Identification of a Subset of Immunosuppressive P2RX1

Total Page:16

File Type:pdf, Size:1020Kb

Identification of a Subset of Immunosuppressive P2RX1 ARTICLE https://doi.org/10.1038/s41467-020-20447-y OPEN Identification of a subset of immunosuppressive P2RX1-negative neutrophils in pancreatic cancer liver metastasis Xu Wang1,2,4, Li-Peng Hu1,4, Wei-Ting Qin1,4, Qin Yang1,4, De-Yu Chen2,4, Qing Li1, Kai-Xia Zhou1, Pei-Qi Huang1, Chun-Jie Xu1, Jun Li1, Lin-Li Yao1, Ya-Hui Wang1, Guang-Ang Tian1, Jian-Yu Yang3, ✉ ✉ ✉ Min-Wei Yang3, De-Jun Liu3, Yong-Wei Sun 3 , Shu-Heng Jiang 1 , Xue-Li Zhang 1 & ✉ Zhi-Gang Zhang 1 1234567890():,; The immunosuppressive microenvironment that is shaped by hepatic metastatic pancreatic ductal adenocarcinoma (PDAC) is essential for tumor cell evasion of immune destruction. Neutrophils are important components of the metastatic tumor microenvironment and exhibit heterogeneity. However, the specific phenotypes, functions and regulatory mechan- isms of neutrophils in PDAC liver metastases remain unknown. Here, we show that a subset of P2RX1-negative neutrophils accumulate in clinical and murine PDAC liver metastases. RNA sequencing of murine PDAC liver metastasis-infiltrated neutrophils show that P2RX1- deficient neutrophils express increased levels of immunosuppressive molecules, including PD-L1, and have enhanced mitochondrial metabolism. Mechanistically, the transcription factor Nrf2 is upregulated in P2RX1-deficient neutrophils and associated with PD-L1 expression and metabolic reprogramming. An anti-PD-1 neutralizing antibody is sufficient to compromise the immunosuppressive effects of P2RX1-deficient neutrophils on OVA- activated OT1 CD8+ T cells. Therefore, our study uncovers a mechanism by which metastatic PDAC tumors evade antitumor immunity by accumulating a subset of immuno- suppressive P2RX1-negative neutrophils. 1 State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China. 2 Department of Radiation Oncology, Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, P.R. China. 3 Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China. 4These authors contributed equally: Xu ✉ Wang, Li-Peng Hu, Wei-Ting Qin, Qin Yang, De-Yu Chen. email: [email protected]; [email protected]; [email protected]; [email protected] NATURE COMMUNICATIONS | (2021) 12:174 | https://doi.org/10.1038/s41467-020-20447-y | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-20447-y ancreatic ductal adenocarcinoma (PDAC) is the fourth Fig. 1a). Differential analysis comparing primary PDAC and most common cause of death from cancer, with a 5-year adjacent pancreas identified a set of differentially expressed genes, P 1 survival rate of 8% . PDAC remains one of the most lethal 82 of which were involved in immune responses (Fig. 1a). In cancers in part due to its aggressive metastatic nature2. The liver comparison, 320 differentially expressed genes between liver is the most common site of distant metastases of PDAC, and metastases and adjacent liver tissues were implicated in immune more than half of PDAC patients are diagnosed with liver responses (Fig. 1a). We also found that primary PDAC samples metastases. Whole-genome sequencing studies revealed limited and liver metastatic tissues showed significant differences in genetic heterogeneity between primary and metastatic tumors, immune responses. with remarkably uniform mutations in PDAC driver genes, To identify specific immune cells linked to PDAC liver including KRAS, TP53, and SMAD43. However, when comparing metastasis, the immunome, a compendium of 28 immune cell the transcriptome data of primary and metastatic tumors that types that infiltrated in tumors, was analyzed14. The results contain microenvironment tissues, major differences were showed that immune cell infiltration was intensively repro- uncovered4. To establish metastatic tumors in liver tissues, the grammed in primary and metastatic PDAC (Fig. 1b). We noticed cells must successfully negotiate complex steps within a foreign that antitumor immune cells, including activated CD8+, central microenvironment. The acquisition of genomic alterations does memory CD8+, effector memory CD8+ and T helper type 1 not