Cycle 36 Organism 1

Total Page:16

File Type:pdf, Size:1020Kb

Cycle 36 Organism 1 P.O. Box 131375, Bryanston, 2074 Ground Floor, Block 5 Bryanston Gate, 170 Curzon Road Bryanston, Johannesburg, South Africa 804 Flatrock, Buiten Street, Cape Town, 8001 www.thistle.co.za Tel: +27 (011) 463 3260 Fax: +27 (011) 463 3036 Fax to Email: + 27 (0) 86-557-2232 e-mail : [email protected] Please read this section first The HPCSA and the Med Tech Society have confirmed that this clinical case study, plus your routine review of your EQA reports from Thistle QA, should be documented as a “Journal Club” activity. This means that you must record those attending for CEU purposes. Thistle will not issue a certificate to cover these activities, nor send out “correct” answers to the CEU questions at the end of this case study. The Thistle QA CEU No is: MT-2014/004. Each attendee should claim THREE CEU points for completing this Quality Control Journal Club exercise, and retain a copy of the relevant Thistle QA Participation Certificate as proof of registration on a Thistle QA EQA. MICROBIOLOGY LEGEND CYCLE 36 ORGANISM 1 Enterococcus casseliflavus Enterococcus is a genus of lactic acid bacteria of the phylum Firmicutes. Enterococci are Gram-positive cocci that often occur in pairs (diplococci) or short chains, and are difficult to distinguish from streptococci on physical characteristics alone. Two species are common commensal organisms in the intestines of humans: E. faecalis (90-95%) and E. faecium (5-10%) but are also important pathogens responsible for serious infections. Rare clusters of infections occur with other species, including E. casseliflavus, E. gallinarum, and E. raffinosus. With increasing antibiotic resistance, enterococci are recognized as feared nosocomial pathogens that can be challenging to treat. Enterococcus species are hardy, facultative anaerobic organisms that can survive and grow in many environments. In the laboratory, enterococci are distinguished by their morphologic appearance on Gram stain and culture (gram-positive cocci that grow in chains) and their ability to (1) hydrolyze esculin in the presence of bile, (2) grow in 6.5% sodium chloride, (3) demonstrate pyrrolidonyl arylamidase and leucine aminopeptidase, and (4) react with group D antiserum. Members of the genus Enterococcus were classified as Group D Streptococcus until 1984, when genomic DNA analysis indicated a separate genus classification would be appropriate. Though they are not capable of forming spores, enterococci are tolerant of a wide range of environmental conditions like extreme temperature (10-45°C) & pH (4.5-10.0). Enterococci typically exhibit gamma-hemolysis on sheep's blood agar. Enterococcus faecalis and Enterococcus faecium are the most prevalent species cultured from humans, accounting for more than 90% of clinical isolates. Other enterococcal species known to cause human infection include Enterococcus avium, Enterococcus gallinarum, Enterococcus casseliflavus, Enterococcus durans, Enterococcus raffinosus and Enterococcus mundtii. E. faecium represents most vancomycin-resistant enterococci (VRE). Pathology Important clinical infections caused by Enterococcus include urinary tract infections, bacteraemia, bacterial endocarditis, diverticulitis, and meningitis. Sensitive strains of these bacteria can be treated with ampicillin, penicillin and vancomycin. Thistle QA is a SANAS accredited organisation, No: PTS0001 Accredited to ISO 17043 Certificate available on request or at www.sanas.co.za Page 1 of 3 P.O. Box 131375, Bryanston, 2074 Ground Floor, Block 5 Bryanston Gate, 170 Curzon Road Bryanston, Johannesburg, South Africa 804 Flatrock, Buiten Street, Cape Town, 8001 www.thistle.co.za Tel: +27 (011) 463 3260 Fax: +27 (011) 463 3036 Fax to Email: + 27 (0) 86-557-2232 e-mail : [email protected] From a medical standpoint, an important feature of this genus is the high level of intrinsic antibiotic resistance. Some enterococci are intrinsically resistant to β-lactam-based antibiotics (penicillins, cephalosporins, carbapenems), as well as many aminoglycosides. In the last two decades, particularly virulent strains of Enterococcus that are resistant to vancomycin (vancomycin-resistant Enterococcus, or VRE) have emerged in nosocomial infections of hospitalized patients, especially in the US. VRE may be treated with quinupristin/dalfopristin (Synercid) with response rates of approximately 70%. Tigecycline has also been shown to have anti-enterococcal