This Is Central and Southwest Asia the Newsletter of the Central and Southwest Asia Program at the University of Montana Online: Spring 2009
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Snow Leopards and Other Animals of the Tien Shan Mountains of Kyrgyzstan
EXPEDITION REPORT Expedition dates: 9 June – 23 August 2014 Report published: June 2015 Mountain ghosts: protecting snow leopards and other animals of the Tien Shan mountains of Kyrgyzstan . EXPEDITION REPORT Mountain ghosts: protecting snow leopards and other animals of the Tien Shan mountains of Kyrgyzstan Expedition dates: 9 June – 23 August 2014 Report published: June 2015 Authors: Volodymyr Tytar I.I Schmalhausen Institute of Zoology of the National Academy of Sciences of Ukraine Matthias Hammer Biosphere Expeditions 1 © Biosphere Expeditions, an international not-for-profit conservation organisation registered in England, Germany, France, Australia and the USA Officially accredited member of the United Nations Environment Programme's Governing Council & Global Ministerial Environment Forum Officially accredited member of the International Union for the Conservation of Nature Abstract This study was part of an expedition to the Tien Shan Mountains (Kyrgyz Ala-Too range), run by Biosphere Expeditions and NABU from 9 June to 23 August 2014 with the aim of surveying for snow leopard (Uncia uncia) and its prey species such as argali (Ovis ammon) and Siberian ibex (Capra sibirica). Using a cell methodology adopted by Biosphere Expeditions for volunteer expeditions, 77 cells of 2 x 2 km were surveyed and 22 interviews with local people were conducted. The surveys yielded no evidence of snow leopard (camera trap photos, tracks, scrapes, marking places, etc.), but the interviews indicated that snow leopard was present in the area and confirmed the importance of the area as a habitat for snow leopard. The surveys also showed that the area’s habitat is sufficiently varied and capable of sustaining a healthy prey base for the snow leopard as well as for other carnivores such as the wolf. -
Los Cien Montes Más Prominentes Del Planeta D
LOS CIEN MONTES MÁS PROMINENTES DEL PLANETA D. Metzler, E. Jurgalski, J. de Ferranti, A. Maizlish Nº Nombre Alt. Prom. Situación Lat. Long. Collado de referencia Alt. Lat. Long. 1 MOUNT EVEREST 8848 8848 Nepal/Tibet (China) 27°59'18" 86°55'27" 0 2 ACONCAGUA 6962 6962 Argentina -32°39'12" -70°00'39" 0 3 DENALI / MOUNT McKINLEY 6194 6144 Alaska (USA) 63°04'12" -151°00'15" SSW of Rivas (Nicaragua) 50 11°23'03" -85°51'11" 4 KILIMANJARO (KIBO) 5895 5885 Tanzania -3°04'33" 37°21'06" near Suez Canal 10 30°33'21" 32°07'04" 5 COLON/BOLIVAR * 5775 5584 Colombia 10°50'21" -73°41'09" local 191 10°43'51" -72°57'37" 6 MOUNT LOGAN 5959 5250 Yukon (Canada) 60°34'00" -140°24’14“ Mentasta Pass 709 62°55'19" -143°40’08“ 7 PICO DE ORIZABA / CITLALTÉPETL 5636 4922 Mexico 19°01'48" -97°16'15" Champagne Pass 714 60°47'26" -136°25'15" 8 VINSON MASSIF 4892 4892 Antarctica -78°31’32“ -85°37’02“ 0 New Guinea (Indonesia, Irian 9 PUNCAK JAYA / CARSTENSZ PYRAMID 4884 4884 -4°03'48" 137°11'09" 0 Jaya) 10 EL'BRUS 5642 4741 Russia 43°21'12" 42°26'21" West Pakistan 901 26°33'39" 63°39'17" 11 MONT BLANC 4808 4695 France 45°49'57" 06°51'52" near Ozero Kubenskoye 113 60°42'12" c.37°07'46" 12 DAMAVAND 5610 4667 Iran 35°57'18" 52°06'36" South of Kaukasus 943 42°01'27" 43°29'54" 13 KLYUCHEVSKAYA 4750 4649 Kamchatka (Russia) 56°03'15" 160°38'27" 101 60°23'27" 163°53'09" 14 NANGA PARBAT 8125 4608 Pakistan 35°14'21" 74°35'27" Zoji La 3517 34°16'39" 75°28'16" 15 MAUNA KEA 4205 4205 Hawaii (USA) 19°49'14" -155°28’05“ 0 16 JENGISH CHOKUSU 7435 4144 Kyrghysztan/China 42°02'15" 80°07'30" -
Declining Glaciers Endanger Sustainable Development of the Oases Along the Aksu-Tarim River (Central Asia)
