request at least one week in advance. Technical Report Documentation Page 1. Report No. 2. 3. Recipients Accession No. MN/RC 2015-04 4. Title and Subtitle 5. Report Date Aggregate Road Surface Rejuvenation April 2015 6. 7. Author(s) 8. Performing Organization Report No. Charles Jahren and Ziliang Zhang 9. Performing Organization Name and Address 10. Project/Task/Work Unit No. Institute for Transportation Iowa State University 11. Contract (C) or Grant (G) No. 2711 S. Loop Drive, Suite 4700 (c) 99004 (wo) 10 Ames, Iowa 50011-8664 12. Sponsoring Organization Name and Address 13. Type of Report and Period Covered Minnesota Department of Transportation Final Report Research Services & Library 14. Sponsoring Agency Code 395 John Ireland Boulevard, MS 330 St. Paul, Minnesota 55155-1899 15. Supplementary Notes http://www.lrrb.org/pdf/201504.pdf 16. Abstract (Limit: 250 words) Aggregate surfaced roads become coarser and coarser after a few years of service due to an inherent problem—dust emission. Fines in the surfacing material are kicked up by traffic and blown away by the wind as fugitive dust. One of the alternative rejuvenation methods is to replenish the missing fines to restore the gradation and plasticity of the in situ material. Savings in the material and cost could in return benefit the environment and financial condition of the jurisdiction. Control and experimental test sections were established in three counties of Minnesota and performance of the sections were assessed using methods including cross-section profile change surveys, gravel loss and loose aggregate measurements, gravel road condition ratings, International Roughness Index estimation, and field observations. Experimental sections in Jackson County did not perform satisfactorily. However, one of the test sections in Beltrami County performed favorably well. A five-year-cycle benefit-cost analysis revealed that a 20 percent cost savings was also achievable in that particular section. Another trial in Olmsted County tested whether modified Class 5 limestone aggregate is appropriate for gravel road surfacing. 17. Document Analysis/Descriptors 18. Availability Statement aggregate gradation, aggregate resurfacing, resurfacing, No restrictions. Document available crusher dust, fines (materials), gravel roads, gravel road from: National Technical Information maintenance, plasticity Services, Alexandria, Virginia 22312 19. Security Class (this report) 20. Security Class (this page) 21. No. of Pages 22. Price Unclassified Unclassified 130 Aggregate Road Surface Rejuvenation Final Report Prepared by: Charles Jahren Ziliang Zhang Department of Civil, Construction, and Environmental Engineering Construction Management and Technology, Institute for Transportation Iowa State University April 2015 Published by: Minnesota Department of Transportation Research Services & Library 395 John Ireland Boulevard, MS 330 St. Paul, Minnesota 55155 This report represents the results of research conducted by the authors and does not necessarily represent the views or policies of the Local Road Research Board (LRRB), the Minnesota Department of Transportation, and Iowa State University. This report does not contain a standard or specified technique. The authors, the Local Road Research Board (LRRB), the Minnesota Department of Transportation, and Iowa State University do not endorse products or manufacturers. Any trade or manufacturers’ names that may appear herein do so solely because they are considered essential to this report. Acknowledgments The researchers would like to acknowledge the Local Road Research Board (LRRB) and the Minnesota Department of Transportation (MnDOT) for sponsoring this project. The authors also want to thank the technical advisory panel (TAP) members and the various county personnel who have assisted on this project. Table of Contents 1. INTRODUCTION ...................................................................................................................... 1 Problem Statement .............................................................................................................. 1 Background ......................................................................................................................... 1 Research Approach ............................................................................................................. 2 Research Objectives ............................................................................................................ 2 Final Report Content ........................................................................................................... 2 2. LITERATURE REVIEW ........................................................................................................... 4 Surfacing Material Properties ............................................................................................. 4 Surfacing Blending Equipment and Methods ..................................................................... 4 3. RESEARCH OVERVIEW ......................................................................................................... 8 Jackson County CR 76 Test Section Layout....................................................................... 9 Beltrami County CR 23 Test Section Layout ................................................................... 11 Olmsted County CR 115 Test Section Layout .................................................................. 