Issn:0362-028X
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cross-Resistance to Phage Infection in Listeria Monocytogenes Serotype 1/2A Mutants and Preliminary Analysis of Their Wall Teichoic Acids
University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Masters Theses Graduate School 8-2019 Cross-resistance to Phage Infection in Listeria monocytogenes Serotype 1/2a Mutants and Preliminary Analysis of their Wall Teichoic Acids Danielle Marie Trudelle University of Tennessee, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes Recommended Citation Trudelle, Danielle Marie, "Cross-resistance to Phage Infection in Listeria monocytogenes Serotype 1/2a Mutants and Preliminary Analysis of their Wall Teichoic Acids. " Master's Thesis, University of Tennessee, 2019. https://trace.tennessee.edu/utk_gradthes/5512 This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a thesis written by Danielle Marie Trudelle entitled "Cross-resistance to Phage Infection in Listeria monocytogenes Serotype 1/2a Mutants and Preliminary Analysis of their Wall Teichoic Acids." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Master of Science, with a major in Food Science. Thomas G. Denes, Major Professor We have read this thesis and recommend its acceptance: -
Thesis Listeria Monocytogenes and Other
THESIS LISTERIA MONOCYTOGENES AND OTHER LISTERIA SPECIES IN SMALL AND VERY SMALL READY-TO-EAT MEAT PROCESSING PLANTS Submitted by Shanna K. Williams Department of Animal Sciences In partial fulfillment of the requirements for the degree of Master of Science Colorado State University Fort Collins, Colorado Fall 2010 Master’s Committee: Department Chair: William Wailes Advisor: Kendra Nightingale John N. Sofos Doreene Hyatt ABSTRACT OF THESIS DETECTION AND MOLECULAR CHARACTERIZATION OF LISTERIA MONOCYTOGENES AND OTHER LISTERIA SPECIES IN THE PROCESSING PLANT ENVIRONMENT Listeria monocytogenes is the causative agent of listeriosis, a severe foodborne disease associated with a high case fatality rate. To prevent product contamination with L. monocytogenes, it is crucial to understand Listeria contamination patterns in the food processing plant environment. The aim of this study was to monitor Listeria contamination patterns for two years in six small or very small ready-to-eat (RTE) meat processing plants using a routine combined cultural and molecular typing program. Each of the six plants enrolled in the study were visited on a bi-monthly basis for a two-year period where samples were collected, microbiologically analyzed for Listeria and isolates from positive samples were characterized by molecular subtyping. Year one of the project focused only on non-food contact environmental samples within each plant, and year two focused again on non-food contact environmental samples as well as food contact surfaces and finished RTE meat product samples from participating plants. Between year one and year two of sampling, we conducted an in-plant training session ii involving all employees at each plant. -
UK Standards for Microbiology Investigations
UK Standards for Microbiology Investigations Identification of Listeria species, and other Non-Sporing Gram Positive Rods (except Corynebacterium) Issued by the Standards Unit, Microbiology Services, PHE Bacteriology – Identification | ID 3 | Issue no: 3.1 | Issue date: 29.10.14 | Page: 1 of 29 © Crown copyright 2014 Identification of Listeria species, and other Non-Sporing Gram Positive Rods (except Corynebacterium) Acknowledgments UK Standards for Microbiology Investigations (SMIs) are developed under the auspices of Public Health England (PHE) working in partnership with the National Health Service (NHS), Public Health Wales and with the professional organisations whose logos are displayed below and listed on the website https://www.gov.uk/uk- standards-for-microbiology-investigations-smi-quality-and-consistency-in-clinical- laboratories. SMIs are developed, reviewed and revised by various working groups which are overseen by a steering committee (see https://www.gov.uk/government/groups/standards-for-microbiology-investigations- steering-committee). The contributions of many individuals in clinical, specialist and reference laboratories who have provided information and comments during the development of this document are acknowledged. We are grateful to the Medical Editors for editing the medical content. For further information please contact us at: Standards Unit Microbiology Services Public Health England 61 Colindale Avenue London NW9 5EQ E-mail: [email protected] Website: https://www.gov.uk/uk-standards-for-microbiology-investigations-smi-quality- -
Adaptive Strategies of Enterococcus Mundtii to Different Living Conditions in the Gut Microbiome of Spodoptera Littoralis Larvae