fully explain the process of liver metastases, which is likely to (Th1) cells, were markedly downregulated in PDAC liver be influenced not only by tumor cells but also by the tumor metastases compared to those in primary PDAC and adjacent microenvironment. liver tissues, whereas the classically recognized protumoral Th2 PDAC is nonimmunogenic and characterized by a desmo- cells were upregulated (Fig. 1b). Additionally, gene ontology (GO) plastic tumor microenvironment, with high numbers of fibro- analysis revealed substantial enrichment of certain antitumor blasts and extracellular matrix deposition5. Although liver immunity-associated pathways, including antigen processing and metastases were also identified with a similar desmoplastic presentation and the T cell receptor signaling pathway, that were stroma, recent studies observed that the metastatic tumor downregulated compared to those of adjacent nontumoral liver microenvironment possesses a relatively abundant infiltration of tissue, whereas tumor growth-related pathways, such as DNA immune cells6. Therefore, shaping an immunosuppressive replication and epithelial cell proliferation, were upregulated microenvironment is a critical step by which metastatic tumors (Fig. 1c). These analyses demonstrated a local immunosuppres- evade antitumor immunity and colonize foreign tissues. The sive microenvironment in hepatic metastatic PDAC, which might immunosuppressive microenvironment at the primary tumor site facilitate local tumor growth. Emerging evidence suggests that has been studied for decades; however, relatively little is known neutrophils play important roles in tumor metastasis15. We found about how the hepatic local immune microenvironment is that neutrophils were rare in primary PDAC and adjacent mediated by metastatic tumors. pancreas (Fig. 1b). However, in PDAC liver metastases and Neutrophils have long been recognized as a homogeneous cell adjacent liver tissues, neutrophils were among the most abundant population that constitutes the first line of defense against immunocytes, which suggested that they might have potential invading pathogens. Recently, accumulating evidence has revealed roles in PDAC liver metastasis. Apart from Th1 and Th2 cells, the the essential role of neutrophils in the tumor microenvironment, role of Th17 cells in tumor microenvironment has recently with both tumor-suppressing and tumor-promoting effects7,8. attracted much attention, with both promotive16 and suppres- However, the specific phenotypes and mechanisms that char- sive17 effects on tumor metastasis having been reported. Our acterize this heterogeneity remain unclarified. analyses showed that primary PDAC and PDAC liver metastases Extracellular nucleotides (particularly ATP) and adenosine had more Th17 cells as compared to adjacent pancreas and (ADO) are major biochemical constituents of tumor micro- adjacent liver tissues, respectively (Fig. 1b). The specific function environment9. By activating tumoral purinergic P2- and P1- of Th17 in PDAC progression remains to be explored. receptors, extracellular purines facilitate the tumor growth Interestingly, we noted that the purinergic receptor signaling directly10. In addition, host immune cells express abundant P2- pathway and response to ATP-related gene expression were and P1- receptors, and extracellular purines are essential for dysregulated in PDAC liver metastases (Fig. 1b). Given the mediating immune cells trafficking and immune phenotypes11. essential role of purinergic signaling in manipulating the immune The purinergic receptor P2RX1 is an ATP-gated ion channel and response and tumor growth11,18, we next assessed the relevance of participates in smooth muscle contraction and immunity12,13. purinergic signaling-associated molecules in PDAC liver metas- In this work, we identify a subset of P2RX1-negative (P2RX1−) tases, which included 18 purinergic receptors, 46 purine neutrophils that is mobilized and recruited in PDAC liver transmitters and 37 purine hydrolases. The results showed that metastases. P2RX1 deficiency shapes the immunosuppressive these molecules were thoroughly reprogrammed, with 26 sig- nature of this subset of