International Journal of Sustainable Development & World Ecology ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/tsdw20 Declining glaciers endanger sustainable development of the oases along the Aksu-Tarim River (Central Asia) Tobias Bolch, Doris Duethmann, Michel Wortmann, Shiyin Liu & Markus Disse To cite this article: Tobias Bolch, Doris Duethmann, Michel Wortmann, Shiyin Liu & Markus Disse (2021): Declining glaciers endanger sustainable development of the oases along the Aksu-Tarim River (Central Asia), International Journal of Sustainable Development & World Ecology, DOI: 10.1080/13504509.2021.1943723 To link to this article: https://doi.org/10.1080/13504509.2021.1943723 © 2021 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. Published online: 14 Jul 2021. Submit your article to this journal View related articles View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=tsdw20 INTERNATIONAL JOURNAL OF SUSTAINABLE DEVELOPMENT & WORLD ECOLOGY https://doi.org/10.1080/13504509.2021.1943723 Declining glaciers endanger sustainable development of the oases along the Aksu-Tarim River (Central Asia) Tobias Bolch a, Doris Duethmann b, Michel Wortmann c, Shiyin Liu d and Markus Disse e aSchool of Geography and Sustainable Development, University of St Andrews, St Andrews, Scotland, UK; bDepartment of Ecohydrology, IGB Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany; cClimate Resilience, Potsdam Institute for Climate Impact Research, Potsdam, Germany; dInstitute of International Rivers and Eco-security, Yunnan University, Kunming, China; eChair of Hydrology and River Basin Management, TU München, Germany ABSTRACT ARTICLE HISTORY Tarim River basin is the largest endorheic river basin in China. -
Nomenclàtor Mundial: Rússia I Països Propers Comissió D'onomàstica
Nomenclàtor mundial: Rússia i països propers Comissió d’Onomàstica Novembre 2019 Països revisats: Armènia Azerbaidjan Belarús Geòrgia Kazakhstan Kirguizstan Mongòlia Rússia Tadjikistan Turkmenistan Ucraïna Uzbekistan Nomenclàtor mundial: Armènia Estat Categoria Proposta Forma secundària Forma oficial Armènia 0_Estat Armènia Հայաստան [Hayastan] Armènia 1_Capital Yerevan Երևան [Yerevan] Armènia 2_Població Gyumri Գյումրի [Gyumri] Armènia; Elevació 2 Ararat Արարատ [Ararat] (Ar.); Ağrı Dağı Turquia (Tur.) Armènia Llac, albufera Sevana, llac Սևանա լիճ [Sevana lič]̣ Nomenclàtor mundial: Azerbaidjan Estat Categoria Proposta Forma secundària Forma oficial Azerbaidjan 0_Estat Azerbaidjan (, l') Azǝrbaycan Azerbaidjan 1_Capital Bakú Bakı Azerbaidjan 2_Població Ağdam Ağdam Azerbaidjan 2_Població Balakən Balakən Azerbaidjan 2_Població Bankǝ Bankǝ Azerbaidjan 2_Població Gəncə Gəncə Azerbaidjan 2_Població Lənkəran Lənkəran Azerbaidjan 2_Població Mingəçevir Mingəçevir Azerbaidjan 2_Població Naxçıvan Naxçıvan Azerbaidjan 2_Població Sumqayıt Sumqayıt Azerbaidjan 2_Població Xudat Xudat Azerbaidjan Elevació 1 Talış, muntanyes Talış dağları Rússia; Elevació 1 Caucas, el Qafqaz (Az.); Կովկաս [Kovkas] Geòrgia; (Ar.); კავკასია [K'avk'asia] (Ge.); Azerbaidjan Кавказ [Kavkaz] (Rus.) Azerbaidjan Elevació 2 Bazardüzü, pic Bazardüzü dağı Azerbaidjan Llac, albufera Sarısu, llac Sarısu göl Azerbaidjan; Mar, oceà Càspia, mar Каспий маңы ойпаты (Kaspii mańy Kazakhstan; oipaty) (Ka.); Xəzər dənizi (Azer.); Rússia; Каспийское море (Rus.); Hazar Turkmenistan deňzi (Tur.) -
Mountains in Asia and Their Location
Mountains in asia and their location Continue Wikipedia's List of Asian Terrain articles This page lists the highest natural altitude of each sovereign country on the geographically defined Asian continent. Countries sometimes associated with Asia politically and culturally, but not as a geographical part of Asia, are not included in this list of physical characteristics (with the exception of Cyprus - marked with an N/A rating). Not all of the points on this list are mountains or hills, some are simply in distinguishable altitudes as geographical characteristics. Notes are provided in case of territorial disputes or conflicts affecting the list. Some countries such as Azerbaijan, Georgia, and Russia (Elbrus) have part of their territory and their high points outside Asia; Their non-Asian high scores are listed with an N/A rated entry below their continental peak. Three other entoes from the most recognized countries with the highest scores in Asia are listed and ranked in Inalic. For more details, see List of states with limited recognition. Rank Country Highest point Elevation 6 Afghanistan Noshaq 7,492 m (24,580 ft) N/A Armenia Aragats 4,090 m (13,419 ft) N/A Azerbaijan Mount Bazardüzü 4,466 m (14,652 ft) 43 Bahrain Mountain of Smoke 122 m (400 ft) 39 Bangladesh Saka Haphong 1,052 m (3,451 ft) 4 Bhutan Gangkhar Puensum 7,570 m (24,836 ft) 36 Brunei Pagon Hill 1,850 m (6,070 ft) 37 Cambodia Phnom Aural 1,810 m (5,938 ft) 1 China Mount Everest[1] 8,848 m (29,029 ft) N/A Cyprus Mount Olympus 1,951 m (6,401 ft) 25 East Timor Tatamailau -
