Resistance Mechanisms and Inflammatory Bowel Disease 10.1515/Med-2020-0032 Present Multi-Resistant E
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Gut Microbiota of the Egyptian Mongoose As an Early Warning Indicator of Ecosystem Health in Portugal
International Journal of Environmental Research and Public Health Article The Gut Microbiota of the Egyptian Mongoose as an Early Warning Indicator of Ecosystem Health in Portugal Mónica V. Cunha 1,2,3,* , Teresa Albuquerque 1, Patrícia Themudo 1, Carlos Fonseca 4, Victor Bandeira 4 and Luís M. Rosalino 2,4 1 National Institute for Agrarian and Veterinary Research (INIAV, IP), Wildlife, Hunting and Biodiversity R&D Unit, 2780-157 Oeiras, Portugal; [email protected] (T.A.); [email protected] (P.T.) 2 Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal; [email protected] 3 Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal 4 Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal; [email protected] (C.F.); [email protected] (V.B.) * Correspondence: [email protected]; Tel.: +351-214-403-500 Received: 1 April 2020; Accepted: 27 April 2020; Published: 29 April 2020 Abstract: The Egyptian mongoose is a carnivore mammal species that in the last decades experienced a tremendous expansion in Iberia, particularly in Portugal, mainly due to its remarkable ecological plasticity in response to land-use changes. However, this species may have a disruptive role on native communities in areas where it has recently arrived due to predation and the potential introduction of novel pathogens. We report reference information on the cultivable gut microbial landscape of widely distributed Egyptian mongoose populations (Herpestes ichneumon, n = 53) and related antimicrobial tolerance across environmental gradients. -
Supplementary Information
doi: 10.1038/nature06269 SUPPLEMENTARY INFORMATION METAGENOMIC AND FUNCTIONAL ANALYSIS OF HINDGUT MICROBIOTA OF A WOOD FEEDING HIGHER TERMITE TABLE OF CONTENTS MATERIALS AND METHODS 2 • Glycoside hydrolase catalytic domains and carbohydrate binding modules used in searches that are not represented by Pfam HMMs 5 SUPPLEMENTARY TABLES • Table S1. Non-parametric diversity estimators 8 • Table S2. Estimates of gross community structure based on sequence composition binning, and conserved single copy gene phylogenies 8 • Table S3. Summary of numbers glycosyl hydrolases (GHs) and carbon-binding modules (CBMs) discovered in the P3 luminal microbiota 9 • Table S4. Summary of glycosyl hydrolases, their binning information, and activity screening results 13 • Table S5. Comparison of abundance of glycosyl hydrolases in different single organism genomes and metagenome datasets 17 • Table S6. Comparison of abundance of glycosyl hydrolases in different single organism genomes (continued) 20 • Table S7. Phylogenetic characterization of the termite gut metagenome sequence dataset, based on compositional phylogenetic analysis 23 • Table S8. Counts of genes classified to COGs corresponding to different hydrogenase families 24 • Table S9. Fe-only hydrogenases (COG4624, large subunit, C-terminal domain) identified in the P3 luminal microbiota. 25 • Table S10. Gene clusters overrepresented in termite P3 luminal microbiota versus soil, ocean and human gut metagenome datasets. 29 • Table S11. Operational taxonomic unit (OTU) representatives of 16S rRNA sequences obtained from the P3 luminal fluid of Nasutitermes spp. 30 SUPPLEMENTARY FIGURES • Fig. S1. Phylogenetic identification of termite host species 38 • Fig. S2. Accumulation curves of 16S rRNA genes obtained from the P3 luminal microbiota 39 • Fig. S3. Phylogenetic diversity of P3 luminal microbiota within the phylum Spirocheates 40 • Fig. -
Taxonomie a Ekologie Rodu Enterococcus
