Timing and Extent of the Little Ice Age Glacial Advances in the Eastern Tian Shan, China

Total Page:16

File Type:pdf, Size:1020Kb

Timing and Extent of the Little Ice Age Glacial Advances in the Eastern Tian Shan, China University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 8-2015 Timing and Extent of the Little Ice Age Glacial Advances in the Eastern Tian Shan, China Yanan Li University of Tennessee - Knoxville, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Geochemistry Commons, Geomorphology Commons, and the Glaciology Commons Recommended Citation Li, Yanan, "Timing and Extent of the Little Ice Age Glacial Advances in the Eastern Tian Shan, China. " PhD diss., University of Tennessee, 2015. https://trace.tennessee.edu/utk_graddiss/3506 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Yanan Li entitled "Timing and Extent of the Little Ice Age Glacial Advances in the Eastern Tian Shan, China." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Geography. Yingkui Li, Major Professor We have read this dissertation and recommend its acceptance: Henri D. Grissino-Mayer, Carol P. Harden, Jon Harbor, David G. Anderson Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) Timing and Extent of the Little Ice Age Glacial Advances in the Eastern Tian Shan, China A Dissertation Presented for the Doctor of Philosophy Degree The University of Tennessee, Knoxville Yanan Li August 2015 Copyright © 2015 by Yanan Li All rights reserved. ii Dedication To my dear husband, Xiaoyu Lu, for his company, sacrifice, patience, humor, tolerance, encouragement, and everything he did for me. To my parents, for their unconditional love and support along the way I grow. To my advisor, for his countless hours of painstaking work to help me in my pursuit of knowledge. To my friends, for sharing fun and pain together. iii Acknowledgments I would like to express my deepest appreciation to my advisor, Dr. Yingkui Li, for his inspiration during the years of my doctoral program. He evoked my interests in glacial geomorphology. This work would not have been possible without his guidance, encouragement, and patience. As his first Ph.D. student, I feel that I benefit so much from his careful and thoughtful cultivation. His wide range of research expertise, his intelligence in problem solving, his enthusiasm in field investigations, his open mind to new knowledge, and his down-to-earth personality make me so grateful to working with him. I appreciate his positive attitudes, which motivated me when I had doubts in myself. For my every piece of achievements, he cheered heartedly; for my more frequent unsatisfactory results or barriers, he helped me find the outlet, or more importantly, taught me how to find the outlet. Dr. Li provided me great help in this dissertation work, from carrying rock samples in the field to rehearsing presentations at conferences, from details of lab operations to manuscript revisions. I also want to thank my great group of committee members, Drs. Carol Harden, Henri Grissino-Mayer, Jon Harbor, and David Anderson. Each of them intellectually stimulates me with their immense knowledge and valuable experience. I appreciate the help and opportunities that they provided me throughout my graduate tenure, and also the cooperative participation that made my every key step towards the graduation achieved. Their expertise in different areas of natural sciences often inspires me with ideas to expand and deepen the current research interests. This dissertation work in Tian Shan was based on an international collaboration of Drs. Li and Harbor and other scholars from many institutes with a goal to reconstruct past glaciations across major transects of Central Asia. In 2010, I was introduced to the group during the glacial/fluvial geomorphology expedition in Tian Shan, supported by the National Science Foundation of China (No. 41328001). In spring 2012, I received a National Geographic Young iv Explorers Grant (No. 9086-12) to aid my fieldtrip of collecting samples in this work. Following some preliminary work, I was awarded a National Science Foundation Doctoral Dissertation Research Improvement Grant (BCS-1303175, to Y.K. Li and Y.N. Li) in 2013. Along with other funds and awards from the Department of Geography, I was able to finish this work with necessary training and academic exposures. I am very thankful to these organizations. I am indebted to generous support from colleagues and friends from Peking University, Purdue University, and Stockholm University. They are Gengnian Liu, Zhijiu Cui, Yixin Chen, Mei Zhang, Jingchun Zhang, Marc Caffee, Tom Clifton, Greg Chmiel, Arjen Stroeven, Jakob Heyman, and Ping Fu. Driver Zhang, my mother Xiulin Shen, and my uncle-in-law Junxi Kang are great field assistants, and I appreciate their assistance and company. I am also grateful to my lab mate and dear friend Becky Potter, whose excellent work in setting up the Cosmogenic Nuclide Laboratory made my sample processing possible. I appreciate the help from my friend Jack McNelis, undergraduate assistants Dakota Anderson and Noh Han on lab work and glacier mapping. I thank my old friend Lorelei Bryan for proofreading and editing my writing. Last but not the least, the company of my family, friends, and cats is cherished in my heart. v Abstract Located in Central Asia, one of the most continental regions on Earth, the Tian Shan’s glaciers contribute critical fresh