Geo-Data: the World Geographical Encyclopedia
Geodata.book Page iv Tuesday, October 15, 2002 8:25 AM GEO-DATA: THE WORLD GEOGRAPHICAL ENCYCLOPEDIA Project Editor Imaging and Multimedia Manufacturing John F. McCoy Randy Bassett, Christine O'Bryan, Barbara J. Nekita McKee Yarrow Editorial Mary Rose Bonk, Pamela A. Dear, Rachel J. Project Design Kain, Lynn U. Koch, Michael D. Lesniak, Nancy Cindy Baldwin, Tracey Rowens Matuszak, Michael T. Reade © 2002 by Gale. Gale is an imprint of The Gale For permission to use material from this prod- Since this page cannot legibly accommodate Group, Inc., a division of Thomson Learning, uct, submit your request via Web at http:// all copyright notices, the acknowledgements Inc. www.gale-edit.com/permissions, or you may constitute an extension of this copyright download our Permissions Request form and notice. Gale and Design™ and Thomson Learning™ submit your request by fax or mail to: are trademarks used herein under license. While every effort has been made to ensure Permissions Department the reliability of the information presented in For more information contact The Gale Group, Inc. this publication, The Gale Group, Inc. does The Gale Group, Inc. 27500 Drake Rd. not guarantee the accuracy of the data con- 27500 Drake Rd. Farmington Hills, MI 48331–3535 tained herein. The Gale Group, Inc. accepts no Farmington Hills, MI 48331–3535 Permissions Hotline: payment for listing; and inclusion in the pub- Or you can visit our Internet site at 248–699–8006 or 800–877–4253; ext. 8006 lication of any organization, agency, institu- http://www.gale.com Fax: 248–699–8074 or 800–762–4058 tion, publication, service, or individual does not imply endorsement of the editors or pub- ALL RIGHTS RESERVED Cover photographs reproduced by permission No part of this work covered by the copyright lisher. -
The Climate- Cryosphere- Water Nexus in Central Asia Key Messages
Nexus Brief, Nr. 8, October 2019 Climate Change & Environment The Climate- Cryosphere- Water Nexus in Central Asia Key messages Climate change impacts are already noticeable in Transboundary cooperation and integrated Central Asia, which is expected to be one of the most approaches in water management are key strategies in vulnerable regions globally. Temperatures in Central the development of sustainable adaptation solutions in Asia have increased steadily over the past 50 years the region. Integrated Water Resources Management and are projected to rise by 2.5°C–6.5°C towards the through the implementation of basin management end of the 21st century depending on future emission principles is a key instrument for maintaining interstate pathways. Global warming leads to increased melting dialogue and an entry point to the climate-cryosphere- of snow and glaciers and thawing of permafrost and water nexus. As such, cooperation on transboundary as such affect the overall water balance. water management can be a driver for sustainable economic development and thus ultimately for cross- The mountain cryosphere is already changing and will border peace and stability. continue to change considerably towards the end of this century, depending on emission pathways. These Excellent examples of changes will dramatically alter the resource bases of projects and programmes Aralsk the communities and societies depending on water relevant to development Northern Lake Balkhash Aral Sea Ili delta 4 availability from glaciers, snow and permafrost. and cooperation in the (38) 5 region are testimony to KAZAKHSTAN Eastern Ili Economic development and population growth the willingness to step up Aral Sea CHN 4 Western Khorgos intensify impacts and risks in Central Asia. -
