And Cystein Cathepsin-Dependent Cancer Cells Invasiveness
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cells Δγ Lineage Choice and Shapes Peripheral Purinergic P2X7
Purinergic P2X7 Receptor Drives T Cell Lineage Choice and Shapes Peripheral δγ Cells This information is current as Michela Frascoli, Jessica Marcandalli, Ursula Schenk and of October 2, 2021. Fabio Grassi J Immunol 2012; 189:174-180; Prepublished online 30 May 2012; doi: 10.4049/jimmunol.1101582 http://www.jimmunol.org/content/189/1/174 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2012/05/30/jimmunol.110158 Material 2.DC1 http://www.jimmunol.org/ References This article cites 31 articles, 15 of which you can access for free at: http://www.jimmunol.org/content/189/1/174.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on October 2, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2012 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Purinergic P2X7 Receptor Drives T Cell Lineage Choice and Shapes Peripheral gd Cells Michela Frascoli,* Jessica Marcandalli,* Ursula Schenk,*,1 and Fabio Grassi*,† TCR signal strength instructs ab versus gd lineage decision in immature T cells. -
Cellular and Molecular Signatures in the Disease Tissue of Early
Cellular and Molecular Signatures in the Disease Tissue of Early Rheumatoid Arthritis Stratify Clinical Response to csDMARD-Therapy and Predict Radiographic Progression Frances Humby1,* Myles Lewis1,* Nandhini Ramamoorthi2, Jason Hackney3, Michael Barnes1, Michele Bombardieri1, Francesca Setiadi2, Stephen Kelly1, Fabiola Bene1, Maria di Cicco1, Sudeh Riahi1, Vidalba Rocher-Ros1, Nora Ng1, Ilias Lazorou1, Rebecca E. Hands1, Desiree van der Heijde4, Robert Landewé5, Annette van der Helm-van Mil4, Alberto Cauli6, Iain B. McInnes7, Christopher D. Buckley8, Ernest Choy9, Peter Taylor10, Michael J. Townsend2 & Costantino Pitzalis1 1Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK. Departments of 2Biomarker Discovery OMNI, 3Bioinformatics and Computational Biology, Genentech Research and Early Development, South San Francisco, California 94080 USA 4Department of Rheumatology, Leiden University Medical Center, The Netherlands 5Department of Clinical Immunology & Rheumatology, Amsterdam Rheumatology & Immunology Center, Amsterdam, The Netherlands 6Rheumatology Unit, Department of Medical Sciences, Policlinico of the University of Cagliari, Cagliari, Italy 7Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK 8Rheumatology Research Group, Institute of Inflammation and Ageing (IIA), University of Birmingham, Birmingham B15 2WB, UK 9Institute of -
Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase -
500 P2RX7 Agonist Treatment Boosts the Ability of IL-12-Activated CD8+ T
J Immunother Cancer: first published as 10.1136/jitc-2020-SITC2020.0500 on 10 December 2020. Downloaded from Abstracts homografts and assessed the relationship between CD5 and metastasis, and deregulation of E-cadherin is a hallmark for increased CD69 and PD-1 (markers of T cell activation and epithelial-mesenchymal transition (EMT). exhaustion) by flow cytometry. Methods The study protocol was approved by the Medical Results We report that T cell CD5 levels were higher in CD4 Ethical Committee of the Academic Medical Centre, Amster- + T cells than in CD8+ T cells in 4T1 tumour-bearing mice, dam, The Netherlands (NL42718.018.12). AIMM’s BCL6 and and that high CD5 levels on CD4+ T cells were maintained Bcl-xL immortalization method1 was used to interrogate the in peripheral organs (spleen and lymph nodes). However, both human antibody repertoire. From a carrier of a pathogenic CD4+ and CD8+ T cells recruited to tumours had reduced gene variant in the MSH6 gene diagnosed with stage IV CRC CD5 compared to CD4+ and CD8+ T cells in peripheral and liver metastasis that had been treated with avastin, capeci- organs. In addition, CD5highCD4+ T cells and CD5highCD8 tabine and oxaliplatin, peripheral-blood memory B cells were + T cells from peripheral organs exhibited higher levels of obtained 9 years after last treatment. Antibodies-containing activation and associated exhaustion compared to CD5lowCD4 supernatant of cultured B-cells were screened for binding to 3 + T cell and CD5lowCD8+ T cell from the same organs. different CRC cell lines (DLD1, LS174T and COLO205) and Interestingly, CD8+ T cells among TILs and downregulated absence of binding to fibroblast by flow cytometry. -
Ion Channels
