HISTORY on the ROAD CLEVELAND’S HESSLER COURT by Dianne Timblin

Total Page:16

File Type:pdf, Size:1020Kb

HISTORY on the ROAD CLEVELAND’S HESSLER COURT by Dianne Timblin HISTORY ON THE ROAD CLEVELAND’S HESSLER COURT By Dianne Timblin hen you Millennia later and half a world away, turn the wood roads appeared in colonial North Wcorner onto America. Corduroy roads, named for the Hessler Court, just off cotton cloth because of its similarly ridged the Case Western appearance, provided a means of crossing Reserve University particularly muddy or swampy areas.2 In campus, the first thing a few cases, the swampy ground itself has you notice is the allowed vestiges of these roads to remain sound. Or more accu- in place for examination centuries later. In rately, the lack of it, especially when you April 2008, for example, the remains of a turn onto Hessler Court from Hessler corduroy-style log road dating to 1684 Road, the brick-paved street that runs per- were uncovered in Annapolis, Maryland.3 pendicular to it. Over the decades, the brick Canadians were first to experiment with street has buckled and cracked, and using sawed plank surfaces and in the although the brickwork remains pic- 1830s became the first North Americans turesque, the ride is bumpy and loud. to begin systematically installing plank Hessler Court, however, the last remain- roads. Residents of Onondaga County, ing wood block road in Cleveland, remains New York, liked what they saw their smooth and quiet, serving as a reminder neighbors doing and in the 1840s followed of one reason wood block paving became suit with their own.4 Planking helped a popular option on urban streets in the make rural American roads more pass- latter half of the nineteenth century. This able, particularly in wet weather, but ulti- block-long wood-paved road is typical for mately proved costly, since the planks its time—in location, appearance, and typically had to be replaced every four to paving style in particular—falling into a five years rather than the eight to ten years long tradition of wood paving that dates investors originally expected. Rural resi- COURTESY OF THE AUTHOR at least as far back as the second century dents resisted paying taxes for road con- Owing to the neoclassical and bungalow B.C.E. struction and maintenance, and even with character of the homes on Hessler Road The earliest known remains of a wood tolls it was difficult for investors to see a and the wood block paving on Hessler road were excavated at Corlea Bog in return on their money.5 Court, neighborhood residents persuaded County Longford, Ireland. Uncovered by Passability was also a major concern the City of Cleveland to designate the area archaeologist Barry Raftery in the 1980s, for city dwellers. Wood roads such as as a historic district in 1975, the first such the wood road spanned the bog, con- Cleveland’s Hessler Court became an designation in the city. necting two points of high ground, and urban staple, first in the form of planking dates to 148 B.C.E. The construction relied and later in two distinct stages of wood primarily on halved oak trunks laid out as block construction. Stone block pavements doned after 1856 or 1857.”6 Planking as a paired parallel “runners” across which were more common overall but expensive paving practice continued longer in north- “sleepers,” like railroad ties, were laid per- to build and proved noisy in an era of iron ern Wisconsin and Michigan as well as in pendicularly, the timbers joined with pegs horseshoes and steel-rimmed carriage and New England and the Pacific Northwest, and mortises. The sleepers are spaced wagon wheels. Several U.S. cities, includ- where the availability of lumber made it closely together, and the flat surfaces of ing Cleveland, began experimenting with viable for several more decades.7 the logs typically face up. Without the plank roads. But those roads typically did In Boston, Samuel Nicholson built a wood road, the bog would have been not live up to the seven years of durabil- road using his patented wood block pavers impassable for many months of the year. ity that had been predicted for pine or the in 1866. The pine was soaked in creosote Evidence of another, apparently Bronze ten to twelve expected for oak. In fact, one and cut into blocks three to four inches Age trackway beneath the one excavated historian found that “many plank pave- wide, six to fourteen inches long, and six by Raftery further implies the road’s value. ments disintegrated in two years. No new inches deep. Nicholson’s techniques were The bog itself is responsible for preserv- plank roads were started after 1854 in quickly imitated by competitors, and the ing the evidence of both roads, since the Ohio, Indiana, Illinois, Missouri, or Iowa, use of wood block paving took hold in peat served to embalm