water to populated areas in the lowland. These glaciers are sensitive to climate change, and knowledge of contemporary glaciers and their changes in the past is of critical importance for sustainable development in this region. Constraining glacial fluctuations in recent centuries will fill a gap in numerical constraints on glacial history and paleoclimate information, and provide important evidence on the spatio-temporal changes of the climate systems in the Tian Shan. This doctoral dissertation investigates the timing and extent of Little Ice Age (LIA) glacial advances in the eastern Tian Shan. In particular, I conducted: 1) the mapping of glacial extents during the LIA and around 2010 using Google Earth high-resolution imagery and ArcGIS; 2) statistical analyses to examine relationships between local topographic/geometric factors and glacier change parameters; and 3) cosmogenic 10Be [beryllium 10] surface exposure dating of presumed LIA moraines. The major contributions of this dissertation include: 1) a total of 1173 contemporary glaciers with their corresponding presumed LIA extents were delineated in the eastern Tian Shan; 2) glacier area and mean elevation are the two major local factors that affect glacier area changes, but topographic/geometric factors cannot well explain changes in equilibrium line altitudes; 3) three major LIA advances occurred at 730±300 yr BP, 370±100 yr BP, and 210±50 yr BP were constrained based on 10Be surface exposure ages, and the maximum LIA extent (about 700–900 m beyond glacier termini) was reached asynchronously in different sub-regions; 4) presumed LIA moraines in front of small, thin glaciers yielded widely scattered and much older ages than LIA ages. The glacial deposits in front of such glaciers might have formed prior to the LIA and have been reworked during non-erosive glacial transport in LIA. This suggests vi that inheritance could be a more significant problem than degradation in the exposure age scatter of young glacial event. More dating work is needed to extend our knowledge on LIA glacial advances, and to better understand the influence of climate systems on glacier changes. vii Table of Contents Chapter 1 Introduction................................................................................................................. 1 1.1. Research Overview .......................................................................................................... 2 1.2. Tian Shan and Related Studies ......................................................................................... 3 1.2.1. Regional context: geographic, climate, and socio-economic settings ...................... 3 1.2.2. Documenting the presence of glaciers ...................................................................... 5 1.2.3. How to determine whether a glacial advance occurred in the Little Ice Age? ......... 6 1.2.4. Factors controlling glacier change ............................................................................ 9 1.3. Research Hypotheses and Objectives ............................................................................. 11 1.4. Research Significance .................................................................................................... 13 1.5. Organization of the Dissertation .................................................................................... 14 References ................................................................................................................................. 16 Appendix for Chapter 1 ............................................................................................................
Recommended publications
  • Sam White the Real Little Ice Age Between C.1300 and C.1850 A.D
    Journal of Interdisciplinary History, xliv:3 (Winter, 2014), 327–352. THE REAL LITTLE ICE AGE Sam White The Real Little Ice Age Between c.1300 and c.1850 a.d. the world became, on average, slightly but signiªcantly colder. The change varied over time and space, and its causes remain un- certain. Nevertheless, this cooling constitutes a meaningful climate event, with signiªcant historical consequences. Both the cooling trend and its effects on humans appear to have been particularly Downloaded from http://direct.mit.edu/jinh/article-pdf/44/3/327/1706251/jinh_a_00574.pdf by guest on 28 September 2021 acute from the late sixteenth to the late seventeenth century in much of the Northern Hemisphere. This article explains why climatologists and historians are conªdent that these changes occurred. On close examination, the objections raised in this issue of the journal by Kelly and Ó Gráda turn out to be entirely unfounded. The proxy data for early mod- ern global cooling (such as tree rings and ice cores) are robust, and written weather descriptions and observations of physical phenom- ena (such as glacial movements and river freezings) by and large of- fer independent conªrmation. Kelly and Ó Gráda’s proposed alter- native measures of climate and climate change suffer from serious ºaws. As we review the evidence and refute their criticisms, it will become clear just how solid the case for the Little Ice Age (lia) has become. the case for the little ice age The evidence for early modern global cooling comes, ªrst and foremost, from extensive research into physical proxies, including ice cores, tree rings, corals, and speleothems (stalagmites and stalactites).