Adaptive strategies of Enterococcus mundtii to different living conditions in the gut microbiome of Spodoptera littoralis larvae Dissertation To Fulfill the Requirements for the Degree of „doctor rerum naturalium“ (Dr. rer. nat.) Submitted to the Council of the Faculty of Biological Sciences of the Friedrich Schiller University Jena By Tilottama Mazumdar, Masters in Biotechnology, born on 17.04.1992 in India Reviewers 1. Prof. Dr. Wilhelm Boland, Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology 2. Prof. Dr. Erika Kothe, Institute of Microbiology, Friedrich Schiller University 3. Prof. Dr. David Heckel, Department of Entomology, Max Planck Institute for Chemical Ecology 4. Dr. Mark S Gresnigt, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (HKI) 5. Prof. Dr. Dirk Hoffmeister, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (HKI) 6. Prof. Dr. Dino McMahon, Institute of Biology – Zoology, Freie Universität Berlin Date of Defense- 19th November, 2020 2 “We are all of us walking communities of bacteria. The world shimmers, a pointillist landscape made of tiny living beings” --- Lynn Marguilis, Microcosmos: Four Billion Years of Microbial Evolution, 1986 “We can allow satellites, planets, suns, universe, nay whole systems of universe, to be governed by laws, but the smallest insect, we wish to be created at once by special act.” --- Charles Darwin, Darwin’s religious odessey, 2002 “Science cannot solve the ultimate mystery of nature. And that is because, in the last analysis, we ourselves are a part of the mystery that we are trying to solve.” --- Max Planck, Where is Science going? , 1981 3 Contents 1 Introduction ................................................................................................................................... -
Listeria Costaricensis Sp. Nov. Kattia Núñez-Montero, Alexandre Leclercq, Alexandra Moura, Guillaume Vales, Johnny Peraza, Javier Pizarro-Cerdá, Marc Lecuit
Listeria costaricensis sp. nov. Kattia Núñez-Montero, Alexandre Leclercq, Alexandra Moura, Guillaume Vales, Johnny Peraza, Javier Pizarro-Cerdá, Marc Lecuit To cite this version: Kattia Núñez-Montero, Alexandre Leclercq, Alexandra Moura, Guillaume Vales, Johnny Peraza, et al.. Listeria costaricensis sp. nov.. International Journal of Systematic and Evolutionary Microbiology, Microbiology Society, 2018, 68 (3), pp.844-850. 10.1099/ijsem.0.002596. pasteur-02320001 HAL Id: pasteur-02320001 https://hal-pasteur.archives-ouvertes.fr/pasteur-02320001 Submitted on 18 Oct 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives| 4.0 International License Listeria costaricensis sp. nov. Kattia Núñez-Montero1,*, Alexandre Leclercq2,3,4*, Alexandra Moura2,3,4*, Guillaume Vales2,3,4, Johnny Peraza1, Javier Pizarro-Cerdá5,6,7#, Marc Lecuit2,3,4,8# 1 Centro de Investigación en Biotecnología, Escuela de Biología, Instituto Tecnológico de Costa Rica, Cartago, Costa Rica 2 Institut Pasteur, -
A Critical Review on Listeria Monocytogenes
International Journal of Innovations in Biological and Chemical Sciences, Volume 13, 2020, 95-103 A Critical Review on Listeria monocytogenes Vedavati Goudar and Nagalambika Prasad* *Department of Microbiology, Faculty of Life Science, School of Life Sciences, JSS Academy of Higher Education & Research, Mysuru, Karnataka, Pin code: 570015, India ABSTRACT Listeria monocytogenes is an omnipresent gram +ve, rod shaped, facultative, and motile bacteria. It is an opportunistic intracellular pathogenic microorganism that has become crucial reason for human food borne infections worldwide. It causes Listeriosis, the disease that can be serious and fatal to human and animals. Listeria outbreaks are often linked to dairy products, raw vegetables, raw meat and smoked fish, raw milk. The most effected country by Listeriosis is United States. CDC estimated that 1600 people get Listeriosis annually and regarding 260 die. It additionally contributes to negative economic impact because of the value of surveillance, investigation, treatment and prevention of sickness. The analysis of food products for presence of pathogenic microorganisms is one among the fundamental steps to regulate safety of food. This article intends to review the status of its introduction, characteristics, outbreaks, symptoms, prevention and treatment, more importantly to controlling the Listeriosis and its safety measures. Keywords: Listeria monocytogenes, Listeriosis, Food borne pathogens, Contamination INTRODUCTION Food borne health problem is outlined by the World Health Organization as “diseases, generally occurs by either infectious or hepatotoxic in nature, caused by the agents that enter the body through the activity of food WHO 2015 [1]. Causes of food borne health problem include bacteria, parasites, viruses, toxins, metals, and prions [2]. -
Development and Role of the Indigenous Gut Microbiota Of