activity as has rifampicin. Mortality/Morbidity In general, the virulence of enterococci is lower than that of organisms such as S. aureus. However, enterococcal infections often occur in debilitated patients and as part of polymicrobial infections. These factors limit the ability of investigators to determine the independent contribution of enterococcal infections to mortality and morbidity. Vancomycin-resistant bacteremia increases the length of hospital stay by an average of 2 weeks, and studies calculate an attributable mortality rate of up to 37% from these infections. Mortality rates associated with enterococcal infections may exceed 50% in critically ill patients, those with solid tumors, and some transplant patients. Bacteremia caused by VRE strains carries higher mortality rates than does bacteremia due to vancomycin-susceptible strains. Despite the availability of antimicrobial agents with greater potency against VRE, one study of 113 patients with VRE bacteremia reported that such agents did not significantly change clinical outcomes. Sex In general, enterococcal infections are distributed equally between the sexes. Although urinary tract infections are more common in healthy women than in healthy men, enterococci are an uncommon cause of uncomplicated cystitis in this setting. Age Enterococcal infections are more common in elderly patients because of various associated factors that are more common in these patients. For example, urinary tract catheterization and instrumentation are more common in elderly populations. Abdominal surgery for diverticulitis or biliary tract disease is also performed more commonly in elderly persons. In a recent study, most cases of enterococcal endocarditis occurred in elderly individuals. In neonates, enterococci occasionally cause bacteremia and meningitis. Outbreaks of enterococcal infections, including VRE infections, have been reported in neonatal ICUs, pediatric ICUs, and hematology/oncology units, but, overall, VRE infections are less common in pediatric patients than in adults Enterococcus casseliflavus Physiology and classification Enterococcus casseliflavus was formerly known as Streptococcus faecium subsp. casseliflavus or Streptococcus casseliflavus. Ent. casseliflavus is normally pigmented and motile, but non-pigmented and non- motile strains may occur. Occurrence and habitat Ent. casseliflavus is associated with plant material. Thistle QA is a SANAS accredited organisation, No: PTS0001 Accredited to ISO 17043 Certificate available on request or at www.sanas.co.za Page 2 of 3 P.O. Box 131375, Bryanston, 2074 Ground Floor, Block 5 Bryanston Gate, 170 Curzon Road Bryanston, Johannesburg, South Africa 804 Flatrock, Buiten Street, Cape Town, 8001 www.thistle.co.za Tel: +27 (011) 463 3260 Fax: +27 (011) 463 3036 Fax to Email: + 27 (0) 86-557-2232 e-mail : [email protected] Pathogenicity This species is found infrequently in infections. Identification Pigmentation, motility and intrinsic vancomycin-low level resistance are most useful characteristics. The differentiation from other yellow pigmented enterococci is shown in table 1 and the characteristics distinguishing between this species and Ent. gallinarum in table 2. E. casseliflavus E. faecalis Table 1: Tests useful in the differentiation of yellow Table 2: Tests useful in the differentiation of members of pigmented enterococci the Enterococcus gallinarum species group Characteristics Ent. Ent. Ent. Test Ent. Ent. casseliflavus mundtii sulfureus gallinarum casseliflavus Vancomycin + - ? Yellow pigment - + resistance Hippurate D+ 1 Motility D+ - - Acid from Sorbitol D - Arginine dihydrolase + + - Glycerol - D Group D antigen + + - Glycogen D - Acid produced from Β-haemolysis on horse blood D+ - L-Arabinose + + - agar Glycerol - D - Α-haemolysis on sheep blood - D+ agar Gluconate + - + Inulin + -(D -?) - Α-Methyl-D-glucoside + - + Rhamnose D+ D+ - Sorbitol - D - D – Different or variable: D+ usually positive; D- usually negative References 1. The Genera of Lactic Acid Bacteria edited by B.J. Wood, W.H.N Holzapfel 2. http://en.wikipedia.org/wiki/Enterococcus Questions 1. Discuss how you would distinguish between E. faecalis and E. casseliflavus in your lab. 2. What are the morphological characteristics of the genus Enterococcus? 3. Discuss the pathophysiology of Enterococci. \ Thistle QA is a SANAS accredited organisation, No: PTS0001 Accredited to ISO 17043 Certificate available on request or at www.sanas.co.za Page 3 of 3 .