    [Show full text]
  • Snow Leopards and Other Animals of the Tien Shan Mountains of Kyrgyzstan
    EXPEDITION REPORT Expedition dates: 9 June – 23 August 2014 Report published: June 2015 Mountain ghosts: protecting snow leopards and other animals of the Tien Shan mountains of Kyrgyzstan . EXPEDITION REPORT Mountain ghosts: protecting snow leopards and other animals of the Tien Shan mountains of Kyrgyzstan Expedition dates: 9 June – 23 August 2014 Report published: June 2015 Authors: Volodymyr Tytar I.I Schmalhausen Institute of Zoology of the National Academy of Sciences of Ukraine Matthias Hammer Biosphere Expeditions 1 © Biosphere Expeditions, an international not-for-profit conservation organisation registered in England, Germany, France, Australia and the USA Officially accredited member of the United Nations Environment Programme's Governing Council & Global Ministerial Environment Forum Officially accredited member of the International Union for the Conservation of Nature Abstract This study was part of an expedition to the Tien Shan Mountains (Kyrgyz Ala-Too range), run by Biosphere Expeditions and NABU from 9 June to 23 August 2014 with the aim of surveying for snow leopard (Uncia uncia) and its prey species such as argali (Ovis ammon) and Siberian ibex (Capra sibirica). Using a cell methodology adopted by Biosphere Expeditions for volunteer expeditions, 77 cells of 2 x 2 km were surveyed and 22 interviews with local people were conducted. The surveys yielded no evidence of snow leopard (camera trap photos, tracks, scrapes, marking places, etc.), but the interviews indicated that snow leopard was present in the area and confirmed the importance of the area as a habitat for snow leopard. The surveys also showed that the area’s habitat is sufficiently varied and capable of sustaining a healthy prey base for the snow leopard as well as for other carnivores such as the wolf.
    [Show full text]
  • Sea Level and Global Ice Volumes from the Last Glacial Maximum to the Holocene
    Sea level and global ice volumes from the Last Glacial Maximum to the Holocene Kurt Lambecka,b,1, Hélène Roubya,b, Anthony Purcella, Yiying Sunc, and Malcolm Sambridgea aResearch School of Earth Sciences, The Australian National University, Canberra, ACT 0200, Australia; bLaboratoire de Géologie de l’École Normale Supérieure, UMR 8538 du CNRS, 75231 Paris, France; and cDepartment of Earth Sciences, University of Hong Kong, Hong Kong, China This contribution is part of the special series of Inaugural Articles by members of the National Academy of Sciences elected in 2009. Contributed by Kurt Lambeck, September 12, 2014 (sent for review July 1, 2014; reviewed by Edouard Bard, Jerry X. Mitrovica, and Peter U. Clark) The major cause of sea-level change during ice ages is the exchange for the Holocene for which the direct measures of past sea level are of water between ice and ocean and the planet’s dynamic response relatively abundant, for example, exhibit differences both in phase to the changing surface load. Inversion of ∼1,000 observations for and in noise characteristics between the two data [compare, for the past 35,000 y from localities far from former ice margins has example, the Holocene parts of oxygen isotope records from the provided new constraints on the fluctuation of ice volume in this Pacific (9) and from two Red Sea cores (10)]. interval. Key results are: (i) a rapid final fall in global sea level of Past sea level is measured with respect to its present position ∼40 m in <2,000 y at the onset of the glacial maximum ∼30,000 y and contains information on both land movement and changes in before present (30 ka BP); (ii) a slow fall to −134 m from 29 to 21 ka ocean volume.