the timbers.1 and most of the existing roads were aban- northern U.S. cities such as New York, FOREST HISTORY TODAY | SPRING 2008 51 they soon decayed, while the pavement sank into ruts and holes.”9 Further dam- aging the reputation of Nicholson’s tech- nique was the prevailing view that the pavement contributed to the spread of the 1871 Chicago fire; the highly flammable streets, constructed as they were with cre- osote-soaked wood, served as an acceler- ant instead of a firebreak.10 Hessler Court Hessler House Despite the problems, wood block paving remained appealing for its quiet- ness and affordability, and municipal exper- iments with it continued from the 1880s into the early 1900s. Eventually, wood block pavers injected—not just soaked— with creosote came into favor. Paving with these blocks began as early as 1873, when a road built with creosoted southern pine was constructed in Galveston, Texas. The U.S. Forest Service reported in 1908 that “the success of the modern wood block pavement” had several causes: “The wood is carefully selected, both as to kind and COURTESY OF CLEVELAND PUBLIC LIBRARY IMAGE COLLECTIONS quality; it is cut accurately into rectangu- The Hessler House sits at the north corner of Hessler Road and Hessler Court, the last lar blocks, is put through seasoning remaining wood block paved street in the city. The two roads first appeared on maps in 1908; processes, and is preserved from decay, this map is from 1914, the same year that Emery Hessler completed purchasing land along with creosote” to reduce water absorption Hessler Court. Subsequently, Hessler Road was extended past his house, which was relocated and “consequent expansion and contrac- from Bellflower Road in 1916. tion of the pavement.” When the blocks were laid tightly, with the grain vertical, over a solid foundation of cement-con- Newark, Detroit, and—once again— weather. The blocks also rotted rapidly, crete, the joints were waterproof and Cleveland. The abundance of timber with a normal maximum use of six years maintenance became relatively easy.11 made wood block paving an affordable and a reported life of only two years in Hessler Court was platted toward the end option, and thus popular. Washington, D.C.”8 Multiple factors con- of this latter phase of wood block paving Like wood plank paving, however, tributed to the pavement’s failure rate. The and may represent the very last portion of Nicholson pavement failed to live up to its wood was generally not selected with three waves of wood paving in Cleveland. early promise, and in the 1870s it was care, with soft woods like white pine often Making roadways reliably passable was abandoned, for several reasons. Nicholson used. The wide joints allowed water to clearly a high priority in the Forest City. blocks were “slippery when wet or fouled seep in and be absorbed by the blocks, The city council authorized street plank- by mud from unpaved streets, and they with the result that the blocks would swell ing to begin in 1840—before sewers were offered poor traction on steep grades. The and heave. Compounding these problems, dug (1853), reservoirs were established wood absorbed horse urine and excre- “the foundation was usually of untreated (1846), or gas lines were run (1849).12 The ment and sweated putrid fluid in hot planks, laid directly upon earth, so that city started planking the streets four to five U.S. FOREST SERVICE PHOTO, FOREST HISTORY SOCIETY PHOTO COLLECTION Samuel Nicholson’s patented paving technique quickly fell out of favor because he spaced the blocks too far apart and because “the foundation was usually of untreated planks, laid directly upon earth, so that they soon decayed, while the pavement sank into ruts and holes.” This cross section shows the plan used by the Hale Pavement Company of Staunton, Virginia, in the 1880s. 52 FOREST HISTORY TODAY | SPRING 2008 accompanied it, had a direct impact on the neighborhood where Hessler Court is located. As the city grew eastward, Euclid Avenue, situated one city block southeast of Hessler Road, became known after 1889 as “the showcase of America.” Wade Park, adjacent to Euclid, was the first large park in the city.15 Hessler Court, therefore, was positioned in a fashionable neighborhood, where the aesthetics and sound quality of the road might have been given greater consideration. Hessler Court’s wood blocks can, in fact, tell us something about the nature of the neighborhood at the time of its paving. The same is true of Hessler Road COURTESY OF CHRIS M. WORRELL COURTESY OF THE AUTHOR and its light-duty brick paving. Thorough- fares with heavy traffic called for granite Looking northwest up Hessler Court while standing on Hessler Road. The house at right is the blocks, heavy bricks, or iron or steel Hessler House (see inset), which fronts onto Hessler Road.