Recommended publications
  • The Influence of Probiotics on the Firmicutes/Bacteroidetes Ratio In
    microorganisms Review The Influence of Probiotics on the Firmicutes/Bacteroidetes Ratio in the Treatment of Obesity and Inflammatory Bowel disease Spase Stojanov 1,2, Aleš Berlec 1,2 and Borut Štrukelj 1,2,* 1 Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia; [email protected] (S.S.); [email protected] (A.B.) 2 Department of Biotechnology, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia * Correspondence: borut.strukelj@ffa.uni-lj.si Received: 16 September 2020; Accepted: 31 October 2020; Published: 1 November 2020 Abstract: The two most important bacterial phyla in the gastrointestinal tract, Firmicutes and Bacteroidetes, have gained much attention in recent years. The Firmicutes/Bacteroidetes (F/B) ratio is widely accepted to have an important influence in maintaining normal intestinal homeostasis. Increased or decreased F/B ratio is regarded as dysbiosis, whereby the former is usually observed with obesity, and the latter with inflammatory bowel disease (IBD). Probiotics as live microorganisms can confer health benefits to the host when administered in adequate amounts. There is considerable evidence of their nutritional and immunosuppressive properties including reports that elucidate the association of probiotics with the F/B ratio, obesity, and IBD. Orally administered probiotics can contribute to the restoration of dysbiotic microbiota and to the prevention of obesity or IBD. However, as the effects of different probiotics on the F/B ratio differ, selecting the appropriate species or mixture is crucial. The most commonly tested probiotics for modifying the F/B ratio and treating obesity and IBD are from the genus Lactobacillus. In this paper, we review the effects of probiotics on the F/B ratio that lead to weight loss or immunosuppression.
    [Show full text]
  • The Gut Microbiota of the Egyptian Mongoose As an Early Warning Indicator of Ecosystem Health in Portugal
    International Journal of Environmental Research and Public Health Article The Gut Microbiota of the Egyptian Mongoose as an Early Warning Indicator of Ecosystem Health in Portugal Mónica V. Cunha 1,2,3,* , Teresa Albuquerque 1, Patrícia Themudo 1, Carlos Fonseca 4, Victor Bandeira 4 and Luís M. Rosalino 2,4 1 National Institute for Agrarian and Veterinary Research (INIAV, IP), Wildlife, Hunting and Biodiversity R&D Unit, 2780-157 Oeiras, Portugal; [email protected] (T.A.); [email protected] (P.T.) 2 Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal; [email protected] 3 Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal 4 Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal; [email protected] (C.F.); [email protected] (V.B.) * Correspondence: [email protected]; Tel.: +351-214-403-500 Received: 1 April 2020; Accepted: 27 April 2020; Published: 29 April 2020 Abstract: The Egyptian mongoose is a carnivore mammal species that in the last decades experienced a tremendous expansion in Iberia, particularly in Portugal, mainly due to its remarkable ecological plasticity in response to land-use changes. However, this species may have a disruptive role on native communities in areas where it has recently arrived due to predation and the potential introduction of novel pathogens. We report reference information on the cultivable gut microbial landscape of widely distributed Egyptian mongoose populations (Herpestes ichneumon, n = 53) and related antimicrobial tolerance across environmental gradients.
    [Show full text]
  • Current Trends of Enterococci in Dairy Products: a Comprehensive Review of Their Multiple Roles
    foods Review Current Trends of Enterococci in Dairy Products: A Comprehensive Review of Their Multiple Roles Maria de Lurdes Enes Dapkevicius 1,2,* , Bruna Sgardioli 1,2 , Sandra P. A. Câmara 1,2, Patrícia Poeta 3,4 and Francisco Xavier Malcata 5,6,* 1 Faculty of Agricultural and Environmental Sciences, University of the Azores, 9700-042 Angra do Heroísmo, Portugal; [email protected] (B.S.); [email protected] (S.P.A.C.) 2 Institute of Agricultural and Environmental Research and Technology (IITAA), University of the Azores, 9700-042 Angra do Heroísmo, Portugal 3 Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5001-801 Vila Real, Portugal; [email protected] 4 Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, 2829-516 Lisboa, Portugal 5 LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, 420-465 Porto, Portugal 6 FEUP—Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal * Correspondence: [email protected] (M.d.L.E.D.); [email protected] (F.X.M.) Abstract: As a genus that has evolved for resistance against adverse environmental factors and that readily exchanges genetic elements, enterococci are well adapted to the cheese environment and may reach high numbers in artisanal cheeses. Their metabolites impact cheese flavor, texture, Citation: Dapkevicius, M.d.L.E.; and rheological properties, thus contributing to the development of its typical sensorial properties. Sgardioli, B.; Câmara, S.P.A.; Poeta, P.; Due to their antimicrobial activity, enterococci modulate the cheese microbiota, stimulate autoly- Malcata, F.X.