neutrophils and promotes PDAC liver nificantly upregulated and 46 significantly downregulated mole- metastases. Further studies demonstrate that upregulated activity cules (Supplementary Fig. 1b, c). Venn diagram analysis indicated of the anti-inflammatory transcription factor Nrf2 contributes to that ADORA2B, a well-recognized immunosuppressive purinergic the generation of the immunosuppressive phenotype of P2RX1- receptor, overlapped in upregulated gene lists, whereas P2RX1 neutrophils. overlapped in the downregulated gene lists when comparing liver metastases vs adjacent liver tissue, primary PDAC vs liver metastases and primary PDAC vs adjacent pancreas (Fig. 1d, Results Supplementary Fig. 1b and c). Reduced P2RX1 is associated with an immunosuppressive Next, correlations between PDAC metastatic immune compo- microenvironment in PDAC liver metastases. To investigate nents and purinergic signaling molecules were analyzed (Supple- specific transcriptome alterations that might influence PDAC mentary Fig. 2a). We observed that ADORA2B was negatively liver metastases and its microenvironment, bioinformatics
Recommended publications
  • Cells Δγ Lineage Choice and Shapes Peripheral Purinergic P2X7
    Purinergic P2X7 Receptor Drives T Cell Lineage Choice and Shapes Peripheral δγ Cells This information is current as Michela Frascoli, Jessica Marcandalli, Ursula Schenk and of October 2, 2021. Fabio Grassi J Immunol 2012; 189:174-180; Prepublished online 30 May 2012; doi: 10.4049/jimmunol.1101582 http://www.jimmunol.org/content/189/1/174 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2012/05/30/jimmunol.110158 Material 2.DC1 http://www.jimmunol.org/ References This article cites 31 articles, 15 of which you can access for free at: http://www.jimmunol.org/content/189/1/174.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on October 2, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2012 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Purinergic P2X7 Receptor Drives T Cell Lineage Choice and Shapes Peripheral gd Cells Michela Frascoli,* Jessica Marcandalli,* Ursula Schenk,*,1 and Fabio Grassi*,† TCR signal strength instructs ab versus gd lineage decision in immature T cells.
    [Show full text]
  • Single-Cell Rnaseq Reveals Seven Classes of Colonic Sensory Neuron
    Gut Online First, published on February 26, 2018 as 10.1136/gutjnl-2017-315631 Neurogastroenterology ORIGINAL ARTICLE Gut: first published as 10.1136/gutjnl-2017-315631 on 26 February 2018. Downloaded from Single-cell RNAseq reveals seven classes of colonic sensory neuron James R F Hockley,1,2 Toni S Taylor,1 Gerard Callejo,1 Anna L Wilbrey,2 Alex Gutteridge,2 Karsten Bach,1 Wendy J Winchester,2 David C Bulmer,1 Gordon McMurray,2 Ewan St John Smith1 ► Additional material is ABSTRact pathways to the central nervous system (CNS).1 In published online only. To view Objective Integration of nutritional, microbial and the colorectum, sensory innervation is organised please visit the journal online (http:// dx. doi. org/ 10. 1136/ inflammatory events along the gut-brain axis can alter into two main pathways: thoracolumbar (TL) spinal gutjnl- 2017- 315631). bowel physiology and organism behaviour. Colonic afferents projecting via the lumbar splanchnic sensory neurons activate reflex pathways and give nerve (LSN) and lumbosacral (LS) spinal afferents 1Department of Pharmacology, University of Cambridge, rise to conscious sensation, but the diversity and projecting via the pelvic nerve (PN) that are respon- Cambridge, UK division of function within these neurons is poorly sible for transducing conscious sensations of full- 2Neuroscience and Pain understood. The identification of signalling pathways ness, discomfort, urgency and pain, in addition to Research Unit, Pfizer, contributing to visceral sensation is constrained by a reflex actions.2 Cambridge, UK paucity of molecular markers. Here we address this by Visceral sensory afferents act to maintain many comprehensive transcriptomic profiling and unsupervised aspects of GI physiology, such as continence and Correspondence to James R F Hockley, Department clustering of individual mouse colonic sensory neurons.