    [Show full text]
  • Los Cien Montes Más Prominentes Del Planeta D
    LOS CIEN MONTES MÁS PROMINENTES DEL PLANETA D. Metzler, E. Jurgalski, J. de Ferranti, A. Maizlish Nº Nombre Alt. Prom. Situación Lat. Long. Collado de referencia Alt. Lat. Long. 1 MOUNT EVEREST 8848 8848 Nepal/Tibet (China) 27°59'18" 86°55'27" 0 2 ACONCAGUA 6962 6962 Argentina -32°39'12" -70°00'39" 0 3 DENALI / MOUNT McKINLEY 6194 6144 Alaska (USA) 63°04'12" -151°00'15" SSW of Rivas (Nicaragua) 50 11°23'03" -85°51'11" 4 KILIMANJARO (KIBO) 5895 5885 Tanzania -3°04'33" 37°21'06" near Suez Canal 10 30°33'21" 32°07'04" 5 COLON/BOLIVAR * 5775 5584 Colombia 10°50'21" -73°41'09" local 191 10°43'51" -72°57'37" 6 MOUNT LOGAN 5959 5250 Yukon (Canada) 60°34'00" -140°24’14“ Mentasta Pass 709 62°55'19" -143°40’08“ 7 PICO DE ORIZABA / CITLALTÉPETL 5636 4922 Mexico 19°01'48" -97°16'15" Champagne Pass 714 60°47'26" -136°25'15" 8 VINSON MASSIF 4892 4892 Antarctica -78°31’32“ -85°37’02“ 0 New Guinea (Indonesia, Irian 9 PUNCAK JAYA / CARSTENSZ PYRAMID 4884 4884 -4°03'48" 137°11'09" 0 Jaya) 10 EL'BRUS 5642 4741 Russia 43°21'12" 42°26'21" West Pakistan 901 26°33'39" 63°39'17" 11 MONT BLANC 4808 4695 France 45°49'57" 06°51'52" near Ozero Kubenskoye 113 60°42'12" c.37°07'46" 12 DAMAVAND 5610 4667 Iran 35°57'18" 52°06'36" South of Kaukasus 943 42°01'27" 43°29'54" 13 KLYUCHEVSKAYA 4750 4649 Kamchatka (Russia) 56°03'15" 160°38'27" 101 60°23'27" 163°53'09" 14 NANGA PARBAT 8125 4608 Pakistan 35°14'21" 74°35'27" Zoji La 3517 34°16'39" 75°28'16" 15 MAUNA KEA 4205 4205 Hawaii (USA) 19°49'14" -155°28’05“ 0 16 JENGISH CHOKUSU 7435 4144 Kyrghysztan/China 42°02'15" 80°07'30"
    [Show full text]
  • Sea Level and Climate Introduction
    Sea Level and Climate Introduction Global sea level and the Earth’s climate are closely linked. The Earth’s climate has warmed about 1°C (1.8°F) during the last 100 years. As the climate has warmed following the end of a recent cold period known as the “Little Ice Age” in the 19th century, sea level has been rising about 1 to 2 millimeters per year due to the reduction in volume of ice caps, ice fields, and mountain glaciers in addition to the thermal expansion of ocean water. If present trends continue, including an increase in global temperatures caused by increased greenhouse-gas emissions, many of the world’s mountain glaciers will disap- pear. For example, at the current rate of melting, most glaciers will be gone from Glacier National Park, Montana, by the middle of the next century (fig. 1). In Iceland, about 11 percent of the island is covered by glaciers (mostly ice caps). If warm- ing continues, Iceland’s glaciers will decrease by 40 percent by 2100 and virtually disappear by 2200. Most of the current global land ice mass is located in the Antarctic and Greenland ice sheets (table 1). Complete melt- ing of these ice sheets could lead to a sea-level rise of about 80 meters, whereas melting of all other glaciers could lead to a Figure 1. Grinnell Glacier in Glacier National Park, Montana; sea-level rise of only one-half meter. photograph by Carl H. Key, USGS, in 1981. The glacier has been retreating rapidly since the early 1900’s.
    [Show full text]
  • Swing Into Summer at the Museum New Exhibits, Giant-Screen Films, and More Make for a Sensational Season!