    [Show full text]
  • Clostridium Difficile Infection: How to Deal with the Problem DH INFORMATION RE ADER B OX
    Clostridium difficile infection: How to deal with the problem DH INFORMATION RE ADER B OX Policy Estates HR / Workforce Commissioning Management IM & T Planning / Finance Clinical Social Care / Partnership Working Document Purpose Best Practice Guidance Gateway Reference 9833 Title Clostridium difficile infection: How to deal with the problem Author DH and HPA Publication Date December 2008 Target Audience PCT CEs, NHS Trust CEs, SHA CEs, Care Trust CEs, Medical Directors, Directors of PH, Directors of Nursing, PCT PEC Chairs, NHS Trust Board Chairs, Special HA CEs, Directors of Infection Prevention and Control, Infection Control Teams, Health Protection Units, Chief Pharmacists Circulation List Description This guidance outlines newer evidence and approaches to delivering good infection control and environmental hygiene. It updates the 1994 guidance and takes into account a national framework for clinical governance which did not exist in 1994. Cross Ref N/A Superseded Docs Clostridium difficile Infection Prevention and Management (1994) Action Required CEs to consider with DIPCs and other colleagues Timing N/A Contact Details Healthcare Associated Infection and Antimicrobial Resistance Department of Health Room 528, Wellington House 133-155 Waterloo Road London SE1 8UG For Recipient's Use Front cover image: Clostridium difficile attached to intestinal cells. Reproduced courtesy of Dr Jan Hobot, Cardiff University School of Medicine. Clostridium difficile infection: How to deal with the problem Contents Foreword 1 Scope and purpose 2 Introduction 3 Why did CDI increase? 4 Approach to compiling the guidance 6 What is new in this guidance? 7 Core Guidance Key recommendations 9 Grading of recommendations 11 Summary of healthcare recommendations 12 1.
    [Show full text]
  • Mechanisms of Intrinsic Antibiotic Resistance in Enterococci Alexander Kiruthiga1,2, Kesavaram Padmavathy1*
    Review Article Mechanisms of intrinsic antibiotic resistance in enterococci Alexander Kiruthiga1,2, Kesavaram Padmavathy1* ABSTRACT Enterococci are considered as serious nosocomial pathogens as they are likely to exhibit resistance effectively to all antibiotics meant for clinical use. The most predominant species encountered frequently among human infections includes Enterococcus faecalis and Enterococcus faecium. Antibiotic resistance in enterococci may be either intrinsic or acquired through mutation of the intrinsic genes or horizontal gene transfer of resistance determinants. This paper reviews the mechanisms of intrinsic resistance in enterococci. KEY WORDS: Enterococcus faecalis, Enterococcus faecium, Enterococcus, Intrinsic resistance INTRODUCTION species and is not attributed to horizontal gene transfer.[4] The genes encoding intrinsic resistance Among Enterococci, Enterococcus faecalis and may either be expressed constitutively (always Enterococcus faecium are the most often encountered expressed) or induced (expressed only upon antibiotic species in various human infections ranging from exposure).[5] Due to the limited choice of antibiotics uncomplicated urinary tract infection to serious against enterococci, monotherapy with a single class bacteremia. Enterococci are considered as serious of antimicrobial agents often results in poor treatment nosocomial pathogens due to their intrinsic resistance outcomes and is significantly associated with and their potential to acquire resistance to various intrinsic resistance exhibited by them. Enterococci antimicrobial agents.[1] Besides exhibiting natural are proven to be intrinsically resistant to β-lactams, intrinsic resistance to multiple antimicrobial classes aminoglycosides, and sulfonamides.[6] (beta-lactams, aminoglycosides, and glycopeptides), they possess a remarkable ability to acquire resistance Intrinsic resistance in enterococci is found to be mediated to last resort of antibiotics (quinupristin-dalfopristin, by different mechanisms of resistance (Table 1).