Recommended publications
  • Brick Streets Plan
    BRICK STREETS PLAN City of Rock Island Community & Economic Development Department Planning & Redevelopment Division Rock Island Preservation Commission Adopted 1988 by Rock Island City Council Amended: January 23, 2012 August 22, 2011 March 28, 2005 April 10, 2000 May 12, 1997 September 14, 1992 Rock Solid. Rock Island. 1899 - The first brick pavement was laid in the Tri-Cities on the corner of Twentieth Street and Second Avenue, Rock Island. The first brick was placed by Mayor William McConochie. Civil Engineer for the project was H.G. Paddock. -- From Historical Souvenir of Moline and Vicinity, 1909 TABLE of CONTENTS Executive Summary ..................................................................................... 3 Prioritization List ........................................................................................... 5 Map of Brick Streets ..................................................................................... 6 Methodology ................................................................................................ 9 History of Brick Street Construction in Rock Island ...................................... 10 Condition of Brick Streets ............................................................................. 13 Utilities and Brick Streets ............................................................................. 17 Street Standards .......................................................................................... 18 Owner-Occupancy Along Brick Streets .......................................................
    [Show full text]
  • PASER Manual Asphalt Roads
    Pavement Surface Evaluation and Rating PASER ManualAsphalt Roads RATING 10 RATING 7 RATING 4 RATING PASERAsphalt Roads 1 Contents Transportation Pavement Surface Evaluation and Rating (PASER) Manuals Asphalt PASER Manual, 2002, 28 pp. Introduction 2 Information Center Brick and Block PASER Manual, 2001, 8 pp. Asphalt pavement distress 3 Concrete PASER Manual, 2002, 28 pp. Publications Evaluation 4 Gravel PASER Manual, 2002, 20 pp. Surface defects 4 Sealcoat PASER Manual, 2000, 16 pp. Surface deformation 5 Unimproved Roads PASER Manual, 2001, 12 pp. Cracking 7 Drainage Manual Patches and potholes 12 Local Road Assessment and Improvement, 2000, 16 pp. Rating pavement surface condition 14 SAFER Manual Rating system 15 Safety Evaluation for Roadways, 1996, 40 pp. Rating 10 & 9 – Excellent 16 Flagger’s Handbook (pocket-sized guide), 1998, 22 pp. Rating 8 – Very Good 17 Work Zone Safety, Guidelines for Construction, Maintenance, Rating 7 – Good 18 and Utility Operations, (pocket-sized guide), 1999, 55 pp. Rating 6 – Good 19 Wisconsin Transportation Bulletins Rating 5 – Fair 20 #1 Understanding and Using Asphalt Rating 4 – Fair 21 #2 How Vehicle Loads Affect Pavement Performance Rating 3 – Poor 22 #3 LCC—Life Cycle Cost Analysis Rating 2 – Very Poor 23 #4 Road Drainage Rating 1 – Failed 25 #5 Gravel Roads Practical advice on rating roads 26 #6 Using Salt and Sand for Winter Road Maintenance #7 Signing for Local Roads #8 Using Weight Limits to Protect Local Roads #9 Pavement Markings #10 Seal Coating and Other Asphalt Surface Treatments #11 Compaction Improves Pavement Performance #12 Roadway Safety and Guardrail #13 Dust Control on Unpaved Roads #14 Mailbox Safety #15 Culverts-Proper Use and Installation This manual is intended to assist local officials in understanding and #16 Geotextiles in Road Construction/Maintenance and Erosion Control rating the surface condition of asphalt pavement.