13 Traffic Volumes for the Test Sections .............................................................................. 14 4. RESEARCH METHODOLOGY, FIELD DATA COLLECTION, AND TEST SITE OBSERVATIONS ........................................................................................................................ 15 Laboratory Testing ............................................................................................................ 15 Field Data Collection ........................................................................................................ 15 Preconstruction Observations ........................................................................................... 19 Construction Observations ................................................................................................ 22 Maintenance Activity Timetables ..................................................................................... 30 5. RESULTS ................................................................................................................................. 31 Soil Composition Comparison .......................................................................................... 31 Jackson County ................................................................................................................. 32 Beltrami County ................................................................................................................ 39 Olmsted County ................................................................................................................ 50 Chapter Summary ............................................................................................................. 61 6. ECONOMIC ANALYSIS ........................................................................................................ 64 Cost Comparison Analysis ................................................................................................ 64 Cost Comparison Results .................................................................................................. 64 Benefit-Cost Analysis ....................................................................................................... 65 7. PERFORMANCE SUMMARIES ............................................................................................ 67 Jackson County CR 76 ...................................................................................................... 67 Beltrami County CR 23 .................................................................................................... 67 Olmsted County CR 115 ................................................................................................... 68 8. CONCLUSIONS AND RECOMMENDATIONS ................................................................... 69 REFERENCES ............................................................................................................................. 70 APPENDIX A. GRADATION RAW DATA APPENDIX B. CROSS-SECTION PROFILES APPENDIX C. STATISTICAL ANALYSIS RESULTS • Comparison of Multiple Curves • Paired t-Test Result APPENDIX D. UNPAVED ROAD CONDITION RATING SYSTEM (BELTRAMI COUNTY EXAMPLE) APPENDIX E. CONDITION RATING GRAPHS • Beltrami County CR 23 Test Section Comparisons • Jackson County CR 76 Test Section Comparisons • Olmsted County CR 115 Test Section Comparisons APPENDIX F. MATERIAL, LABOR, AND EQUIPMENT COSTS • Beltrami County CR 23 • Jackson County CR 76 • Olmsted County CR 115 APPENDIX G. AGGREGATE SAMPLE ORIGIN MAP APPENDIX H. SOIL CLASSIFICATIONS FOR 19 SAMPLE PAIRS APPENDIX I. INDEPENDENT
Recommended publications
  • PAVEMENT MANAGEMENT STUDY Templeton, MA
    PAVEMENT MANAGEMENT STUDY Templeton, MA Prepared by Stantec Date: September 2018 2 Stantec TABLE OF CONTENTS 1. INTRODUCTION 1 BACKGROUND 2 PAVEMENT MANAGEMENT CONCEPTS 3 STUDY APPROACH 5 2. METHODOLOGY 7 Pavement Management Software 8 The Pavement Condition Index (PCI) Defined 10 The Five Treatment Repair Bands 10 Priority Ranking and Future Projection 12 3. EXISTING CONDITIONS 15 Road Mileage and Current Pavement Condition Index (PCI) 16 Distribution of Pavement Conditions 21 Current Roadway Backlog 22 4. MODEL/PLANNING PROCESS 25 Budget Analysis 26 Scenario Findings 27 Zero Budget 28 Historical Budget (Worst-First) 29 Historical Budget (Pavement Management Strategy) 30 Equilibrium Funding Scenario 32 Progressive Funding Scenario 34 5. CONCLUSION 37 Recommended Plan of Action 38 Future Pavement Management 40 APPENDIX A. Templeton’s Public Roadway Backlog B. Repair Alternatives And Unit Costs C. Glossary D. Town-wide Pavement Conditions Map PAVEMENT MANAGEMENT STUDY Templeton, MA 3 TABLES 1. (PCI) Treatment Band Ranges 11 2. Zero Budget 28 3. Historical Budget (Worst First) 29 4. Historical Budget (Pavement Management Strategy) 31 5. Maintain PCI Funding Scenario 33 6. Progressive Funding Scenario 34 4 Stantec FIGURES 1. Pavement Deterioration Curve 4 2. PCI Distribution in Miles by Treatment Band 21 3. Dollar Backlog of Outstanding Repairs 22 4. Dollar Backlog Distribution vs. Dollar Budget Allocation 30 5. PCI Histogram of Network Conditions 32 6. Average PCI of Roadway Funding Scenarios 35 7. Dollar Backlog of Roadway Funding Scenarios 35 PAVEMENT MANAGEMENT STUDY Templeton, MA 5 SECTION NAME INTRODUCTION 1 BACKGROUND The Town of Templeton is located in Worcester County, Massachusetts which straddles Route 2 and comprises four main villages: Templeton Center, East Templeton, Baldwinville, and Otter River.