UC Davis UC Davis Previously Published Works Title THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Ion channels. Permalink https://escholarship.org/uc/item/1442g5hg Journal British journal of pharmacology, 176 Suppl 1(S1) ISSN 0007-1188 Authors Alexander, Stephen PH Mathie, Alistair Peters, John A et al. Publication Date 2019-12-01 DOI 10.1111/bph.14749 License https://creativecommons.org/licenses/by/4.0/ 4.0 Peer reviewed eScholarship.org Powered by the California Digital Library University of California S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2019/20: Ion channels. British Journal of Pharmacology (2019) 176, S142–S228 THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Ion channels Stephen PH Alexander1 , Alistair Mathie2 ,JohnAPeters3 , Emma L Veale2 , Jörg Striessnig4 , Eamonn Kelly5, Jane F Armstrong6 , Elena Faccenda6 ,SimonDHarding6 ,AdamJPawson6 , Joanna L Sharman6 , Christopher Southan6 , Jamie A Davies6 and CGTP Collaborators 1School of Life Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK 2Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway, Anson Building, Central Avenue, Chatham Maritime, Chatham, Kent, ME4 4TB, UK 3Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK 4Pharmacology and Toxicology, Institute of Pharmacy, University of Innsbruck, A-6020 Innsbruck, Austria 5School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK 6Centre for Discovery Brain Science, University of Edinburgh, Edinburgh, EH8 9XD, UK Abstract The Concise Guide to PHARMACOLOGY 2019/20 is the fourth in this series of biennial publications. The Concise Guide provides concise overviews of the key properties of nearly 1800 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. -
Multifaceted Effects of Extracellular Adenosine Triphosphate and Adenosine in the Tumor–Host Interaction and Therapeutic Perspectives
Multifaceted Effects of Extracellular Adenosine Triphosphate and Adenosine in the Tumor–Host Interaction and Therapeutic Perspectives The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation de Andrade Mello, Paola, Robson Coutinho-Silva, and Luiz Eduardo Baggio Savio. 2017. “Multifaceted Effects of Extracellular Adenosine Triphosphate and Adenosine in the Tumor–Host Interaction and Therapeutic Perspectives.” Frontiers in Immunology 8 (1): 1526. doi:10.3389/fimmu.2017.01526. http://dx.doi.org/10.3389/ fimmu.2017.01526. Published Version doi:10.3389/fimmu.2017.01526 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:34493041 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA REVIEW published: 14 November 2017 doi: 10.3389/fimmu.2017.01526 Multifaceted Effects of Extracellular Adenosine Triphosphate and Adenosine in the Tumor–Host Interaction and Therapeutic Perspectives Paola de Andrade Mello1, Robson Coutinho-Silva 2* and Luiz Eduardo Baggio Savio2* 1 Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States, 2Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil Cancer is still one of the world’s most pressing health-care challenges, leading to a high number of deaths worldwide. Immunotherapy is a new developing therapy that Edited by: boosts patient’s immune system to fight cancer by modifying tumor–immune cells Salem Chouaib, interaction in the tumor microenvironment (TME). -
Non-Synonymous Single Nucleotide Polymorphisms in the P2X
Int. J. Mol. Sci. 2014, 15, 13344-13371; doi:10.3390/ijms150813344 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Review Non-Synonymous Single Nucleotide Polymorphisms in the P2X Receptor Genes: Association with Diseases, Impact on Receptor Functions and Potential Use as Diagnosis Biomarkers Emily A. Caseley 1,†, Stephen P. Muench 1, Sebastien Roger 2, Hong-Ju Mao 3, Stephen A. Baldwin 1 and Lin-Hua Jiang 1,4,†,* 1 School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK; E-Mails: [email protected] (E.A.C.); [email protected] (S.P.M.); [email protected] (S.A.B.) 2 Inserm U1069, University of Tours, Tours 37032, France; E-Mail: [email protected] 3 State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Science, Shanghai 200050, China; E-Mail: [email protected] 4 Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang 453003, China † These authors contributed equally to this work. * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +44-0-113-343-4231. Received: 6 June 2014; in revised form: 10 July 2014 / Accepted: 14 July 2014 / Published: 30 July 2014 Abstract: P2X receptors are Ca2+-permeable cationic channels in the cell membranes, where they play an important role in mediating a diversity of physiological and pathophysiological functions of extracellular ATP. Mammalian cells express seven P2X receptor genes. Single nucleotide polymorphisms (SNPs) are widespread in the P2RX genes encoding the human P2X receptors, particularly the human P2X7 receptor. -