    [Show full text]
  • Pavement Mgmt Plan Street Listing
    Town of Ashburnham Pavement Management Data 1/7/2021 Key REMINDER Town Accepted - Inspected It's important to keep the following in mind when reviewing this plan. State Roads Each fiscal year is subject to changes for any or all of the following reasons. Town Accepted - Gravel • Budget increases or decreases Town Accepted - Scenic Roads • Not receiving applied for grant monies Private • Changes to material costs RSR = Road Surface Rating • Unexpected changes to the condition of a particular road TIP = MA Transportation Improvement Program • Subject to funding allocation (Capital Plan) TOWN ACCEPTED INSPECTED Street Name Street Segment From Street RSR Repair Method Est. Cost Func. Class Estimated Action ACADEMY STREET ACADEMY ST-01 CENTRAL ST 99.23 No Maintenance Required $0.00 Local Completed ACADEMY STREET ACADEMY ST-02 PLEASANT ST N 99.23 No Maintenance Required $0.00 Local Completed AMES AVENUE AMES AVE CENTRAL ST 11.13 Major Rehabilitation $30,394.54 Local Cul De Sac/Dead End ASHBY ROAD ASHBY RD-01 CHAPEL ST 87.73 Routine Maintenance $6,852.38 Major Collector ASHBY ROAD ASHBY RD-02 STOWELL RD 89.73 Routine Maintenance $8,518.91 Major Collector ASHBY ROAD ASHBY RD-03 HOLT RD 91.73 Routine Maintenance $6,049.28 Major Collector ASHBY ROAD ASHBY RD-04 OLD ASHBY RD 96.73 No Maintenance Required $0.00 Major Collector Completed ASHBY ROAD ASHBY RD-05 OLD STEELE RD 96.73 No Maintenance Required $0.00 Major Collector Completed ASHBY ROAD ASHBY RD-06 RINGE TPKE 96.73 No Maintenance Required $0.00 Major Collector Completed BIRCHWOOD TERRACE
    [Show full text]
  • Road Surface Quality: What Road Users Want from Highways England November 2017 Road Surface Quality: What Road Users Want from Highways England
    Road surface quality: what road users want from Highways England November 2017 Road surface quality: what road users want from Highways England Anthony Smith Jim O’Sullivan Chief Executive Chief Executive Transport Focus Highways England Foreword ransport Focus research in 2015 showed that not something separate. They prefer asphalt roads T surface quality was road users’ top priority for to concrete ones, partly because they are quieter improvement to England’s motorways and major to drive on. ‘A’ roads1, by some margin. But what wasn’t clear Highways England believes a connected was exactly which aspects of the surface users country is better for everyone. The company works wanted to be improved and why. hard to deliver the safest, smoothest, most Transport Focus and Highways England have reliable connections possible. In 2015/2016 therefore worked together to research just that. 1471 lane miles of resurfacing was carried out Our purpose being to ensure that the views of – 23 per cent higher than the original target. those using the roads shape decision-making in But Highways England is not complacent. this area. That’s why Transport Focus and Highways England The research shows that what road users want are both using this research to help inform the is not complicated. They want a surface without Government’s second Road Investment Strategy dips, bumps, potholes, undulations or deep ruts (RIS 2), covering 2020-25. Separately, Highways – in other words continuously smooth. They also England is considering the recommendations want clearer white lines and ‘cats eyes’, which Transport Focus has made in light of this users regard as part of the surface and research.