    [Show full text]
  • Supplemental Information
    Supplemental information Dissection of the genomic structure of the miR-183/96/182 gene. Previously, we showed that the miR-183/96/182 cluster is an intergenic miRNA cluster, located in a ~60-kb interval between the genes encoding nuclear respiratory factor-1 (Nrf1) and ubiquitin-conjugating enzyme E2H (Ube2h) on mouse chr6qA3.3 (1). To start to uncover the genomic structure of the miR- 183/96/182 gene, we first studied genomic features around miR-183/96/182 in the UCSC genome browser (http://genome.UCSC.edu/), and identified two CpG islands 3.4-6.5 kb 5’ of pre-miR-183, the most 5’ miRNA of the cluster (Fig. 1A; Fig. S1 and Seq. S1). A cDNA clone, AK044220, located at 3.2-4.6 kb 5’ to pre-miR-183, encompasses the second CpG island (Fig. 1A; Fig. S1). We hypothesized that this cDNA clone was derived from 5’ exon(s) of the primary transcript of the miR-183/96/182 gene, as CpG islands are often associated with promoters (2). Supporting this hypothesis, multiple expressed sequences detected by gene-trap clones, including clone D016D06 (3, 4), were co-localized with the cDNA clone AK044220 (Fig. 1A; Fig. S1). Clone D016D06, deposited by the German GeneTrap Consortium (GGTC) (http://tikus.gsf.de) (3, 4), was derived from insertion of a retroviral construct, rFlpROSAβgeo in 129S2 ES cells (Fig. 1A and C). The rFlpROSAβgeo construct carries a promoterless reporter gene, the β−geo cassette - an in-frame fusion of the β-galactosidase and neomycin resistance (Neor) gene (5), with a splicing acceptor (SA) immediately upstream, and a polyA signal downstream of the β−geo cassette (Fig.
    [Show full text]
  • Supplementary Material
    Supplementary Material Table S1: Significant downregulated KEGGs pathways identified by DAVID following exposure to five cinnamon- based phenylpropanoids (p < 0.05). p-value Term: Genes (Benjamini) Cytokine-cytokine receptor interaction: FASLG, TNFSF14, CXCL11, IL11, FLT3LG, CCL3L1, CCL3L3, CXCR6, XCR1, 2.43 × 105 RTEL1, CSF2RA, TNFRSF17, TNFRSF14, CCNL2, VEGFB, AMH, TNFRSF10B, INHBE, IFNB1, CCR3, VEGFA, CCR2, IL12A, CCL1, CCL3, CXCL5, TNFRSF25, CCR1, CSF1, CX3CL1, CCL7, CCL24, TNFRSF1B, IL12RB1, CCL21, FIGF, EPO, IL4, IL18R1, FLT1, TGFBR1, EDA2R, HGF, TNFSF8, KDR, LEP, GH2, CCL13, EPOR, XCL1, IFNA16, XCL2 Neuroactive ligand-receptor interaction: OPRM1, THRA, GRIK1, DRD2, GRIK2, TACR2, TACR1, GABRB1, LPAR4, 9.68 × 105 GRIK5, FPR1, PRSS1, GNRHR, FPR2, EDNRA, AGTR2, LTB4R, PRSS2, CNR1, S1PR4, CALCRL, TAAR5, GABRE, PTGER1, GABRG3, C5AR1, PTGER3, PTGER4, GABRA6, GABRA5, GRM1, PLG, LEP, CRHR1, GH2, GRM3, SSTR2, Chlorogenic acid Chlorogenic CHRM3, GRIA1, MC2R, P2RX2, TBXA2R, GHSR, HTR2C, TSHR, LHB, GLP1R, OPRD1 Hematopoietic cell lineage: IL4, CR1, CD8B, CSF1, FCER2, GYPA, ITGA2, IL11, GP9, FLT3LG, CD38, CD19, DNTT, 9.29 × 104 GP1BB, CD22, EPOR, CSF2RA, CD14, THPO, EPO, HLA-DRA, ITGA2B Cytokine-cytokine receptor interaction: IL6ST, IL21R, IL19, TNFSF15, CXCR3, IL15, CXCL11, TGFB1, IL11, FLT3LG, CXCL10, CCR10, XCR1, RTEL1, CSF2RA, IL21, CCNL2, VEGFB, CCR8, AMH, TNFRSF10C, IFNB1, PDGFRA, EDA, CXCL5, TNFRSF25, CSF1, IFNW1, CNTFR, CX3CL1, CCL5, TNFRSF4, CCL4, CCL27, CCL24, CCL25, CCL23, IFNA6, IFNA5, FIGF, EPO, AMHR2, IL2RA, FLT4, TGFBR2, EDA2R,