    JUNE – JULY 2017 Sparks!A Newsletter for Members and Friends of the Museum of Science Inside This Issue • One-Stop Family Fun • Planetarium Shines at Night • Taking STEM to the Street Cover Photos © TMP Images Swing into Summer at the Museum New exhibits, giant-screen films, and more make for a sensational season! eed help filling your summer calendar? The Museum is your FREEDOM go-to resource for awe-inspiring attractions for children and CHAIR adults alike. Intriguing exhibits (including seasonal favorite N ® POPnology), immersive IMAX and 4-D films, a new evening series in the Planetarium, thought-provoking live presentations, and more ensure you’ll keep the learning and fun going long after school’s out! See It Before It Happens Behind the Scenes: Help us test new exhibits!, a new permanent exhibit next to the Theater of Electricity, gives you a sneak peek into the Museum’s future. Just as the name implies, you get a firsthand look at what goes into producing an exhibit— from the birth of an idea to the finishing touches before it’s ready for prime time. And you can participate in the process by experimenting with the newest ideas before they reach their final form. Swing in front of a screen featuring a 3-D space scene designed to make you feel like you’re moving outside this world in “Starfield Swing.” Then share your thoughts on the experience to make it even better! Check back regularly—the space changes frequently as the Museum’s expert exhibit creators are always working on new projects.
    [Show full text]
  • Declining Glaciers Endanger Sustainable Development of the Oases Along the Aksu-Tarim River (Central Asia)
    International Journal of Sustainable Development & World Ecology ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/tsdw20 Declining glaciers endanger sustainable development of the oases along the Aksu-Tarim River (Central Asia) Tobias Bolch, Doris Duethmann, Michel Wortmann, Shiyin Liu & Markus Disse To cite this article: Tobias Bolch, Doris Duethmann, Michel Wortmann, Shiyin Liu & Markus Disse (2021): Declining glaciers endanger sustainable development of the oases along the Aksu-Tarim River (Central Asia), International Journal of Sustainable Development & World Ecology, DOI: 10.1080/13504509.2021.1943723 To link to this article: https://doi.org/10.1080/13504509.2021.1943723 © 2021 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. Published online: 14 Jul 2021. Submit your article to this journal View related articles View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=tsdw20 INTERNATIONAL JOURNAL OF SUSTAINABLE DEVELOPMENT & WORLD ECOLOGY https://doi.org/10.1080/13504509.2021.1943723 Declining glaciers endanger sustainable development of the oases along the Aksu-Tarim River (Central Asia) Tobias Bolch a, Doris Duethmann b, Michel Wortmann c, Shiyin Liu d and Markus Disse e aSchool of Geography and Sustainable Development, University of St Andrews, St Andrews, Scotland, UK; bDepartment of Ecohydrology, IGB Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany; cClimate Resilience, Potsdam Institute for Climate Impact Research, Potsdam, Germany; dInstitute of International Rivers and Eco-security, Yunnan University, Kunming, China; eChair of Hydrology and River Basin Management, TU München, Germany ABSTRACT ARTICLE HISTORY Tarim River basin is the largest endorheic river basin in China.
    [Show full text]
  • Nomenclàtor Mundial: Rússia I Països Propers Comissió D'onomàstica
    Nomenclàtor mundial: Rússia i països propers Comissió d’Onomàstica Novembre 2019 Països revisats: Armènia Azerbaidjan Belarús Geòrgia Kazakhstan Kirguizstan Mongòlia Rússia Tadjikistan Turkmenistan Ucraïna Uzbekistan Nomenclàtor mundial: Armènia Estat Categoria Proposta Forma secundària Forma oficial Armènia 0_Estat Armènia Հայաստան [Hayastan] Armènia 1_Capital Yerevan Երևան [Yerevan] Armènia 2_Població Gyumri Գյումրի [Gyumri] Armènia; Elevació 2 Ararat Արարատ [Ararat] (Ar.); Ağrı Dağı Turquia (Tur.) Armènia Llac, albufera Sevana, llac Սևանա լիճ [Sevana lič]̣ Nomenclàtor mundial: Azerbaidjan Estat Categoria Proposta Forma secundària Forma oficial Azerbaidjan 0_Estat Azerbaidjan (, l') Azǝrbaycan Azerbaidjan 1_Capital Bakú Bakı Azerbaidjan 2_Població Ağdam Ağdam Azerbaidjan 2_Població Balakən Balakən Azerbaidjan 2_Població Bankǝ Bankǝ Azerbaidjan 2_Població Gəncə Gəncə Azerbaidjan 2_Població Lənkəran Lənkəran Azerbaidjan 2_Població Mingəçevir Mingəçevir Azerbaidjan 2_Població Naxçıvan Naxçıvan Azerbaidjan 2_Població Sumqayıt Sumqayıt Azerbaidjan 2_Població Xudat Xudat Azerbaidjan Elevació 1 Talış, muntanyes Talış dağları Rússia; Elevació 1 Caucas, el Qafqaz (Az.); Կովկաս [Kovkas] Geòrgia; (Ar.); კავკასია [K'avk'asia] (Ge.); Azerbaidjan Кавказ [Kavkaz] (Rus.) Azerbaidjan Elevació 2 Bazardüzü, pic Bazardüzü dağı Azerbaidjan Llac, albufera Sarısu, llac Sarısu göl Azerbaidjan; Mar, oceà Càspia, mar Каспий маңы ойпаты (Kaspii mańy Kazakhstan; oipaty) (Ka.); Xəzər dənizi (Azer.); Rússia; Каспийское море (Rus.); Hazar Turkmenistan deňzi (Tur.)