    [Show full text]
  • Gravel Roads Maintenance & Frontrunner Training Workshop
    A Ditch In Time Gravel Roads Maintenance Workshop 1 So you think you’ve got a wicked driveway 2 1600’ driveway with four switchbacks and 175’ of elevation change (11% grade) 3 Rockhouse Development, Conway 4 5 6 Swift River (left) through National Forest into Saco River that drains the MWV Valley’s developments 7 The best material starts as solid rock that is drilled & blasted… 8 Then crushed into smaller pieces and screened to produce specific size aggregate 9 How strong should it be? One big truck = 10,000 cars! 10 11 The road surface… • Lots of small aggregate (stones) to provide strength with a shape that will lock stones together to support wheels • Sufficient “fines,” the binder that will lock the stones together, to keep the stones from moving around 12 • The stone: hard and uniform in size and more angular than that made just from screening bank run gravel 13 • A proper combination of correctly sized broken rock, sand and silt/clay soil materials will produce a road surface that hardens into a strong and stable crust that forms a reasonably impervious “roof” to our road • An improper balance- a surface that is loose, soft & greasy when wet, or excessively dusty when dry (see samples) 14 One way to judge whether gravel will pack or not… 15 Here’s another way… 16 Or: The VeryFine test The sticky palm test As shown in the Camp Roads manual 17 • “Dirty” gravel packs but does not drain • “Clean” gravel drains but does not pack 18 Other road surfacing materials: • Rotten Rock- traditional surfacing material in the Mt Washington Valley
    [Show full text]
  • Advance Traffic Markings ATM Installation Road Surface Guide
    Advance Traffic Markings ATM Installation Road Surface Guide Advance Traffic Markings P.O. Box H Roanoke Rapids, NC 27870 Phone: 252-536-2574 Fax: 252-526-4940 Introduction _____________________________________________________________ This Road Surface Guide is to help determine the suitability of pavements for the application of ATM Marking Tapes. It describes a wide variety of pavement conditions from newly treated to severely distressed and a recommendation for application of ATM Marking Tapes. Further Information For more information or road conditions not covered in this guide, please contact Advance Traffic Markings, 252-536-2574. How to Use This Guide _____________________________________________________________ The first part of this guide describes common surfaces and gives application recommendations for them. The remaining pages describe distressed surfaces with visual examples. This guide also addresses applications over oil drip zones and existing markings. The distress pages are formatted as follows: Type of Distress – The name or type of distress as it is commonly known. Description – A brief description of the distress and its most common physical appearance. Application Recommendations – Recommendations for the application of Advance Traffic Markings Pavement Marking Tapes. This is the recommendations for the distressed or affected portion of the road. A more complete examination of the entire roadway and types of other distresses should also be considered when using this guide. Asphalt Surfaces _____________________________________________________________ There are different types and textures of asphalt surfaces in which markings are applied. They vary greatly from one place to another. This is mainly due to the fact that some states have different standards than others and sometimes rely on what is locally available.
    [Show full text]
  • Surface Pavement Materials Used Ion Urban Areas
    Session 4 - Specific techniques and innovation Paper : Pavement surface materials used in urban areas Authors : Egbert BEUVING (EAPA) - Netherlands Jean-Paul MICHAUT (COLAS) - France Pavement surface materials used in urban areas -The range of urban materials- Egbert Beuving (EAPA) and Jean-Paul Michaut (COLAS) Summary A wide variety of pavement surface materials have been used in urban areas. The choice of the surface material depends on a range of rational and irrational arguments. In former days the availability of the materials was a dominant factor. Nowadays a broad scale of materials is available and functional requirements play an important role in the decision for a certain pavement type and surface layer now. The materials available are: • Bituminous bound materials (asphalt concrete, mastic asphalt) • Cement bound materials (concrete, concrete elements) • (Small) paving elements (block pavers, modular materials, stone, terracotta) • Composite pavements (a combination of the above mentioned ones) In urban areas there is a wide variety of pavement users, as there are: pedestrians, wheelchair- users, parents with prams, roller-skates, bicyclists, scoot-mobiles, motorists, passenger cars and trucks. The choice of the surface material depends on the (functional) requirements. Some of these requirements are the same as for highways; other ones might depend on the local situation. Additional requirements for urban areas might be a certain surface texture or colour for a certain image, easy to repair to guarantee the accessibility of houses, shops and other buildings, noise reducing, open for water infiltration, smooth to avoid vibrations and easy to open for accessing sewerage, gas and water systems. There might also be a need for flexible materials for creating ramps, roundabouts, cables and wiring.