Central Asian 'Characteristics' on China's New Silk Road: the Role Of
land Review Central Asian ‘Characteristics’ on China’s New Silk Road: The Role of Landscape and the Politics of Infrastructure Troy Sternberg *, Ariell Ahearn and Fiona McConnell School of Geography, University of Oxford, Oxford OX1 3QY, UK; [email protected] (A.A.); fi[email protected] (F.M.) * Correspondence: [email protected]; Tel.: +44-(0)-186-528-5070 Received: 24 July 2017; Accepted: 18 August 2017; Published: 23 August 2017 Abstract: China’s $1 trillion One Belt, One Road (OBOR) infrastructure project has significant landscape, socio-economic, and political implications in recipient countries. To date, investigation has focused on Chinese motivation and plans rather than OBOR impact in host nations. This paper examines the programme from the perspective of two Central Asian states—Kazakhstan and Kyrgyzstan—that are at the heart of OBOR. We identify geographical factors that constrain infrastructure, recognise geopolitical contestation between Russia and China, address historical and cultural factors, and consider issues of institutional capacity and marginality that may be impediments to China’s initiative. The discussion then focuses on how OBOR may play out in Central Asian landscapes and suggests how to conceive and address the unprecedented transformation in the region’s built environment. Critical issues are that OBOR has not been grounded in the physical geography, practical understanding of OBOR’s impacts is missing, and the state-citizen-China nexus remains unexplored. As pivot nations, OBOR implementation in Kazakhstan and Kyrgyzstan will showcase the Chinese programme’s strengths and highlight its weaknesses. Keywords: Central Asia; landscape; One Belt; One Road; Kazakhstan; Kyrgyzstan; infrastructure; environment; New Silk Road 1. -
Discover Kyrgyzstan
EXCERPTED FROM WINTER 2015 DISCOVER KYRGYZSTAN As climate change makes Asia’s high mountains more arid, snow leopards become a rallying point to help the people of Kyrgyzstan seek new ways to adapt. 2 NEW HEIGHTS Snow leopards, fresh water, and climate change at the top of the world story and photographs by Andy Isaacson N THE UPPER REACHES OF the Tian Shan Mountains of Kyrgyzstan, beyond fertile valleys dotted with apricot trees and ancient Silk Road settlements, the arid climate isn’t particularly friendly. “Tian” means celestial in Chi- nese, and the jagged peaks here are among the closest on Earth to the heavens: Jengish Chokusu, on the country’s rugged, southeastern border with China, rises above 24,000 feet. IThe cold, thin air and treeless steppe seems more fit for snow leopards and Siberian ibex than for people, who for centuries have subsisted here by herding their horses and sheep across barren slopes in search of pasture. Even before the weather changed, it was never an easy place to live. 3 WORLD WILDLIFE MAGAZINE 1 A Kyrgyz boy on the main road in the small, high-mountain village of Ak-Shyrak, a WWF project site. 2 WORLD WILDLIFE MAGAZINE “Ten years ago, this grass was so high it was hard to drive a car through,” says Omurbeck Kurmanaliev, gesturing across a flat, exposed valley lying between umber foothills. A small Russia brook courses through the middle, runoff from the steep flank of a mountainside dusted with late spring snow. Alongside the water, a low mat of grass carpets the rocky soil—an oasis at which a small herd of bony cows munches away. -
Mapping the Late-Holocene Glacial Geomorphology and Glacier Surface Types in the Mt