___________________________________________________________________________ MasarykovauniverzitavBrně Přírodovědeckáfakulta Ústavexperimentální biologie,Oddělenímikrobiologie Taxonomie a ekologie rodu Enterococcus (Bakalářská prácestudijníhoprogramuBiologie oboruObecná biologie –směrMikrobiologie) Hana Bryndová Brno,Českárepublika2008 ___________________________________________________________________________ 1 Za cenné rady,ochotnoupomoc a čas,kterými věnoval při vznikutétopráce,tímto děkuji RNDr.PavluŠvecovi,PhD.,podjehož vedením jsem bakalářskoupráci zpracovala na půděČeskésbírkymikroorganismů. 2 Obsah 1. Úvod...................................................................................................................................6 2. Cíl práce .............................................................................................................................6 3. Taxonomie rodu Enterococcus ...........................................................................................7 3.1 Historietaxonomierodu Enterococcus ......................................................................7 3.2 Současnátaxonomierodu Enterococcus ....................................................................7 3.3 Charakteristikarodu Enterococcus ............................................................................9 3.3.1 Fylogenetickézařazení rodu Enterococcus ............................................................9 3.3.2 Základnícharakteristika .........................................................................................9 -
Current Trends of Enterococci in Dairy Products: a Comprehensive Review of Their Multiple Roles
foods Review Current Trends of Enterococci in Dairy Products: A Comprehensive Review of Their Multiple Roles Maria de Lurdes Enes Dapkevicius 1,2,* , Bruna Sgardioli 1,2 , Sandra P. A. Câmara 1,2, Patrícia Poeta 3,4 and Francisco Xavier Malcata 5,6,* 1 Faculty of Agricultural and Environmental Sciences, University of the Azores, 9700-042 Angra do Heroísmo, Portugal; [email protected] (B.S.); [email protected] (S.P.A.C.) 2 Institute of Agricultural and Environmental Research and Technology (IITAA), University of the Azores, 9700-042 Angra do Heroísmo, Portugal 3 Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5001-801 Vila Real, Portugal; [email protected] 4 Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, 2829-516 Lisboa, Portugal 5 LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, 420-465 Porto, Portugal 6 FEUP—Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal * Correspondence: [email protected] (M.d.L.E.D.); [email protected] (F.X.M.) Abstract: As a genus that has evolved for resistance against adverse environmental factors and that readily exchanges genetic elements, enterococci are well adapted to the cheese environment and may reach high numbers in artisanal cheeses. Their metabolites impact cheese flavor, texture, Citation: Dapkevicius, M.d.L.E.; and rheological properties, thus contributing to the development of its typical sensorial properties. Sgardioli, B.; Câmara, S.P.A.; Poeta, P.; Due to their antimicrobial activity, enterococci modulate the cheese microbiota, stimulate autoly- Malcata, F.X. -
Diarrhea Caused by Enterococcus Villorum in Piglets
JARQ 51 (3), 287 – 292 (2017) http://www.jircas.affrc.go.jp Diarrhea Caused by Enterococcus villorum in Piglets Diarrhea Caused by Enterococcus villorum in Piglets Yukiko TANIGUCHI1, Yukino TAMAMURA2, Yoshihiro WADA3, Ayumi KOBAYASHI4, Tomoyuki SHIBAHARA2, Yoshiharu ISHIKAWA5 and Koichi KADOTA5* 1 Tokachi Livestock Hygiene Service Center (Obihiro, Hokkaido 089-1182, Japan) 2 National Institute of Animal Health, National Agriculture and Food Research Organization (Tsukuba, Ibaraki 305-0856, Japan) 3 Ishikari Livestock Hygiene Service Center (Sapporo, Hokkaido 062-0045, Japan) 4 Shiribeshi Livestock Hygiene Service Center (Kutchan, Hokkaido 044-0083, Japan) 5 Hokkaido Research Station, National Institute of Animal Health, National Agriculture and Food Research Organization (Sapporo, Hokkaido 062-0045, Japan) Abstract Three of 10 piglets with watery diarrhea, aged 24, 21 and 22 days (cases 1, 2 and 3, respectively), were investigated in detail after euthanasia (as the remaining seven recovered without specific treatment). Enterococcal bacteria were isolated and multilocus sequence analysis showed 100% and 99% identity with the phenylalanyl tRNA synthase and RNA polymerase α subunit genes of strains of Enterococcus villorum, respectively. Histologically, severe epithelial desquamation, atrophy, and regeneration of ileal villi were observed in cases 1, 2 and 3, respectively. The number of bacteria was large in case 1, smaller in case 2, and sparse in case 3. These findings suggest that case 1 was at an earlier stage of enteropathy than case 2, and that case 3 was recovering. In case 1, the exfoliation of epithelial cells with many bacteria into the intestinal lumen was interpreted as a host reaction for eradicating marginally pathogenic enteroadherent bacteria. -