    [Show full text]
  • Methicillin-Resistant Staphylococcus Aureus (MRSA)
    Methicillin-Resistant Staphylococcus Aureus (MRSA) Over the past several decades, the incidence of resistant gram-positive organisms has risen in the United States. MRSA strains, first identified in the 1960s in England, were first observed in the U.S. in the mid 1980s.1 Resistance quickly developed, increasing from 2.4% in 1979 to 29% in 1991.2 The current prevalence for MRSA in hospitals and other facilities ranges from <10% to 65%. In 1999, MRSA accounted for more than 50% of all Staphylococcus aureus isolates within U.S. intensive care units.3, 4 The past years, however, outbreaks of MRSA have also been seen in the community setting, particularly among preschool-age children, some of whom have attended day-care centers.5, 6, 7 MRSA does not appear to be more virulent than methicillin-sensitive Staphylococcus aureus, but certainly poses a greater treatment challenge. MRSA also has been associated with higher hospital costs and mortality.8 Within a decade of its development, methicillin resistance to Staphylococcus aureus emerged.9 MRSA strains generally are now resistant to other antimicrobial classes including aminoglycosides, beta-lactams, carbapenems, cephalosporins, fluoroquinolones and macrolides.10,11 Most of the resistance was secondary to production of beta-lactamase enzymes or intrinsic resistance with alterations in penicillin-binding proteins. Staphylococcus aureus is the most frequent cause of nosocomial pneumonia and surgical- wound infections and the second most common cause of nosocomial bloodstream infections.12 Long-term care facilities (LTCFs) have developed rates of MRSA ranging from 25%-35%. MRSA rates may be higher in LTCFs if they are associated with hospitals that have higher rates.13 Transmission of MRSA generally occurs through direct or indirect contact with a reservoir.
    [Show full text]
  • Suppl Table 2
    Table S2. Large subunit rRNA gene sequences of Bacteria and Eukarya from V5. ["n" indicates information not specified in the NCBI GenBank database.] Accession number Q length Q start Q end e-value %-ident %-sim GI number Domain Phylum Family Genus / Species JQ997197 529 30 519 3E-165 89% 89% 48728139 Bacteria Actinobacteria Frankiaceae uncultured Frankia sp. JQ997198 732 17 128 2E-35 93% 93% 48728167 Bacteria Actinobacteria Frankiaceae uncultured Frankia sp. JQ997196 521 26 506 4E-95 81% 81% 48728178 Bacteria Actinobacteria Frankiaceae uncultured Frankia sp. JQ997274 369 8 54 4E-14 100% 100% 289551862 Bacteria Actinobacteria Mycobacteriaceae Mycobacterium abscessus JQ999637 486 5 321 7E-62 82% 82% 269314044 Bacteria Actinobacteria Mycobacteriaceae Mycobacterium immunoGenum JQ999638 554 17 509 0 92% 92% 44368 Bacteria Actinobacteria Mycobacteriaceae Mycobacterium kansasii JQ999639 552 18 455 0 93% 93% 196174916 Bacteria Actinobacteria Mycobacteriaceae Mycobacterium sHottsii JQ997284 598 5 598 0 90% 90% 2414571 Bacteria Actinobacteria Propionibacteriaceae Propionibacterium freudenreicHii JQ999640 567 14 560 8E-152 85% 85% 6714990 Bacteria Actinobacteria THermomonosporaceae Actinoallomurus spadix JQ997287 501 8 306 4E-119 93% 93% 5901576 Bacteria Actinobacteria THermomonosporaceae THermomonospora cHromoGena JQ999641 332 26 295 8E-115 95% 95% 291045144 Bacteria Actinobacteria Bifidobacteriaceae Bifidobacterium bifidum JQ999642 349 19 255 5E-82 90% 90% 30313593 Bacteria Bacteroidetes Bacteroidaceae Bacteroides caccae JQ997308 588 20 582 0 90%
    [Show full text]
  • Identification, Properties, and Application of Enterocins Produced by Enterococcal Isolates from Foods