    [Show full text]
  • This Is Central and Southwest Asia the Newsletter of the Central and Southwest Asia Program at the University of Montana Online: Spring 2009
    THIS IS Central and Southwest Asia The Newsletter of the Central and Southwest Asia Program at The University of Montana Online: www.umt.edu/cap Spring 2009 CONTENTS Tajik Students Go to Washington 7th Annual Central and Southwest Asia Conference ......2 Schedule of Conference Events .............3 Persian at UM ..3 The Tien Shan ...............4 Students of UM students from Tajikistan, Shohina Touraeva and Umed Partov, with U.S. Senators Max Baucus and Jon Tester in the Arabic Receive Senate Office, Washington D.C. As Presidential Inauguration Seminar Fellows, Shohina and Umed had the honor of participating in the Inaugural Ceremony of President Barack Obama and met with both Montana Senators. Scholarships ....5 Turkish at UM ..5 Nowruz in Montana By Umed Partov and Shakib Rajaieean Directory .........6 The celebration of Nowruz, the Persian New Year was held in a cultural event by the Persian Student Association at the University Center on Sunday March 23, 2009. Nowruz, which marks the beginning of the new Persian year is one of the oldest and most popular Persian holidays. It is celebrated in all the Persian speaking countries (Iran, Tajikistan and Afghanistan), Uzbekistan, Kyrgyzstan, Pakistan, Azerbaijan, Turkey, parts of Iraq and many other countries in Southwest Asia. Persian Student Association, which mainly comprises of UM students from Iran, Tajikistan, and Afghanistan launches this event annually. As in previous years, members of Persian Student Association celebrated Nowruz with their non-Persian friends, UM staff and professors as well as members of the Missoula community. Approximately 110 guests were invited to share this joyful time of the year.
    [Show full text]
  • Holocene Glacier Fluctuations
    Quaternary Science Reviews 111 (2015) 9e34 Contents lists available at ScienceDirect Quaternary Science Reviews journal homepage: www.elsevier.com/locate/quascirev Invited review Holocene glacier fluctuations * Olga N. Solomina a, b, , Raymond S. Bradley c, Dominic A. Hodgson d, Susan Ivy-Ochs e, f, Vincent Jomelli g, Andrew N. Mackintosh h, Atle Nesje i, j, Lewis A. Owen k, Heinz Wanner l, Gregory C. Wiles m, Nicolas E. Young n a Institute of Geography RAS, Staromonetny-29, 119017, Staromonetny, Moscow, Russia b Tomsk State University, Tomsk, Russia c Department of Geosciences, University of Massachusetts, Amherst, MA 012003, USA d British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 0ET, UK e Institute of Particle Physics, ETH Zurich, 8093 Zurich, Switzerland f Institute of Geography, University of Zurich, 8057 Zurich, Switzerland g Universite Paris 1 Pantheon-Sorbonne, CNRS Laboratoire de Geographie Physique, 92195 Meudon, France h Antarctic Research Centre, Victoria University Wellington, New Zealand i Department of Earth Science, University of Bergen, N-5020 Bergen, Norway j Uni Research Klima, Bjerknes Centre for Climate Research, N-5020 Bergen Norway k Department of Geology, University of Cincinnati, Cincinnati, OH 45225, USA l Institute of Geography and Oeschger Centre for Climate Change Research, University of Bern, Switzerland m Department of Geology, The College of Wooster, Wooster, OH 44691, USA n Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, USA article info abstract Article history: A global overview of glacier advances and retreats (grouped by regions and by millennia) for the Received 15 July 2014 Holocene is compiled from previous studies. The reconstructions of glacier fluctuations are based on Received in revised form 1) mapping and dating moraines defined by 14C, TCN, OSL, lichenometry and tree rings (discontinuous 22 November 2014 records/time series), and 2) sediments from proglacial lakes and speleothems (continuous records/ Accepted 27 November 2014 time series).