    [Show full text]
  • City Maintained Street Inventory
    City Maintained Streets Inventory DATE APPROX. AVG. STREET NAME ACCEPTED BEGINNING AT ENDING AT LENGTH WIDTH ACADEMYText0: ST Text6: HENDERSONVLText8: RD BROOKSHIREText10: ST T0.13 Tex20 ACADEMYText0: ST EXT Text6: FERNText8: ST MARIETTAText10: ST T0.06 Tex17 ACTONText0: WOODS RD Text6:9/1/1994 ACTONText8: CIRCLE DEADText10: END T0.24 Tex19 ADAMSText0: HILL RD Text6: BINGHAMText8: RD LOUISANAText10: AVE T0.17 Tex18 ADAMSText0: ST Text6: BARTLETText8: ST CHOCTAWText10: ST T0.16 Tex27 ADAMSWOODText0: RD Text6: CARIBOUText8: RD ENDText10: OF PAVEMENT T0.16 Tex26 AIKENText0: ALLEY Text6: TACOMAText8: CIR WESTOVERText10: ALLEY T0.05 Tex12 ALABAMAText0: AVE Text6: HANOVERText8: ST SWANNANOAText10: AVE T0.33 Tex24 ALBEMARLEText0: PL Text6: BAIRDText8: ST ENDText10: MAINT T0.09 Tex18 ALBEMARLEText0: RD Text6: BAIRDText8: ST ORCHARDText10: RD T0.2 Tex20 ALCLAREText0: CT Text6: ENDText8: C&G ENDText10: PVMT T0.06 Tex22 ALCLAREText0: DR Text6: CHANGEText8: IN WIDTH ENDText10: C&G T0.17 Tex18 ALCLAREText0: DR Text6: SAREVAText8: AVE CHANGEText10: IN WIDTH T0.18 Tex26 ALEXANDERText0: DR Text6: ARDIMONText8: PK WINDSWEPTText10: DR T0.37 Tex24 ALEXANDERText0: DR Text6: MARTINText8: LUTHER KING WEAVERText10: ST T0.02 Tex33 ALEXANDERText0: DR Text6: CURVEText8: ST ARDMIONText10: PK T0.42 Tex24 ALLENText0: AVE 0Text6:/18/1988 U.S.Text8: 25 ENDText10: PAV'T T0.23 Tex19 ALLENText0: ST Text6: STATEText8: ST HAYWOODText10: RD T0.19 Tex23 ALLESARNText0: RD Text6: ELKWOODText8: AVE ENDText10: PVMT T0.11 Tex22 ALLIANCEText0: CT 4Text6:/14/2009 RIDGEFIELDText8:
    [Show full text]
  • Pavements and Surface Materials
    N O N P O I N T E D U C A T I O N F O R M U N I C I P A L O F F I C I A L S TECHNICAL PAPER NUMBER 8 Pavements and Surface Materials By Jim Gibbons, UConn Extension Land Use Educator, 1999 Introduction Traffic Class Type of Road Pavements are composite materials that bear the weight of 1 Parking Lots, Driveways, Rural pedestrian and vehicular loads. Pavement thickness, width and Roads type should vary based on the intended function of the paved area. 2 Residential Streets 3 Collector Roads Pavement Thickness 4 Arterial roads 5 Freeways, Expressways, Interstates Pavement thickness is determined by four factors: environment, traffic, base characteristics and the pavement material used. Based on the above classes, pavement thickness ranges from 3" for a Class 1 parking lot, to 10" or more for Class 5 freeways. Environmental factors such as moisture and temperature significantly affect pavement. For example, as soil moisture Sub grade strength has the greatest effect in determining increases the load bearing capacity of the soil decreases and the pavement thickness. As a general rule, weaker sub grades require soil can heave and swell. Temperature also effects the load thicker asphalt layers to adequately bear different loads associated bearing capacity of pavements. When the moisture in pavement with different uses. The bearing capacity and permeability of the freezes and thaws, it creates stress leading to pavement heaving. sub grade influences total pavement thickness. There are actually The detrimental effects of moisture can be reduced or eliminated two or three separate layers or courses below the paved wearing by: keeping it from entering the pavement base, removing it before surface including: the sub grade, sub base and base.