    [Show full text]
  • WO 2019/079361 Al 25 April 2019 (25.04.2019) W 1P O PCT
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization I International Bureau (10) International Publication Number (43) International Publication Date WO 2019/079361 Al 25 April 2019 (25.04.2019) W 1P O PCT (51) International Patent Classification: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, C12Q 1/68 (2018.01) A61P 31/18 (2006.01) DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, C12Q 1/70 (2006.01) HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, (21) International Application Number: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, PCT/US2018/056167 OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (22) International Filing Date: SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, 16 October 2018 (16. 10.2018) TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (26) Publication Language: English GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, (30) Priority Data: UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, 62/573,025 16 October 2017 (16. 10.2017) US TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, ΓΕ , IS, IT, LT, LU, LV, (71) Applicant: MASSACHUSETTS INSTITUTE OF MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TECHNOLOGY [US/US]; 77 Massachusetts Avenue, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, Cambridge, Massachusetts 02139 (US).
    [Show full text]
  • 13809 P2X7 Receptor (E1E8T) Rabbit Mab
    Revision 1 C 0 2 - t P2X7 Receptor (E1E8T) Rabbit mAb a e r o t S Orders: 877-616-CELL (2355) [email protected] 9 Support: 877-678-TECH (8324) 0 8 Web: [email protected] 3 www.cellsignal.com 1 # 3 Trask Lane Danvers Massachusetts 01923 USA For Research Use Only. Not For Use In Diagnostic Procedures. Applications: Reactivity: Sensitivity: MW (kDa): Source/Isotype: UniProt ID: Entrez-Gene Id: WB, IP H Endogenous 78 Rabbit IgG Q99572 5027 Product Usage Information 2. Valera, S. et al. (1994) Nature 371, 516-9. 3. North, R.A. and Surprenant, A. (2000) Annu Rev Pharmacol Toxicol 40, 563-80. Application Dilution 4. Skaper, S.D. et al. (2010) FASEB J 24, 337-45. 5. Bernardino, L. et al. (2008) J Neurochem 106, 271-80. Western Blotting 1:1000 6. Volonté, C. et al. (2003) Curr Drug Targets CNS Neurol Disord 2, 403-12. Immunoprecipitation 1:50 7. Chessell, I.P. et al. (2005) Pain 114, 386-96. 8. Dell'Antonio, G. et al. (2002) Neurosci Lett 327, 87-90. 9. Barden, N. et al. (2006) Am J Med Genet B Neuropsychiatr Genet 141B, 374-82. Storage 10. Lucae, S. et al. (2006) Hum Mol Genet 15, 2438-45. Supplied in 10 mM sodium HEPES (pH 7.5), 150 mM NaCl, 100 µg/ml BSA, 50% glycerol and less than 0.02% sodium azide. Store at –20°C. Do not aliquot the antibody. Specificity / Sensitivity P2X7 Receptor (E1E8T) Rabbit mAb recognizes endogenous levels of total P2X7 receptor protein. Species Reactivity: Human Source / Purification Monoclonal antibody is produced by immunizing animals with a synthetic peptide corresponding to residues surrounding Leu462 of human P2X7 receptor protein.