Development of Bacterial Communities in Biological Soil Crusts Along
1 Development of bacterial communities in biological soil crusts along 2 a revegetation chronosequence in the Tengger Desert, northwest 3 China 4 5 Author names and affiliations: 6 Lichao Liu1, Yubing Liu1, 2 *, Peng Zhang1, Guang Song1, Rong Hui1, Zengru Wang1, Jin Wang1, 2 7 1Shapotou Desert Research & Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese 8 Academy of Sciences, Lanzhou, 730000, China 9 2Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Northwest Institute 10 of Eco–Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China 11 12 * Corresponding author: Yubing Liu 13 Address: Donggang West Road 320, Lanzhou 730000, P. R. China. 14 Tel: +86 0931 4967202. 15 E-mail address: [email protected] 16 17 Abstract. Knowledge of structure and function of microbial communities in different 18 successional stages of biological soil crusts (BSCs) is still scarce for desert areas. In this study, 19 Illumina MiSeq sequencing was used to assess the composition changes of bacterial communities 20 in different ages of BSCs in the revegetation of Shapotou in the Tengger Desert. The most dominant 21 phyla of bacterial communities shifted with the changed types of BSCs in the successional stages, 22 from Firmicutes in mobile sand and physical crusts to Actinobacteria and Proteobacteria in BSCs, 23 and the most dominant genera shifted from Bacillus, Enterococcus and Lactococcus to 24 RB41_norank and JG34-KF-361_norank. Alpha diversity and quantitative real-time PCR analysis 25 indicated that bacteria richness and abundance reached their highest levels after 15 years of BSC 26 development. -
Supplemental Material S1.Pdf
Phylogeny of Selenophosphate synthetases (SPS) Supplementary Material S1 ! SelD in prokaryotes! ! ! SelD gene finding in sequenced prokaryotes! We downloaded a total of 8263 prokaryotic genomes from NCBI (see Supplementary Material S7). We scanned them with the program selenoprofiles (Mariotti 2010, http:// big.crg.cat/services/selenoprofiles) using two SPS-family profiles, one prokaryotic (seld) and one mixed eukaryotic-prokaryotic (SPS). Selenoprofiles removes overlapping predictions from different profiles, keeping only the prediction from the profile that seems closer to the candidate sequence. As expected, the great majority of output predictions in prokaryotic genomes were from the seld profile. We will refer to the prokaryotic SPS/SelD !genes as SelD, following the most common nomenclature in literature.! To be able to inspect results by hand, and also to focus on good-quality genomes, we considered a reduced set of species. We took the prok_reference_genomes.txt list from ftp://ftp.ncbi.nlm.nih.gov/genomes/GENOME_REPORTS/, which NCBI claims to be a "small curated subset of really good and scientifically important prokaryotic genomes". We named this the prokaryotic reference set (223 species - see Supplementary Material S8). We manually curated most of the analysis in this set, while we kept automatized the !analysis on the full set.! We detected SelD proteins in 58 genomes (26.0%) in the prokaryotic reference set (figure 1 in main paper), which become 2805 (33.9%) when considering the prokaryotic full set (figure SM1.1). The difference in proportion between the two sets is due largely to the presence of genomes of very close strains in the full set, which we consider redundant. -
Modulation of the Gut Microbiota Alters the Tumour-Suppressive Efficacy of Tim-3 Pathway Blockade in a Bacterial Species- and Host Factor-Dependent Manner