    [Show full text]
  • Brick Streets Plan
    BRICK STREETS PLAN City of Rock Island Community & Economic Development Department Planning & Redevelopment Division Rock Island Preservation Commission Adopted 1988 by Rock Island City Council Amended: January 23, 2012 August 22, 2011 March 28, 2005 April 10, 2000 May 12, 1997 September 14, 1992 Rock Solid. Rock Island. 1899 - The first brick pavement was laid in the Tri-Cities on the corner of Twentieth Street and Second Avenue, Rock Island. The first brick was placed by Mayor William McConochie. Civil Engineer for the project was H.G. Paddock. -- From Historical Souvenir of Moline and Vicinity, 1909 TABLE of CONTENTS Executive Summary ..................................................................................... 3 Prioritization List ........................................................................................... 5 Map of Brick Streets ..................................................................................... 6 Methodology ................................................................................................ 9 History of Brick Street Construction in Rock Island ...................................... 10 Condition of Brick Streets ............................................................................. 13 Utilities and Brick Streets ............................................................................. 17 Street Standards .......................................................................................... 18 Owner-Occupancy Along Brick Streets .......................................................
    [Show full text]
  • PASER Manual Asphalt Roads
    Pavement Surface Evaluation and Rating PASER ManualAsphalt Roads RATING 10 RATING 7 RATING 4 RATING PASERAsphalt Roads 1 Contents Transportation Pavement Surface Evaluation and Rating (PASER) Manuals Asphalt PASER Manual, 2002, 28 pp. Introduction 2 Information Center Brick and Block PASER Manual, 2001, 8 pp. Asphalt pavement distress 3 Concrete PASER Manual, 2002, 28 pp. Publications Evaluation 4 Gravel PASER Manual, 2002, 20 pp. Surface defects 4 Sealcoat PASER Manual, 2000, 16 pp. Surface deformation 5 Unimproved Roads PASER Manual, 2001, 12 pp. Cracking 7 Drainage Manual Patches and potholes 12 Local Road Assessment and Improvement, 2000, 16 pp. Rating pavement surface condition 14 SAFER Manual Rating system 15 Safety Evaluation for Roadways, 1996, 40 pp. Rating 10 & 9 – Excellent 16 Flagger’s Handbook (pocket-sized guide), 1998, 22 pp. Rating 8 – Very Good 17 Work Zone Safety, Guidelines for Construction, Maintenance, Rating 7 – Good 18 and Utility Operations, (pocket-sized guide), 1999, 55 pp. Rating 6 – Good 19 Wisconsin Transportation Bulletins Rating 5 – Fair 20 #1 Understanding and Using Asphalt Rating 4 – Fair 21 #2 How Vehicle Loads Affect Pavement Performance Rating 3 – Poor 22 #3 LCC—Life Cycle Cost Analysis Rating 2 – Very Poor 23 #4 Road Drainage Rating 1 – Failed 25 #5 Gravel Roads Practical advice on rating roads 26 #6 Using Salt and Sand for Winter Road Maintenance #7 Signing for Local Roads #8 Using Weight Limits to Protect Local Roads #9 Pavement Markings #10 Seal Coating and Other Asphalt Surface Treatments #11 Compaction Improves Pavement Performance #12 Roadway Safety and Guardrail #13 Dust Control on Unpaved Roads #14 Mailbox Safety #15 Culverts-Proper Use and Installation This manual is intended to assist local officials in understanding and #16 Geotextiles in Road Construction/Maintenance and Erosion Control rating the surface condition of asphalt pavement.