Development and role of the indigenous gut microbiota of Spodoptera littoralis Dissertation To Fulfill the Requirements for the Degree of ,,doctor rerum naturalium“ (Dr. rer. nat.) Submitted to the Council of the Faculty of Biology and Pharmacy of the Friedrich Schiller University Jena by Beng-Soon Teh (M.Sc) born on 12.02.1985 in Penang, Malaysia Gutachter: 1. …. 2. …. 3. …. Tag der öffentlichen Verteidigung: Fluorescent GFP-tagged Enterococcus mundtii TABLE of CONTENTS Abbreviations and symbols 1. Introduction .......................................................................................................... 1 1.1 Host-microbiota symbiosis interactions ........................................................... 1 1.1.1 Insect-bacteria symbiosis interactions ........................................................ 2 1.2 Physiological conditions and stresses in the gut environment of insects ......... 3 1.3 Contributions of the gut microbiome ................................................................ 5 1.4 Diversity of the gut microbiota in insects ......................................................... 6 1.5 Model organism: Spodoptera littoralis ............................................................. 9 1.6 The physiology of lactic acid bacteria ............................................................ 10 1.6.1 General characteristics of enterococci ...................................................... 11 1.7 Colonization of enterococci in insects ............................................................ 14 -
Prevalent Human Gut Bacteria Hydrolyse and Metabolise Important Food-Derived Mycotoxins and Masked Mycotoxins
toxins Article Prevalent Human Gut Bacteria Hydrolyse and Metabolise Important Food-Derived Mycotoxins and Masked Mycotoxins Noshin Daud 1, Valerie Currie 1 , Gary Duncan 1, Freda Farquharson 1, Tomoya Yoshinari 2, Petra Louis 1 and Silvia W. Gratz 1,* 1 Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK; [email protected] (N.D.); [email protected] (V.C.); [email protected] (G.D.); [email protected] (F.F.); [email protected] (P.L.) 2 Division of Microbiology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-9501, Japan; [email protected] * Correspondence: [email protected] Received: 21 September 2020; Accepted: 9 October 2020; Published: 13 October 2020 Abstract: Mycotoxins are important food contaminants that commonly co-occur with modified mycotoxins such as mycotoxin-glucosides in contaminated cereal grains. These masked mycotoxins are less toxic, but their breakdown and release of unconjugated mycotoxins has been shown by mixed gut microbiota of humans and animals. The role of different bacteria in hydrolysing mycotoxin-glucosides is unknown, and this study therefore investigated fourteen strains of human gut bacteria for their ability to break down masked mycotoxins. Individual bacterial strains were incubated anaerobically with masked mycotoxins (deoxynivalenol-3-β-glucoside, DON-Glc; nivalenol-3-β-glucoside, NIV-Glc; HT-2-β-glucoside, HT-2-Glc; diacetoxyscirpenol-α-glucoside, DAS-Glc), or unconjugated mycotoxins (DON, NIV, HT-2, T-2, and DAS) for up to 48 h. Bacterial growth, hydrolysis of mycotoxin-glucosides and further metabolism of mycotoxins were assessed. -
Monoclonal Antibodies Directed Against the Flagellar Antigens of Listeria Species and Their Potential in EIA-Based Methods
479 Journal of Food Protection, Vol. 50, No. 6, Pages 479-484 (June 1987) Copyright1" International Association of Milk, Food and Environmental Sanitarians Monoclonal Antibodies Directed Against the Flagellar Antigens of Listeria Species and Their Potential in EIA-Based Methods JEFFREY M. FARBER* and JOAN I. SPEIRS Bureau of Microbial Hazards, Food Directorate, Health Protection Branch, Health and Welfare Canada, Tunney's Pasture, Ottawa, Ontario, Canada K1A 0L2 Downloaded from http://meridian.allenpress.com/jfp/article-pdf/50/6/479/1651168/0362-028x-50_6_479.pdf by guest on 23 September 2021 (Received for publication March 10, 1987) ABSTRACT Enzyme immunoassay (EIA) methods have been widely used in food microbiology for detection of micro Monoclonal antibodies directed against antigens of Listeria organisms and their toxins (1,9,16). The EIA is a rapid spp. were produced. Three main classes of immunoglobulins and sensitive test which is simple and inexpensive. The were found that reacted with Listeria strains containing either antibody used in the EIA is critical to success of the pro the A, B, or C flagellar antigen. These antibodies reacted with Listeria monocytogenes, Listeria welshimeri, Listeria seeligeri, cedure, and must be very specific. This is especially true Listeria ivanovii and Listeria innocua, but not Listeria grayi, for Listeria, because it is known to cross-react with many Listeria murrayi or Listeria denitrificans. The monoclones gram-positive as well as gram-negative bacteria tested did not cross-react with any of the 30 non-Listeria cul (14,15,19). In an effort to develop a rapid EIA procedure tures examined, including Staphylococcus aureus and Strep for detection of Listeria spp. -
The Ecology, Epidemiology and Virulence of Enterococcus