    [Show full text]
  • Supplementary Table 1. Pain and PTSS Associated Genes (N = 604
    Supplementary Table 1. Pain and PTSS associated genes (n = 604) compiled from three established pain gene databases (PainNetworks,[61] Algynomics,[52] and PainGenes[42]) and one PTSS gene database (PTSDgene[88]). These genes were used in in silico analyses aimed at identifying miRNA that are predicted to preferentially target this list genes vs. a random set of genes (of the same length). ABCC4 ACE2 ACHE ACPP ACSL1 ADAM11 ADAMTS5 ADCY5 ADCYAP1 ADCYAP1R1 ADM ADORA2A ADORA2B ADRA1A ADRA1B ADRA1D ADRA2A ADRA2C ADRB1 ADRB2 ADRB3 ADRBK1 ADRBK2 AGTR2 ALOX12 ANO1 ANO3 APOE APP AQP1 AQP4 ARL5B ARRB1 ARRB2 ASIC1 ASIC2 ATF1 ATF3 ATF6B ATP1A1 ATP1B3 ATP2B1 ATP6V1A ATP6V1B2 ATP6V1G2 AVPR1A AVPR2 BACE1 BAMBI BDKRB2 BDNF BHLHE22 BTG2 CA8 CACNA1A CACNA1B CACNA1C CACNA1E CACNA1G CACNA1H CACNA2D1 CACNA2D2 CACNA2D3 CACNB3 CACNG2 CALB1 CALCRL CALM2 CAMK2A CAMK2B CAMK4 CAT CCK CCKAR CCKBR CCL2 CCL3 CCL4 CCR1 CCR7 CD274 CD38 CD4 CD40 CDH11 CDK5 CDK5R1 CDKN1A CHRM1 CHRM2 CHRM3 CHRM5 CHRNA5 CHRNA7 CHRNB2 CHRNB4 CHUK CLCN6 CLOCK CNGA3 CNR1 COL11A2 COL9A1 COMT COQ10A CPN1 CPS1 CREB1 CRH CRHBP CRHR1 CRHR2 CRIP2 CRYAA CSF2 CSF2RB CSK CSMD1 CSNK1A1 CSNK1E CTSB CTSS CX3CL1 CXCL5 CXCR3 CXCR4 CYBB CYP19A1 CYP2D6 CYP3A4 DAB1 DAO DBH DBI DICER1 DISC1 DLG2 DLG4 DPCR1 DPP4 DRD1 DRD2 DRD3 DRD4 DRGX DTNBP1 DUSP6 ECE2 EDN1 EDNRA EDNRB EFNB1 EFNB2 EGF EGFR EGR1 EGR3 ENPP2 EPB41L2 EPHB1 EPHB2 EPHB3 EPHB4 EPHB6 EPHX2 ERBB2 ERBB4 EREG ESR1 ESR2 ETV1 EZR F2R F2RL1 F2RL2 FAAH FAM19A4 FGF2 FKBP5 FLOT1 FMR1 FOS FOSB FOSL2 FOXN1 FRMPD4 FSTL1 FYN GABARAPL1 GABBR1 GABBR2 GABRA2 GABRA4
    [Show full text]
  • Transcriptomes and Neurotransmitter Profiles of Classes of Gustatory And
    ARTICLE DOI: 10.1038/s41467-017-01095-1 OPEN Transcriptomes and neurotransmitter profiles of classes of gustatory and somatosensory neurons in the geniculate ganglion Gennady Dvoryanchikov 1, Damian Hernandez1, Jennifer K. Roebber 2, David L. Hill3, Stephen D. Roper 1,2,4 & Nirupa Chaudhari 1,2,4 Taste buds are innervated by neurons whose cell bodies reside in cranial sensory ganglia. Studies on the functional properties and connectivity of these neurons are hindered by the lack of markers to define their molecular identities and classes. The mouse geniculate ganglion contains chemosensory neurons innervating lingual and palatal taste buds and somatosensory neurons innervating the pinna. Here, we report single cell RNA sequencing of geniculate ganglion neurons. Using unbiased transcriptome analyses, we show a pronounced separation between two major clusters which, by anterograde labeling, correspond to gus- tatory