    IDENTIFICATION, PROPERTIES, AND APPLICATION OF ENTEROCINS PRODUCED BY ENTEROCOCCAL ISOLATES FROM FOODS THESIS Presented in Partial Fulfillment of the Requirement for the Degree Master of Science in the Graduate School of The Ohio State University By Xueying Zhang, B.S. ***** The Ohio State University 2008 Master Committee: Approved by Professor Ahmed E. Yousef, Advisor Professor Hua Wang __________________________ Professor Luis Rodriguez-Saona Advisor Food Science and Nutrition ABSTRACT Bacteriocins produced by lactic acid bacteria have gained great attention because they have potentials for use as natural preservatives to improve food safety and stability. The objectives of the present study were to (1) screen foods and food products for lactic acid bacteria with antimicrobial activity against Gram-positive bacteria, (2) investigate virulence factors and antibiotic resistance among bacteriocin-producing enterooccal isolates, (3) characterize the antimicrobial agents and their structural gene, and (4) explore the feasibility of using these bacteriocins as food preservatives. In search for food-grade bacteriocin-producing bacteria that are active against spoilage and pathogenic microorganisms, various commercial food products were screened and fifty-one promising Gram-positive isolates were studied. Among them, fourteen food isolates with antimicrobial activity against food-borne pathogenic bacteria, Listeria monocytogenes and Bacillus cereus, were chosen for further study. Based on 16S ribosomal RNA gene sequence analysis, fourteen food isolates were identified as Enterococcus faecalis, and these enterococcal isolates were investigated for the presence of virulence factors and antibiotic resistance through genotypic and phenotypic screening. Results indicated that isolates encoded some combination of virulence factors. The esp gene, encoding extracellular surface protein, was not detected in any of the isolates.
    [Show full text]
  • Phage Infection Mediates Inhibition of Bystander Bacteria
    bioRxiv preprint doi: https://doi.org/10.1101/2020.05.11.077669; this version posted June 12, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Phage infection mediates inhibition of bystander bacteria 2 3 Anushila Chatterjeea*, Julia L. E. Willettb*, Gary M. Dunnyb, Breck A. Duerkopa,# 4 5 aDepartment of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, 6 CO, USA, 80045. bDepartment of Microbiology and Immunology, University of Minnesota Medical 7 School, Minneapolis, MN, USA, 55455. 8 9 #Correspondence: Breck A. Duerkop [email protected] 10 *A.C. and J.L.E.W. contributed equally to this work. 11 12 13 Running title: Phage induced T7SS promotes antibacterial antagonism 14 15 Key words: bacteriophages, Enterococcus, antibiotic resistance, phage–bacteria interactions, 16 bacterial secretion systems, type VII secretion, contact-dependent antagonism 17 18 19 20 21 22 23 24 25 26 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.05.11.077669; this version posted June 12, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 27 Abstract 28 Bacteriophages (phages) are being considered as alternative therapeutics for the treatment 29 of multidrug resistant bacterial infections.
    [Show full text]
  • ( 12 ) United States Patent
    US009956282B2 (12 ) United States Patent ( 10 ) Patent No. : US 9 ,956 , 282 B2 Cook et al. (45 ) Date of Patent: May 1 , 2018 ( 54 ) BACTERIAL COMPOSITIONS AND (58 ) Field of Classification Search METHODS OF USE THEREOF FOR None TREATMENT OF IMMUNE SYSTEM See application file for complete search history . DISORDERS ( 56 ) References Cited (71 ) Applicant : Seres Therapeutics , Inc. , Cambridge , U . S . PATENT DOCUMENTS MA (US ) 3 ,009 , 864 A 11 / 1961 Gordon - Aldterton et al . 3 , 228 , 838 A 1 / 1966 Rinfret (72 ) Inventors : David N . Cook , Brooklyn , NY (US ) ; 3 ,608 ,030 A 11/ 1971 Grant David Arthur Berry , Brookline, MA 4 ,077 , 227 A 3 / 1978 Larson 4 ,205 , 132 A 5 / 1980 Sandine (US ) ; Geoffrey von Maltzahn , Boston , 4 ,655 , 047 A 4 / 1987 Temple MA (US ) ; Matthew R . Henn , 4 ,689 ,226 A 8 / 1987 Nurmi Somerville , MA (US ) ; Han Zhang , 4 ,839 , 281 A 6 / 1989 Gorbach et al. Oakton , VA (US ); Brian Goodman , 5 , 196 , 205 A 3 / 1993 Borody 5 , 425 , 951 A 6 / 1995 Goodrich Boston , MA (US ) 5 ,436 , 002 A 7 / 1995 Payne 5 ,443 , 826 A 8 / 1995 Borody ( 73 ) Assignee : Seres Therapeutics , Inc. , Cambridge , 5 ,599 ,795 A 2 / 1997 McCann 5 . 648 , 206 A 7 / 1997 Goodrich MA (US ) 5 , 951 , 977 A 9 / 1999 Nisbet et al. 5 , 965 , 128 A 10 / 1999 Doyle et al. ( * ) Notice : Subject to any disclaimer , the term of this 6 ,589 , 771 B1 7 /2003 Marshall patent is extended or adjusted under 35 6 , 645 , 530 B1 . 11 /2003 Borody U .