Microbiology (2009), 155, 1749–1757 DOI 10.1099/mic.0.026385-0 Review The ecology, epidemiology and virulence of Enterococcus Katie Fisher and Carol Phillips Correspondence University of Northampton, School of Health, Park Campus, Boughton Green Road, Northampton Katie Fisher NN2 7AL, UK [email protected] Enterococci are Gram-positive, catalase-negative, non-spore-forming, facultative anaerobic bacteria, which usually inhabit the alimentary tract of humans in addition to being isolated from environmental and animal sources. They are able to survive a range of stresses and hostile environments, including those of extreme temperature (5–65 6C), pH (4.5”10.0) and high NaCl concentration, enabling them to colonize a wide range of niches. Virulence factors of enterococci include the extracellular protein Esp and aggregation substances (Agg), both of which aid in colonization of the host. The nosocomial pathogenicity of enterococci has emerged in recent years, as well as increasing resistance to glycopeptide antibiotics. Understanding the ecology, epidemiology and virulence of Enterococcus speciesisimportant for limiting urinary tract infections, hepatobiliary sepsis, endocarditis, surgical wound infection, bacteraemia and neonatal sepsis, and also stemming the further development of antibiotic resistance. Introduction Taxonomy For many years Enterococcus species were believed to be The genus Enterococcus consists of Gram-positive, catalase- harmless to humans and considered unimportant med- negative, non-spore-forming, facultative anaerobic bacteria ically. Because they produce bacteriocins, Enterococcus that can occur both as single cocci and in chains. species have been used widely over the last decade in the Enterococci belong to a group of organisms known as food industry as probiotics or as starter cultures (Foulquie lactic acid bacteria (LAB) that produce bacteriocins Moreno et al., 2006). -
Xylella Fastidiosa Biologia I Epidemiologia
Xylella fastidiosa Biologia i epidemiologia Emili Montesinos Seguí Catedràtic de Producció Vegetal (Patologia Vegetal) Universitat de Girona [email protected] www.youtube.com/watch?v=sur5VzJslcM Xylella fastidiosa, un patogen que no és nou Newton B. Pierce (1890s, USA) Agrobacterium tumefaciens Chlamydiae Proteobacteria Bartonella bacilliformis Campylobacter coli Bartonella henselae CDC Chlamydophila psittaci Campylobacter fetus Bartonella quintana Bacteroides fragilis CDC Brucella melitensis Bacteroidetes Chlamydophila pneumoniae Campylobacter hyointestinalis Bacteroides thetaiotaomicron Campylobacter jejuni CDC Brucella melitensis biovar Abortus CDC Chlamydia trachomatis Capnocytophaga canimorus Campylobacter lari CDC Brucella melitensis biovar Canis Chryseobacterium meningosepticum Parachlamydia acanthamoebae Campylobacter upsaliensis CDC Brucella melitensis biovar Suis Helicobacter pylori Candidatus Liberibacter africanus CDC Candidatus Liberibacter asiaticus Borrelia burgdorferi Epsilon Borrelia hermsii CDC Anaplasma phagocytophilum Borrelia recurrentis Alpha CDC Ehrlichia canis Spirochetes Borrelia turicatae CDC Ehrlichia chaffeensis Eikenella corrodens Leptospira interrogans CDC Ehrlichia ewingii CDC CDC Neisseria gonorrhoeae Treponema pallidum Ehrlichia ruminantium CDC Neisseria meningitidis CDC Neorickettsia sennetsu Spirillum minus Orientia tsutsugamushi Fusobacterium necrophorum Beta Fusobacteria CDC Bordetella pertussis Rickettsia conorii Streptobacillus moniliformis Burkholderia cepacia Rickettsia -
Listeria Sensu Stricto Specific Genes Involved in Colonization of the Gastrointestinal Tract by Listeria Monocytogenes
TECHNISCHE UNIVERSITÄT MÜNCHEN Lehrstuhl für Mikrobielle Ökologie Characterization of Listeria sensu stricto specific genes involved in colonization of the gastrointestinal tract by Listeria monocytogenes Jakob Johannes Schardt Vollständiger Abdruck der von der Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt der Technischen Universität München zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigten Dissertation. Vorsitzender: Prof. Dr. rer.nat. Siegfried Scherer Prüfende der Dissertation: 1. apl.Prof. Dr.rer.nat. Thilo Fuchs 2. Prof. Dr.med Dietmar Zehn Die Dissertation wurde am 18.01.2018 bei der Technischen Universität München eingereicht und durch die Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt am 14.05.2018 angenommen. Table of contents Table of contents ___________________________________________________________ I List of figures _______________________________________________________________ V List of tables ______________________________________________________________ VI List of abbreviations ________________________________________________________ VII Abstract __________________________________________________________________ IX Zusammenfassung __________________________________________________________ X 1 Introduction ______________________________________________________________ 1 1.1 The genus Listeria ____________________________________________________________ 1 1.1.1 Listeria sensu stricto ________________________________________________________________