microorganisms Article Modulation of the Gut Microbiota Alters the Tumour-Suppressive Efficacy of Tim-3 Pathway Blockade in a Bacterial Species- and Host Factor-Dependent Manner Bokyoung Lee 1,2, Jieun Lee 1,2, Min-Yeong Woo 1,2, Mi Jin Lee 1, Ho-Joon Shin 1,2, Kyongmin Kim 1,2 and Sun Park 1,2,* 1 Department of Microbiology, Ajou University School of Medicine, Youngtongku Wonchondong San 5, Suwon 442-749, Korea; [email protected] (B.L.); [email protected] (J.L.); [email protected] (M.-Y.W.); [email protected] (M.J.L.); [email protected] (H.-J.S.); [email protected] (K.K.) 2 Department of Biomedical Sciences, The Graduate School, Ajou University, Youngtongku Wonchondong San 5, Suwon 442-749, Korea * Correspondence: [email protected]; Tel.: +82-31-219-5070 Received: 22 August 2020; Accepted: 9 September 2020; Published: 11 September 2020 Abstract: T cell immunoglobulin and mucin domain-containing protein-3 (Tim-3) is an immune checkpoint molecule and a target for anti-cancer therapy. In this study, we examined whether gut microbiota manipulation altered the anti-tumour efficacy of Tim-3 blockade. The gut microbiota of mice was manipulated through the administration of antibiotics and oral gavage of bacteria. Alterations in the gut microbiome were analysed by 16S rRNA gene sequencing. Gut dysbiosis triggered by antibiotics attenuated the anti-tumour efficacy of Tim-3 blockade in both C57BL/6 and BALB/c mice. Anti-tumour efficacy was restored following oral gavage of faecal bacteria even as antibiotic administration continued. In the case of oral gavage of Enterococcus hirae or Lactobacillus johnsonii, transferred bacterial species and host mouse strain were critical determinants of the anti-tumour efficacy of Tim-3 blockade. -
Mechanisms of Intrinsic Antibiotic Resistance in Enterococci Alexander Kiruthiga1,2, Kesavaram Padmavathy1*
Review Article Mechanisms of intrinsic antibiotic resistance in enterococci Alexander Kiruthiga1,2, Kesavaram Padmavathy1* ABSTRACT Enterococci are considered as serious nosocomial pathogens as they are likely to exhibit resistance effectively to all antibiotics meant for clinical use. The most predominant species encountered frequently among human infections includes Enterococcus faecalis and Enterococcus faecium. Antibiotic resistance in enterococci may be either intrinsic or acquired through mutation of the intrinsic genes or horizontal gene transfer of resistance determinants. This paper reviews the mechanisms of intrinsic resistance in enterococci. KEY WORDS: Enterococcus faecalis, Enterococcus faecium, Enterococcus, Intrinsic resistance INTRODUCTION species and is not attributed to horizontal gene transfer.[4] The genes encoding intrinsic resistance Among Enterococci, Enterococcus faecalis and may either be expressed constitutively (always Enterococcus faecium are the most often encountered expressed) or induced (expressed only upon antibiotic species in various human infections ranging from exposure).[5] Due to the limited choice of antibiotics uncomplicated urinary tract infection to serious against enterococci, monotherapy with a single class bacteremia. Enterococci are considered as serious of antimicrobial agents often results in poor treatment nosocomial pathogens due to their intrinsic resistance outcomes and is significantly associated with and their potential to acquire resistance to various intrinsic resistance exhibited by them. Enterococci antimicrobial agents.[1] Besides exhibiting natural are proven to be intrinsically resistant to β-lactams, intrinsic resistance to multiple antimicrobial classes aminoglycosides, and sulfonamides.[6] (beta-lactams, aminoglycosides, and glycopeptides), they possess a remarkable ability to acquire resistance Intrinsic resistance in enterococci is found to be mediated to last resort of antibiotics (quinupristin-dalfopristin, by different mechanisms of resistance (Table 1). -
Suppl Table 2