    [Show full text]
  • Adaptive Strategies of Enterococcus Mundtii to Different Living Conditions in the Gut Microbiome of Spodoptera Littoralis Larvae
    Adaptive strategies of Enterococcus mundtii to different living conditions in the gut microbiome of Spodoptera littoralis larvae Dissertation To Fulfill the Requirements for the Degree of „doctor rerum naturalium“ (Dr. rer. nat.) Submitted to the Council of the Faculty of Biological Sciences of the Friedrich Schiller University Jena By Tilottama Mazumdar, Masters in Biotechnology, born on 17.04.1992 in India Reviewers 1. Prof. Dr. Wilhelm Boland, Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology 2. Prof. Dr. Erika Kothe, Institute of Microbiology, Friedrich Schiller University 3. Prof. Dr. David Heckel, Department of Entomology, Max Planck Institute for Chemical Ecology 4. Dr. Mark S Gresnigt, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (HKI) 5. Prof. Dr. Dirk Hoffmeister, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (HKI) 6. Prof. Dr. Dino McMahon, Institute of Biology – Zoology, Freie Universität Berlin Date of Defense- 19th November, 2020 2 “We are all of us walking communities of bacteria. The world shimmers, a pointillist landscape made of tiny living beings” --- Lynn Marguilis, Microcosmos: Four Billion Years of Microbial Evolution, 1986 “We can allow satellites, planets, suns, universe, nay whole systems of universe, to be governed by laws, but the smallest insect, we wish to be created at once by special act.” --- Charles Darwin, Darwin’s religious odessey, 2002 “Science cannot solve the ultimate mystery of nature. And that is because, in the last analysis, we ourselves are a part of the mystery that we are trying to solve.” --- Max Planck, Where is Science going? , 1981 3 Contents 1 Introduction ...................................................................................................................................
    [Show full text]
  • Development and Role of the Indigenous Gut Microbiota Of
    Development and role of the indigenous gut microbiota of Spodoptera littoralis Dissertation To Fulfill the Requirements for the Degree of ,,doctor rerum naturalium“ (Dr. rer. nat.) Submitted to the Council of the Faculty of Biology and Pharmacy of the Friedrich Schiller University Jena by Beng-Soon Teh (M.Sc) born on 12.02.1985 in Penang, Malaysia Gutachter: 1. …. 2. …. 3. …. Tag der öffentlichen Verteidigung: Fluorescent GFP-tagged Enterococcus mundtii TABLE of CONTENTS Abbreviations and symbols 1. Introduction .......................................................................................................... 1 1.1 Host-microbiota symbiosis interactions ........................................................... 1 1.1.1 Insect-bacteria symbiosis interactions ........................................................ 2 1.2 Physiological conditions and stresses in the gut environment of insects ......... 3 1.3 Contributions of the gut microbiome ................................................................ 5 1.4 Diversity of the gut microbiota in insects ......................................................... 6 1.5 Model organism: Spodoptera littoralis ............................................................. 9 1.6 The physiology of lactic acid bacteria ............................................................ 10 1.6.1 General characteristics of enterococci ...................................................... 11 1.7 Colonization of enterococci in insects ............................................................ 14
    [Show full text]