    [Show full text]
  • Pavement Mgmt Plan Street Listing
    Town of Ashburnham Pavement Management Data 1/7/2021 Key REMINDER Town Accepted - Inspected It's important to keep the following in mind when reviewing this plan. State Roads Each fiscal year is subject to changes for any or all of the following reasons. Town Accepted - Gravel • Budget increases or decreases Town Accepted - Scenic Roads • Not receiving applied for grant monies Private • Changes to material costs RSR = Road Surface Rating • Unexpected changes to the condition of a particular road TIP = MA Transportation Improvement Program • Subject to funding allocation (Capital Plan) TOWN ACCEPTED INSPECTED Street Name Street Segment From Street RSR Repair Method Est. Cost Func. Class Estimated Action ACADEMY STREET ACADEMY ST-01 CENTRAL ST 99.23 No Maintenance Required $0.00 Local Completed ACADEMY STREET ACADEMY ST-02 PLEASANT ST N 99.23 No Maintenance Required $0.00 Local Completed AMES AVENUE AMES AVE CENTRAL ST 11.13 Major Rehabilitation $30,394.54 Local Cul De Sac/Dead End ASHBY ROAD ASHBY RD-01 CHAPEL ST 87.73 Routine Maintenance $6,852.38 Major Collector ASHBY ROAD ASHBY RD-02 STOWELL RD 89.73 Routine Maintenance $8,518.91 Major Collector ASHBY ROAD ASHBY RD-03 HOLT RD 91.73 Routine Maintenance $6,049.28 Major Collector ASHBY ROAD ASHBY RD-04 OLD ASHBY RD 96.73 No Maintenance Required $0.00 Major Collector Completed ASHBY ROAD ASHBY RD-05 OLD STEELE RD 96.73 No Maintenance Required $0.00 Major Collector Completed ASHBY ROAD ASHBY RD-06 RINGE TPKE 96.73 No Maintenance Required $0.00 Major Collector Completed BIRCHWOOD TERRACE
    [Show full text]
  • Inventory and Condition Assessment of Road Surfaces
    INVENTORY AND CONDITION ASSESSMENT OF ROAD SURFACES _____________________________ Town of Boulder Junction August 2017 Table of Contents 1. Introduction 2. Road Condition Survey 2.1 Inventory of Town Roads 2.2 Identifying Deficiencies 2.3 Condition Assessment 3. Selection of Repair Alternatives 3.1 Baseline Improvements 3.2 Repair Alternatives 4. Prioritizing the Town of Boulder Junction’s Road Repair Needs 4.1 Priority Setting Factors 4.2 Estimated Costs 4.3 Priorities of Roads Appendices Appendix A – Chip Seal Maintenance Prioritized by Year (1-5) Appendix B – Estimated Costs by Road Appendix C – Improvements (All Roads) Prioritized by Year (1-15) Appendix D – Improvements (Excluding Gravel Road Upgrades) Prioritized by Year (1-15) Appendix E – Improvements (Excluding Gravel Road Upgrades) Prioritized by Year (1-3) TOWN & COUNTRY ENGINEERING, INC. Madison Rhinelander Kenosha 2912 Marketplace Drive, Suite 103 • Madison, WI 53719 • (608) 273-3350 • [email protected] 1. Introduction Town & Country Engineering, Inc. has conducted a windshield level road surface condition survey of the Town of Boulder Junction’s 93 miles of roadway during six separate site visits. The survey was conducted along with the Town Board Chairman and a Road Improvement Committee member who provided information on each road based on historical observations concerning drainage, plowing, maintenance and other miscellaneous issues specific to each roadway. The purpose of the survey was to note observable deficiencies and areas of potential improvement, including structural and road bed improvements, safety related changes and drainage. Deficiencies vary from general drainage issues (lack of ditching) to specific areas of interest including particularly acute issues that may be able to be corrected with focused effort.