Upregulation of P2RX7 Incx3cr1-Deficient Mononuclear
The Journal of Neuroscience, May 6, 2015 • 35(18):6987–6996 • 6987 Neurobiology of Disease Upregulation of P2RX7 in Cx3cr1-Deficient Mononuclear Phagocytes Leads to Increased Interleukin-1 Secretion and Photoreceptor Neurodegeneration Shulong J. Hu,1,2,3 Bertrand Calippe,1,2,3 XSophie Lavalette,1,2,3 Christophe Roubeix,1,2,3 Fadoua Montassar,1,2,3 Michael Housset,1,2,3 Olivier Levy,1,2,3 Cecile Delarasse,4 Michel Paques,1,2,3,5 XJose´-Alain Sahel,1,2,3,5 Florian Sennlaub,1,2,3* and XXavier Guillonneau1,2,3* 1INSERM, U 968, Paris F-75012, France, 2Sorbonne Universités, UPMC Univ Paris 06, UMR S 968, Institut de la Vision, Paris, F-75012, France, 3CNRS, UMR 7210, Paris, F-75012, France, 4INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris F-75013, France, and 5Centre Hospitalier National d’Ophtalmologie des Quinze-Vingts, DHU ViewMaintain, INSERM-DHOS CIC 1423, Paris, F-75012, France Photoreceptor degeneration in age-related macular degeneration (AMD) is associated with an infiltration and chronic accumulation of mononuclear phagocytes (MPs). We have previously shown that Cx3cr1-deficient mice develop age- and stress- related subretinal accumulation of MPs, which is associated with photoreceptor degeneration. Cx3cr1-deficient MPs have been shown to increase neuronal apoptosis through IL-1 in neuroinflammation of the brain. The reason for increased IL-1 secretion from Cx3cr1-deficient MPs, and whether IL-1 is responsible for increased photoreceptor apoptosis in Cx3cr1-deficient mice, has not been elucidated. -
Genomics of Inherited Bone Marrow Failure and Myelodysplasia Michael
Genomics of inherited bone marrow failure and myelodysplasia Michael Yu Zhang A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2015 Reading Committee: Mary-Claire King, Chair Akiko Shimamura Marshall Horwitz Program Authorized to Offer Degree: Molecular and Cellular Biology 1 ©Copyright 2015 Michael Yu Zhang 2 University of Washington ABSTRACT Genomics of inherited bone marrow failure and myelodysplasia Michael Yu Zhang Chair of the Supervisory Committee: Professor Mary-Claire King Department of Medicine (Medical Genetics) and Genome Sciences Bone marrow failure and myelodysplastic syndromes (BMF/MDS) are disorders of impaired blood cell production with increased leukemia risk. BMF/MDS may be acquired or inherited, a distinction critical for treatment selection. Currently, diagnosis of these inherited syndromes is based on clinical history, family history, and laboratory studies, which directs the ordering of genetic tests on a gene-by-gene basis. However, despite extensive clinical workup and serial genetic testing, many cases remain unexplained. We sought to define the genetic etiology and pathophysiology of unclassified bone marrow failure and myelodysplastic syndromes. First, to determine the extent to which patients remained undiagnosed due to atypical or cryptic presentations of known inherited BMF/MDS, we developed a massively-parallel, next- generation DNA sequencing assay to simultaneously screen for mutations in 85 BMF/MDS genes. Querying 71 pediatric and adult patients with unclassified BMF/MDS using this assay revealed 8 (11%) patients with constitutional, pathogenic mutations in GATA2 , RUNX1 , DKC1 , or LIG4 . All eight patients lacked classic features or laboratory findings for their syndromes. -
Identification of a Subset of Immunosuppressive P2RX1
ARTICLE https://doi.org/10.1038/s41467-020-20447-y OPEN Identification of a subset of immunosuppressive P2RX1-negative neutrophils in pancreatic cancer liver metastasis Xu Wang1,2,4, Li-Peng Hu1,4, Wei-Ting Qin1,4, Qin Yang1,4, De-Yu Chen2,4, Qing Li1, Kai-Xia Zhou1, Pei-Qi Huang1, Chun-Jie Xu1, Jun Li1, Lin-Li Yao1, Ya-Hui Wang1, Guang-Ang Tian1, Jian-Yu Yang3, ✉ ✉ ✉ Min-Wei Yang3, De-Jun Liu3, Yong-Wei Sun 3 , Shu-Heng Jiang 1 , Xue-Li Zhang 1 & ✉ Zhi-Gang Zhang 1 1234567890():,; The immunosuppressive microenvironment that is shaped by hepatic metastatic pancreatic ductal adenocarcinoma (PDAC) is essential for tumor cell evasion of immune destruction. Neutrophils are important components of the metastatic tumor microenvironment and exhibit heterogeneity. However, the specific phenotypes, functions and regulatory mechan- isms of neutrophils in PDAC liver metastases remain unknown. Here, we show that a subset of P2RX1-negative neutrophils accumulate in clinical and murine PDAC liver metastases. RNA sequencing of murine