    [Show full text]
  • Practical Guide to Street Works Operatives and Supervisors Under the New Roads and Street Works Act 1991
    This guide provides practical advice to assist good workmanship and promote the highest standards of reinstatement by site Practical Guide to Street Works operatives and supervisors under the New Roads and Street Works Act 1991. It is NOT a replacement or abbreviated version of the Code of Practice, Specification for the Reinstatement of Openings in Highways (Second Edition [England], June 2002). Information is presented in the order that a reinstatement is undertaken, from signing, excavating, reinstating and then leaving a completed job. Each section is typically broken down to cover: • Specification details • checks, with hints and tips of what to look out for • a list of tasks to be completed • health and safety issues to be aware of. £9.95 www.tso.co.uk 5527465X_PGTSW cover_Vn1_0.indd 1 18/4/06 10:42:01 Practical Guide to Street Works Compiled and designed by TRL Limited on behalf of the Department for Transport and in consultation with HAUC (UK) June 2006 London: TSO Published by TSO (The Stationery Office) Department for Transport and available from: Great Minster House 76 Marsham Street Online London SW1P 4DR www.tsoshop.co.uk Telephone 020 7944 8300 Web site www.dft.gov.uk Mail,Telephone, Fax & E-mail TSO © Queen’s Printer and Controller of Her Majesty’s PO Box 29, Norwich, NR3 1GN Stationery Office, 2006, except for the following: Telephone orders/ • extracts from the Specification for the General enquiries: 0870 600 5522 Reinstatement of Openings in Highways (Second Fax orders: 0870 600 5533 Edition [England], June 2002), highlighted in yellow, E-mail: [email protected] which are Crown copyright; Textphone 0870 240 3701 • photographs, which have been provided by Bomag, NJUG,Terex,TRL Limited and Wacker (Great TSO Shops Britain) Limited; 123 Kingsway, London,WC2B 6PQ 020 7242 6393 Fax 020 7242 6394 • other illustrations.
    [Show full text]
  • Road Design and Construction Terms
    Glossary of Road Design and Construction Terms Nebraska ◆Department ◆of ◆Roads 3-C Planning The continuing, cooperative, comprehensive planning process in an urbanized area as required by federal law. (e.g. Lincoln, Omaha, or Sioux City Area Planning) 3R Project 3R stands for resurfacing, restoration and rehabilitation. These projects are designed to extend the life of an existing highway surface and to enhance highway safety. These projects usually overlay the existing surface and replace guardrails. 3R projects are generally constructed within the existing highway right-of-way. Abutment An abutment is made from concrete on piling and supports the end of a bridge deck. Access Control The extent to which the state, by law, regulates where vehicles may enter or leave the highway. Action Plan A set of general guidelines and procedures developed by each state to assure that adequate consideration is given to possible social, economic and environmental effects of proposed highway projects. All states were directed to develop this plan by the Federal Highway Administration. Adapted Grasses Grasses which are native to the area in which they are planted, but have adjusted to the conditions of the environment. Adverse Environmental Effects Those conditions which cause temporary or permanent damage to the environment. Aesthetics In the highway context, the considerations of landscaping, land use and structures to insure that the proposed highway is pleasing to the eye of the viewer from the roadway and to the viewer looking at the roadway. Aggregate Stone and gravel of various sizes which compose the major portion of the surfacing material. The sand or pebbles added to cement in making concrete.
    [Show full text]
  • Considerations for High Occupancy Vehicle (HOV) Lane to High Occupancy Toll (HOT) Lane Conversions Guidebook
    Office of Operations 21st Century Operations Using 21st Century Technology Considerations for High Occupancy Vehicle (HOV) Lane to High Occupancy Toll (HOT) Lane Conversions Guidebook U.S. Department of Transportation Federal Highway Administration June 2007 Considerations for High Occupancy Vehicle (HOV) to High Occupancy Toll (HOT) Lanes Conversions Guidebook Prepared for the HOV Pooled-Fund Study and the U.S. Department of Transportation Federal Highway Administration Prepared by HNTB Booz Allen Hamilton Inc. 8283 Greensboro Drive McLean, VA 22102 Under contract to Federal Highway Administration (FHWA) June 2007 Notice This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or the use thereof. The contents of this Report reflect the views of the contractor, who is responsible for the accu- racy of the data presented herein. The contents do not necessarily reflect the official policy of the Department of Transportation. This Report does not constitute a standard, specification, or regulation. The United States Government does not endorse products or manufacturers named herein. Trade or manufacturers’ names appear herein only because they are considered essential to the objective of this document. Technical Report Documentation Page 1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No. FHWA-HOP-08-034 4. Title and Subtitle 5. Report Date Consideration for High Occupancy Vehicle (HOV) to High Occupancy Toll June 2007 (HOT) Lanes Study 6. Performing Organization Code 7. Author(s) 8. Performing Organization Report No. Martin Sas, HNTB. Susan Carlson, HNTB Eugene Kim, Ph.D., Booz Allen Hamilton Inc.