    [Show full text]
  • Road Surface Quality: What Road Users Want from Highways England November 2017 Road Surface Quality: What Road Users Want from Highways England
    Road surface quality: what road users want from Highways England November 2017 Road surface quality: what road users want from Highways England Anthony Smith Jim O’Sullivan Chief Executive Chief Executive Transport Focus Highways England Foreword ransport Focus research in 2015 showed that not something separate. They prefer asphalt roads T surface quality was road users’ top priority for to concrete ones, partly because they are quieter improvement to England’s motorways and major to drive on. ‘A’ roads1, by some margin. But what wasn’t clear Highways England believes a connected was exactly which aspects of the surface users country is better for everyone. The company works wanted to be improved and why. hard to deliver the safest, smoothest, most Transport Focus and Highways England have reliable connections possible. In 2015/2016 therefore worked together to research just that. 1471 lane miles of resurfacing was carried out Our purpose being to ensure that the views of – 23 per cent higher than the original target. those using the roads shape decision-making in But Highways England is not complacent. this area. That’s why Transport Focus and Highways England The research shows that what road users want are both using this research to help inform the is not complicated. They want a surface without Government’s second Road Investment Strategy dips, bumps, potholes, undulations or deep ruts (RIS 2), covering 2020-25. Separately, Highways – in other words continuously smooth. They also England is considering the recommendations want clearer white lines and ‘cats eyes’, which Transport Focus has made in light of this users regard as part of the surface and research.
    [Show full text]
  • Gravel Roads Maintenance & Frontrunner Training Workshop
    A Ditch In Time Gravel Roads Maintenance Workshop 1 So you think you’ve got a wicked driveway 2 1600’ driveway with four switchbacks and 175’ of elevation change (11% grade) 3 Rockhouse Development, Conway 4 5 6 Swift River (left) through National Forest into Saco River that drains the MWV Valley’s developments 7 The best material starts as solid rock that is drilled & blasted… 8 Then crushed into smaller pieces and screened to produce specific size aggregate 9 How strong should it be? One big truck = 10,000 cars! 10 11 The road surface… • Lots of small aggregate (stones) to provide strength with a shape that will lock stones together to support wheels • Sufficient “fines,” the binder that will lock the stones together, to keep the stones from moving around 12 • The stone: hard and uniform in size and more angular than that made just from screening bank run gravel 13 • A proper combination of correctly sized broken rock, sand and silt/clay soil materials will produce a road surface that hardens into a strong and stable crust that forms a reasonably impervious “roof” to our road • An improper balance- a surface that is loose, soft & greasy when wet, or excessively dusty when dry (see samples) 14 One way to judge whether gravel will pack or not… 15 Here’s another way… 16 Or: The VeryFine test The sticky palm test As shown in the Camp Roads manual 17 • “Dirty” gravel packs but does not drain • “Clean” gravel drains but does not pack 18 Other road surfacing materials: • Rotten Rock- traditional surfacing material in the Mt Washington Valley
    [Show full text]
  • Advance Traffic Markings ATM Installation Road Surface Guide
    Advance Traffic Markings ATM Installation Road Surface Guide Advance Traffic Markings P.O. Box H Roanoke Rapids, NC 27870 Phone: 252-536-2574 Fax: 252-526-4940 Introduction _____________________________________________________________ This Road Surface Guide is to help determine the suitability of pavements for the application of ATM Marking Tapes. It describes a wide variety of pavement conditions from newly treated to severely distressed and a recommendation for application of ATM Marking Tapes. Further Information For more information or road conditions not covered in this guide, please contact Advance Traffic Markings, 252-536-2574. How to Use This Guide _____________________________________________________________ The first part of this guide describes common surfaces and gives application recommendations for them. The remaining pages describe distressed surfaces with visual examples. This guide also addresses applications over oil drip zones and existing markings. The distress pages are formatted as follows: Type of Distress – The name or type of distress as it is commonly known. Description – A brief description of the distress and its most common physical appearance. Application Recommendations – Recommendations for the application of Advance Traffic Markings Pavement Marking Tapes. This is the recommendations for the distressed or affected portion of the road. A more complete examination of the entire roadway and types of other distresses should also be considered when using this guide. Asphalt Surfaces _____________________________________________________________ There are different types and textures of asphalt surfaces in which markings are applied. They vary greatly from one place to another. This is mainly due to the fact that some states have different standards than others and sometimes rely on what is locally available.