PDAC liver metastasis-infiltrated neutrophils show that P2RX1- deficient neutrophils express increased levels of immunosuppressive molecules, including PD-L1, and have enhanced mitochondrial metabolism. Mechanistically, the transcription factor Nrf2 is upregulated in P2RX1-deficient neutrophils and associated with PD-L1 expression and metabolic reprogramming. An anti-PD-1 neutralizing antibody is sufficient to compromise the immunosuppressive effects of P2RX1-deficient neutrophils on OVA- activated OT1 CD8+ T cells. Therefore, our study uncovers a mechanism by which metastatic PDAC tumors evade antitumor immunity by accumulating a subset of immuno- suppressive P2RX1-negative neutrophils. 1 State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. -
Datasheet BA3178 Anti-P2RX6 Antibody
Product datasheet Anti-P2RX6 Antibody Catalog Number: BA3178 BOSTER BIOLOGICAL TECHNOLOGY Special NO.1, International Enterprise Center, 2nd Guanshan Road, Wuhan, China Web: www.boster.com.cn Phone: +86 27 67845390 Fax: +86 27 67845390 Email: [email protected] Basic Information Product Name Anti-P2RX6 Antibody Gene Name P2RX6 Source Rabbit IgG Species Reactivity human Tested Application WB Contents 500ug/ml antibody with PBS ,0.02% NaN3 , 1mg BSA and 50% glycerol. Immunogen A synthetic peptide corresponding to a sequence at the C-terminus of human P2X6(387-406aa VWRELALASQARLAECLRRS). Purification Immunogen affinity purified. Observed MW 60KD Dilution Ratios Western blot: 1:500-2000 Storage 12 months from date of receipt,-20℃ as supplied.6 months 2 to 8℃ after reconstitution. Avoid repeated freezing and thawing Background Information Purinergic receptor P2X-Like 1, also known as P2X6, is a protein that in humans is encoded by the P2RX6 gene. The encoded protein is associated with VE-cadherin at the adherens junctions of human umbilical vein endothelial cells. This gene belongs to the family of P2X receptors. P2RXL1 gene was mapped to chromosome 22q11 by fluorescence in situ hybridization. This gene is a receptor for ATP that acts as a ligand-gated ion channel. It can mediate rapid and selective permeability to cations. Reference Anti-P2RX6 Antibody被引用在0文献中。 暂无引用 FOR RESEARCH USE ONLY. NOT FOR DIAGNOSTIC AND CLINICAL USE. 1 Product datasheet Anti-P2RX6 Antibody Catalog Number: BA3178 BOSTER BIOLOGICAL TECHNOLOGY Special NO.1, International Enterprise Center, 2nd Guanshan Road, Wuhan, China Web: www.boster.com.cn Phone: +86 27 67845390 Fax: +86 27 67845390 Email: [email protected] Selected Validation Data Lane 1: U87 Cell LysateLane 2: 22RV1 Cell LysateLane 3: JURKAT Cell LysateLane 4: HT1080 Cell Lysate FOR RESEARCH USE ONLY. -
Increased Gene Copy Number of DEFA1/DEFA3 Worsens Sepsis by Inducing Endothelial Pyroptosis
Increased gene copy number of DEFA1/DEFA3 worsens sepsis by inducing endothelial pyroptosis QiXing Chena, Yang Yangb, JinChao Houb, Qiang Shua, YiXuan Yinc, WeiTao Fuc, Feng Hanc, TingJun Houc,d, CongLi Zengb, Elizabeta Nemethe, Rose Linzmeiere, Tomas Ganze,1, and XiangMing Fanga,b,1 aDepartment of Clinical Research Center, Children’s Hospital, Zhejiang University School of Medicine, 310052 Hangzhou, China; bDepartment of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003 Hangzhou, China; cCollege of Pharmaceutical Sciences, Zhejiang University, 310058 Hangzhou, China; dInstitute of Functional Nano and Soft Materials, Soochow University, 215123 Suzhou, China; and eDepartment of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095 Edited by Michael Zasloff, Georgetown University Medical Center, Washington, DC, and accepted by Editorial Board Member Ruslan Medzhitov December 27, 2018 (received for review July 26, 2018) Sepsis claims an estimated 30 million episodes and 6 million deaths The mechanisms causing the quiescent endothelium to develop per year, and treatment options are rather limited. Human barrier dysfunction during sepsis might hold the key to future neutrophil peptides 1–3 (HNP1–3) are the most abundant neutro- therapeutic strategies, but they are still largely unknown. phil granule proteins but their neutrophil content varies because Defensins are short cationic, amphiphilic, cysteine-rich anti- of unusually extensive gene copy number polymorphism. A ge- microbial peptides with three or four intramolecular disulfide netic association study found that increased copy number of the bonds. They are classified as α-, β-, and θ-defensins, of which the HNP-encoding gene DEFA1/DEFA3 is a risk factor for organ dys- first two are the most common human antimicrobial peptides function during sepsis development.