Table S2. Large subunit rRNA gene sequences of Bacteria and Eukarya from V5. ["n" indicates information not specified in the NCBI GenBank database.] Accession number Q length Q start Q end e-value %-ident %-sim GI number Domain Phylum Family Genus / Species JQ997197 529 30 519 3E-165 89% 89% 48728139 Bacteria Actinobacteria Frankiaceae uncultured Frankia sp. JQ997198 732 17 128 2E-35 93% 93% 48728167 Bacteria Actinobacteria Frankiaceae uncultured Frankia sp. JQ997196 521 26 506 4E-95 81% 81% 48728178 Bacteria Actinobacteria Frankiaceae uncultured Frankia sp. JQ997274 369 8 54 4E-14 100% 100% 289551862 Bacteria Actinobacteria Mycobacteriaceae Mycobacterium abscessus JQ999637 486 5 321 7E-62 82% 82% 269314044 Bacteria Actinobacteria Mycobacteriaceae Mycobacterium immunoGenum JQ999638 554 17 509 0 92% 92% 44368 Bacteria Actinobacteria Mycobacteriaceae Mycobacterium kansasii JQ999639 552 18 455 0 93% 93% 196174916 Bacteria Actinobacteria Mycobacteriaceae Mycobacterium sHottsii JQ997284 598 5 598 0 90% 90% 2414571 Bacteria Actinobacteria Propionibacteriaceae Propionibacterium freudenreicHii JQ999640 567 14 560 8E-152 85% 85% 6714990 Bacteria Actinobacteria THermomonosporaceae Actinoallomurus spadix JQ997287 501 8 306 4E-119 93% 93% 5901576 Bacteria Actinobacteria THermomonosporaceae THermomonospora cHromoGena JQ999641 332 26 295 8E-115 95% 95% 291045144 Bacteria Actinobacteria Bifidobacteriaceae Bifidobacterium bifidum JQ999642 349 19 255 5E-82 90% 90% 30313593 Bacteria Bacteroidetes Bacteroidaceae Bacteroides caccae JQ997308 588 20 582 0 90% -
Identification, Properties, and Application of Enterocins Produced by Enterococcal Isolates from Foods
IDENTIFICATION, PROPERTIES, AND APPLICATION OF ENTEROCINS PRODUCED BY ENTEROCOCCAL ISOLATES FROM FOODS THESIS Presented in Partial Fulfillment of the Requirement for the Degree Master of Science in the Graduate School of The Ohio State University By Xueying Zhang, B.S. ***** The Ohio State University 2008 Master Committee: Approved by Professor Ahmed E. Yousef, Advisor Professor Hua Wang __________________________ Professor Luis Rodriguez-Saona Advisor Food Science and Nutrition ABSTRACT Bacteriocins produced by lactic acid bacteria have gained great attention because they have potentials for use as natural preservatives to improve food safety and stability. The objectives of the present study were to (1) screen foods and food products for lactic acid bacteria with antimicrobial activity against Gram-positive bacteria, (2) investigate virulence factors and antibiotic resistance among bacteriocin-producing enterooccal isolates, (3) characterize the antimicrobial agents and their structural gene, and (4) explore the feasibility of using these bacteriocins as food preservatives. In search for food-grade bacteriocin-producing bacteria that are active against spoilage and pathogenic microorganisms, various commercial food products were screened and fifty-one promising Gram-positive isolates were studied. Among them, fourteen food isolates with antimicrobial activity against food-borne pathogenic bacteria, Listeria monocytogenes and Bacillus cereus, were chosen for further study. Based on 16S ribosomal RNA gene sequence analysis, fourteen food isolates were identified as Enterococcus faecalis, and these enterococcal isolates were investigated for the presence of virulence factors and antibiotic resistance through genotypic and phenotypic screening. Results indicated that isolates encoded some combination of virulence factors. The esp gene, encoding extracellular surface protein, was not detected in any of the isolates. -
Phage Infection Mediates Inhibition of Bystander Bacteria
bioRxiv preprint doi: https://doi.org/10.1101/2020.05.11.077669; this version posted June 12, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Phage infection mediates inhibition of bystander bacteria 2 3 Anushila Chatterjeea*, Julia L. E. Willettb*, Gary M. Dunnyb, Breck A. Duerkopa,# 4 5 aDepartment of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, 6 CO, USA, 80045. bDepartment of Microbiology and Immunology, University of Minnesota Medical 7 School, Minneapolis, MN, USA, 55455. 8 9 #Correspondence: Breck A. Duerkop [email protected] 10 *A.C. and J.L.E.W. contributed equally to this work. 11 12 13 Running title: Phage induced T7SS promotes antibacterial antagonism 14 15 Key words: bacteriophages, Enterococcus, antibiotic resistance, phage–bacteria interactions, 16 bacterial secretion systems, type VII secretion, contact-dependent antagonism 17 18 19 20 21 22 23 24 25 26 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.05.11.077669; this version posted June 12, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 27 Abstract 28 Bacteriophages (phages) are being considered as alternative therapeutics for the treatment 29 of multidrug resistant bacterial infections.