and somatosensory neurons. Among the gustatory neurons, three subclusters are present, each with its own complement of transcription factors and neurotransmitter response profiles. The smallest subcluster expresses both gustatory- and mechanosensory- related genes, suggesting a novel type of sensory neuron. We identify several markers to help dissect the functional distinctions among gustatory neurons and address questions regarding target interactions and taste coding. 1 Department of Physiology & Biophysics, University of Miami Miller School of Medicine, Miami, FL 33136, USA. 2 Graduate Program in Neurosciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA. 3 Department of Psychology, University of Virginia, Charlottesville, VA 22904, USA. 4 Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA. Gennady Dvoryanchikov and Damian Hernandez contributed equally to the work.
    [Show full text]
  • 500 P2RX7 Agonist Treatment Boosts the Ability of IL-12-Activated CD8+ T
    J Immunother Cancer: first published as 10.1136/jitc-2020-SITC2020.0500 on 10 December 2020. Downloaded from Abstracts homografts and assessed the relationship between CD5 and metastasis, and deregulation of E-cadherin is a hallmark for increased CD69 and PD-1 (markers of T cell activation and epithelial-mesenchymal transition (EMT). exhaustion) by flow cytometry. Methods The study protocol was approved by the Medical Results We report that T cell CD5 levels were higher in CD4 Ethical Committee of the Academic Medical Centre, Amster- + T cells than in CD8+ T cells in 4T1 tumour-bearing mice, dam, The Netherlands (NL42718.018.12). AIMM’s BCL6 and and that high CD5 levels on CD4+ T cells were maintained Bcl-xL immortalization method1 was used to interrogate the in peripheral organs (spleen and lymph nodes). However, both human antibody repertoire. From a carrier of a pathogenic CD4+ and CD8+ T cells recruited to tumours had reduced gene variant in the MSH6 gene diagnosed with stage IV CRC CD5 compared to CD4+ and CD8+ T cells in peripheral and liver metastasis that had been treated with avastin, capeci- organs. In addition, CD5highCD4+ T cells and CD5highCD8 tabine and oxaliplatin, peripheral-blood memory B cells were + T cells from peripheral organs exhibited higher levels of obtained 9 years after last treatment. Antibodies-containing activation and associated exhaustion compared to CD5lowCD4 supernatant of cultured B-cells were screened for binding to 3 + T cell and CD5lowCD8+ T cell from the same organs. different CRC cell lines (DLD1, LS174T and COLO205) and Interestingly, CD8+ T cells among TILs and downregulated absence of binding to fibroblast by flow cytometry.