    [Show full text]
  • Surface Pavement Materials Used Ion Urban Areas
    Session 4 - Specific techniques and innovation Paper : Pavement surface materials used in urban areas Authors : Egbert BEUVING (EAPA) - Netherlands Jean-Paul MICHAUT (COLAS) - France Pavement surface materials used in urban areas -The range of urban materials- Egbert Beuving (EAPA) and Jean-Paul Michaut (COLAS) Summary A wide variety of pavement surface materials have been used in urban areas. The choice of the surface material depends on a range of rational and irrational arguments. In former days the availability of the materials was a dominant factor. Nowadays a broad scale of materials is available and functional requirements play an important role in the decision for a certain pavement type and surface layer now. The materials available are: • Bituminous bound materials (asphalt concrete, mastic asphalt) • Cement bound materials (concrete, concrete elements) • (Small) paving elements (block pavers, modular materials, stone, terracotta) • Composite pavements (a combination of the above mentioned ones) In urban areas there is a wide variety of pavement users, as there are: pedestrians, wheelchair- users, parents with prams, roller-skates, bicyclists, scoot-mobiles, motorists, passenger cars and trucks. The choice of the surface material depends on the (functional) requirements. Some of these requirements are the same as for highways; other ones might depend on the local situation. Additional requirements for urban areas might be a certain surface texture or colour for a certain image, easy to repair to guarantee the accessibility of houses, shops and other buildings, noise reducing, open for water infiltration, smooth to avoid vibrations and easy to open for accessing sewerage, gas and water systems. There might also be a need for flexible materials for creating ramps, roundabouts, cables and wiring.
    [Show full text]
  • Practical Guide to Street Works Operatives and Supervisors Under the New Roads and Street Works Act 1991
    This guide provides practical advice to assist good workmanship and promote the highest standards of reinstatement by site Practical Guide to Street Works operatives and supervisors under the New Roads and Street Works Act 1991. It is NOT a replacement or abbreviated version of the Code of Practice, Specification for the Reinstatement of Openings in Highways (Second Edition [England], June 2002). Information is presented in the order that a reinstatement is undertaken, from signing, excavating, reinstating and then leaving a completed job. Each section is typically broken down to cover: • Specification details • checks, with hints and tips of what to look out for • a list of tasks to be completed • health and safety issues to be aware of. £9.95 www.tso.co.uk 5527465X_PGTSW cover_Vn1_0.indd 1 18/4/06 10:42:01 Practical Guide to Street Works Compiled and designed by TRL Limited on behalf of the Department for Transport and in consultation with HAUC (UK) June 2006 London: TSO Published by TSO (The Stationery Office) Department for Transport and available from: Great Minster House 76 Marsham Street Online London SW1P 4DR www.tsoshop.co.uk Telephone 020 7944 8300 Web site www.dft.gov.uk Mail,Telephone, Fax & E-mail TSO © Queen’s Printer and Controller of Her Majesty’s PO Box 29, Norwich, NR3 1GN Stationery Office, 2006, except for the following: Telephone orders/ • extracts from the Specification for the General enquiries: 0870 600 5522 Reinstatement of Openings in Highways (Second Fax orders: 0870 600 5533 Edition [England], June 2002), highlighted in yellow, E-mail: [email protected] which are Crown copyright; Textphone 0870 240 3701 • photographs, which have been provided by Bomag, NJUG,Terex,TRL Limited and Wacker (Great TSO Shops Britain) Limited; 123 Kingsway, London,WC2B 6PQ 020 7242 6393 Fax 020 7242 6394 • other illustrations.
    [Show full text]