International Journal of Geosciences, 2019, 10, 669-688 http://www.scirp.org/journal/ijg ISSN Online: 2156-8367 ISSN Print: 2156-8359 Mapping the Late-Holocene Glacial Geomorphology and Glacier Surface Types in the Mt. Harajoriha, Central Tian Shan Yanan Li1, Ping Fu2 1Department of Geography, Texas State University, San Marcos, TX, USA 2School of Geographical Sciences, University of Nottingham Ningbo China, Ningbo, China How to cite this paper: Li, Y.N. and Fu, P. Abstract (2019) Mapping the Late-Holocene Glacial Geomorphology and Glacier Surface Types Alpine glaciers in the central Tian Shan are an important indicator of climate in the Mt. Harajoriha, Central Tian Shan. change and also the freshwater tower for the transboundary countries in International Journal of Geosciences, 10, Central Asia. Knowledge about the glacier dynamics in the late Holocene, 669-688. such as the Little Ice Age, and surface zones is still limited. In this study, two https://doi.org/10.4236/ijg.2019.106038 headwater basins, the Xiata and the Muzart basins, in the Harajoriha Moun- Received: May 8, 2019 tain Range in northwestern China were selected to investigate the glacial Accepted: June 27, 2019 landforms and glacier surface types using a combination of geomorphological Published: June 30, 2019 mapping and remote sensing analysis. Several types of glacial landforms in- cluding glacial valleys, moraine complexes, moraine ridges, and trimlines Copyright © 2019 by author(s) and Scientific Research Publishing Inc. were identified and manually digitized based on the 30 m Shuttle Radar To- This work is licensed under the Creative pography Mission (SRTM) digital elevation model, 10 m Sentinel-2 satellite Commons Attribution International imagery, and high-resolution images from Google Earth. -
Comparison of Glacier Mass Balance Data in the Tien Shan
Comparison of Glacier Mass Balance Data in the Tien Shan and Pamir, Central Asia Author(s): Sabine Baumann Source: Arctic, Antarctic, and Alpine Research, 49(1):133-146. Published By: Institute of Arctic and Alpine Research (INSTAAR), University of Colorado https://doi.org/10.1657/AAAR0015-076 URL: http://www.bioone.org/doi/full/10.1657/AAAR0015-076 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Arctic, Antarctic, and Alpine Research, Vol. 49, No. 1, 2017, pp. 133–146 DOI: http://dx.doi.org/10.1657/AAAR0015-076 Comparison of glacier mass balance data in the Tien Shan and Pamir, Central Asia Sabine Baumann Institute for Astronomical and Physical Geodesy, Technical University of Munich, Arcisstr. 21, 80333 Munich, Germany Author’s email address: [email protected] ABSTRACT Glacier coverage and behavior are heterogeneous across Tien Shan and Pamir due to a climate gradient from west to east. -
Structural Style and Shortening Magnitude Across the Kepintage
CALIFORNIA STATE UNIVERSITY, NORTHRIDGE STRUCTURAL STYLE AND SHORTENING MAGNITUDE ACROSS THE KEPINTAGE FOLD AND THRUST BELT IN THE TIAN SHAN FORELAND, NORTHWEST CHINA A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Geology By Jozi Kerry del Angel December 2012 The thesis of Jozi Kerry del Angel is approved: _____________________________________ __________________ J. Douglas Yule, Ph.D. Date _____________________________________ __________________ Elena A. Miranda, Ph.D. Date _____________________________________ __________________ Richard V. Heermance, Ph.D., Chair Date California State University, Northridge ii DEDICATION For my daughter, Zoie iii ACKNOWLEDGEMENTS It would not be possible for me to have finished this thesis without all the help, guidance, and support of many people. I would like to first thank my advisor, Dick Heermance. He has been an amazing mentor throughout graduate school. His ambition, guidance, and most of all, his confidence in me, has been critical in completing this thesis. I would also like to thank my committee members, Elena Miranda and Doug Yule, for providing constructive criticism on my thesis, and support throughout my graduate career. Special thanks also goes to my friends and colleagues in China, Chen Jie and his graduate students, for making it possible for me to complete my fieldwork in China. A thank you to Richard Allmendinger as well, he provided me with access to his trishear modeling program, as well as helpful tips through correspondence. I would also like to thank my close friends and family, especially my husband and daughter, for their endless support and putting up with me through late nights studying and weekends away on field trips.