    [Show full text]
  • G Protein-Coupled Receptors
    S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2015/16: G protein-coupled receptors. British Journal of Pharmacology (2015) 172, 5744–5869 THE CONCISE GUIDE TO PHARMACOLOGY 2015/16: G protein-coupled receptors Stephen PH Alexander1, Anthony P Davenport2, Eamonn Kelly3, Neil Marrion3, John A Peters4, Helen E Benson5, Elena Faccenda5, Adam J Pawson5, Joanna L Sharman5, Christopher Southan5, Jamie A Davies5 and CGTP Collaborators 1School of Biomedical Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK, 2Clinical Pharmacology Unit, University of Cambridge, Cambridge, CB2 0QQ, UK, 3School of Physiology and Pharmacology, University of Bristol, Bristol, BS8 1TD, UK, 4Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK, 5Centre for Integrative Physiology, University of Edinburgh, Edinburgh, EH8 9XD, UK Abstract The Concise Guide to PHARMACOLOGY 2015/16 provides concise overviews of the key properties of over 1750 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/ 10.1111/bph.13348/full. G protein-coupled receptors are one of the eight major pharmacological targets into which the Guide is divided, with the others being: ligand-gated ion channels, voltage-gated ion channels, other ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading.
    [Show full text]
  • A Truncation Variant of the Cation Channel P2RX5 Is Upregulated During T Cell Activation
    A Truncation Variant of the Cation Channel P2RX5 Is Upregulated during T Cell Activation . Pierre Abramowski1,2", Christoph Ogrodowczyk3", Roland Martin1,4* , Olaf Pongs3,5 1 Institute for Neuroimmunology and Clinical Multiple Sclerosis Research (inims), ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany, 2 Research Department Cell and Gene Therapy, Clinic for Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany, 3 Institute for Neural Signaltransduction, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany, 4 Neuroimmunology and MS Research, Department of Neurology, University Hospital Zurich, Zurich, Switzerland, 5 Institute for Physiology, University Hospital Homburg, Homburg/Saar, Germany Abstract Members of the P2X family of ligand-gated cation channels (P2RX) are expressed by various cell types including neurons, smooth- and cardiac muscle cells, and leukocytes. The channels mediate signalling in response to extracellular ATP. Seven subunit isoforms (P2RX1-P2RX7) have been identified and these can assemble as homo- and heterotrimeric molecules. In humans, P2RX5 exists as a natural deletion mutant lacking amino acids 328–349 of exon 10, which are part of transmembrane (TM) 2 and pre-TM2 regions in other organisms like rat, chicken and zebrafish. We show that P2RX5 gene expression of human T lymphocytes is upregulated during activation. P2RX5 is recruited to the cell surface. P2RX5-siRNA- transfected CD4+ T cells produced twofold more IL-10 than controls. Surface and intracellular P2RX5 expression was upregulated in activated antigen-specific CD4+ T cell clones. These data indicate a functional role of the human P2RX5 splice variant in T cell activation and immunoregulation. Citation: Abramowski P, Ogrodowczyk C, Martin R, Pongs O (2014) A Truncation Variant of the Cation Channel P2RX5 Is Upregulated during T Cell Activation.
    [Show full text]
  • G Protein‐Coupled Receptors
    S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2019/20: G protein-coupled receptors. British Journal of Pharmacology (2019) 176, S21–S141 THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: G protein-coupled receptors Stephen PH Alexander1 , Arthur Christopoulos2 , Anthony P Davenport3 , Eamonn Kelly4, Alistair Mathie5 , John A Peters6 , Emma L Veale5 ,JaneFArmstrong7 , Elena Faccenda7 ,SimonDHarding7 ,AdamJPawson7 , Joanna L Sharman7 , Christopher Southan7 , Jamie A Davies7 and CGTP Collaborators 1School of Life Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK 2Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria 3052, Australia 3Clinical Pharmacology Unit, University of Cambridge, Cambridge, CB2 0QQ, UK 4School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK 5Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway, Anson Building, Central Avenue, Chatham Maritime, Chatham, Kent, ME4 4TB, UK 6Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK 7Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK Abstract The Concise Guide to PHARMACOLOGY 2019/20 is the fourth in this series of biennial publications. The Concise Guide provides concise overviews of the key properties of nearly 1800 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide represents approximately 400 pages, the material presented is substantially reduced compared to information and links presented on the website.
    [Show full text]