    [Show full text]
  • Cost of Pavement Marking Materials
    Synthesis Report 2000-11 Cost of Pavement Marking Materials Technical Report Documentation Page 1. Report No. 2. 3. Recipient’s Accession No. 2000-11 4. Title and Subtitle 5. Report Date COST OF PAVEMENT MARKING MATERIALS March 2000 6. 7. Author(s) 8. Performing Organization Report No. David Montebello Jacqueline Schroeder 9. Performing Organization Name and Address 10. Project/Task/Work Unit No. SRF Consulting Group, Inc. One Carlson Parkway North, Suite 150 11. Contract (C) or Grant (G) No. Minneapolis, MN 55447 12. Sponsoring Organization Name and Address 13. Type of Report and Period Covered Minnesota Department of Transportation Final Report 395 John Ireland Boulevard Mail Stop 330 St. Paul, Minnesota 55155 14. Sponsoring Agency Code 15. Supplementary Notes 16. Abstract (Limit: 200 words) Recent changes in laws regarding the use of volatile organic compounds will impact the type of pavement marking material that many communities use to mark/delineate their roads. This report presents information on the various types of pavement marking materials available. It is intended to provide readers with sufficient data to make educated decisions regarding the selection of an appropriate pavement marking material. The report pulls together information on pavement marking material terminology, the various types of pavement marking materials, their durability and their retroreflectivity. Changes in formulas relating to laws regulating the use of volatile organic compounds are explained, as well as the impacts of those changes. Additionally, there is a list of best management practices that can be implemented to enable an agency or community to get the most value for its money.
    [Show full text]
  • Particulate Matter from the Road Surface Abrasion As a Problem of Non-Exhaust Emission Control
    Review Particulate Matter from the Road Surface Abrasion as a Problem of Non-Exhaust Emission Control Magdalena Penkała 1, Paweł Ogrodnik 2 and Wioletta Rogula-Kozłowska 2,3,* 1 The State School of Higher Education, 54 Pocztowa St., 22-100 Chełm, Poland; [email protected] 2 The Main School of Fire Service, Faculty of Fire Safety Engineering, 52/54 Słowackiego St., 01-629 Warsaw, Poland; [email protected] 3 Institute of Environmental Engineering, Polish Academy of Sciences, 34 M. Skłodowskiej-Curie St., 41-819 Zabrze, Poland * Correspondence: [email protected] or [email protected]; Tel.: +48-225-617-553 Received: 27 October 2017; Accepted: 5 January 2018; Published: 7 January 2018 Abstract: Along with house heating and industry, emissions from road traffic (exhaust and tire, brake, car body or road surface abrasions) are one of the primary sources of particulate matter (PM) in the atmosphere in urban areas. Though numerous regulations and vehicle-control mechanisms have led to a significant decline of PM emissions from vehicle exhaust gases, other sources of PM remain related to road and car abrasion are responsible for non-exhaust emissions. Quantifying these emissions is a hard problem in both laboratory and field conditions. First, we must recognize the physicochemical properties of the PM that is emitted by various non-exhaust sources. In this paper, we underline the problem of information accessibility with regards to the properties and qualities of PM from non-exhaust sources. We also indicate why scarce information is available in order to find the possible solution to this ongoing issue.
    [Show full text]