    [Show full text]
  • Glacier Fluctuations During the Past 2000 Years
    Quaternary Science Reviews 149 (2016) 61e90 Contents lists available at ScienceDirect Quaternary Science Reviews journal homepage: www.elsevier.com/locate/quascirev Invited review Glacier fluctuations during the past 2000 years * Olga N. Solomina a, , Raymond S. Bradley b, Vincent Jomelli c, Aslaug Geirsdottir d, Darrell S. Kaufman e, Johannes Koch f, Nicholas P. McKay e, Mariano Masiokas g, Gifford Miller h, Atle Nesje i, j, Kurt Nicolussi k, Lewis A. Owen l, Aaron E. Putnam m, n, Heinz Wanner o, Gregory Wiles p, Bao Yang q a Institute of Geography RAS, Staromonetny-29, 119017 Staromonetny, Moscow, Russia b Department of Geosciences, University of Massachusetts, Amherst, MA 01003, USA c Universite Paris 1 Pantheon-Sorbonne, CNRS Laboratoire de Geographie Physique, 92195 Meudon, France d Department of Earth Sciences, University of Iceland, Askja, Sturlugata 7, 101 Reykjavík, Iceland e School of Earth Sciences and Environmental Sustainability, Northern Arizona University, Flagstaff, AZ 86011, USA f Department of Geography, Brandon University, Brandon, MB R7A 6A9, Canada g Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales (IANIGLA), CCT CONICET Mendoza, CC 330 Mendoza, Argentina h INSTAAR and Geological Sciences, University of Colorado Boulder, USA i Department of Earth Science, University of Bergen, Allegaten 41, N-5007 Bergen, Norway j Uni Research Climate AS at Bjerknes Centre for Climate Research, Bergen, Norway k Institute of Geography, University of Innsbruck, Innrain 52, 6020 Innsbruck, Austria l Department of Geology,
    [Show full text]
  • Cirques Have Growth Spurts During Deglacial and Interglacial Periods: Evidence from 10Be and 26Al Nuclide Inventories in the Central and Eastern Pyrenees Y
    Cirques have growth spurts during deglacial and interglacial periods: Evidence from 10Be and 26Al nuclide inventories in the central and eastern Pyrenees Y. Crest, M Delmas, Regis Braucher, Y. Gunnell, M Calvet, A.S.T.E.R. Team To cite this version: Y. Crest, M Delmas, Regis Braucher, Y. Gunnell, M Calvet, et al.. Cirques have growth spurts during deglacial and interglacial periods: Evidence from 10Be and 26Al nuclide inventories in the central and eastern Pyrenees. Geomorphology, Elsevier, 2017, 278, pp.60 - 77. 10.1016/j.geomorph.2016.10.035. hal-01420871 HAL Id: hal-01420871 https://hal-amu.archives-ouvertes.fr/hal-01420871 Submitted on 21 Dec 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Geomorphology 278 (2017) 60–77 Contents lists available at ScienceDirect Geomorphology journal homepage: www.elsevier.com/locate/geomorph Cirques have growth spurts during deglacial and interglacial periods: Evidence from 10Be and 26Al nuclide inventories in the central and eastern Pyrenees Y. Crest a,⁎,M.Delmasa,R.Braucherb, Y. Gunnell c,M.Calveta, ASTER Team b,1: a Univ Perpignan Via-Domitia, UMR 7194 CNRS Histoire Naturelle de l'Homme Préhistorique, 66860 Perpignan Cedex, France b Aix-Marseille Université, CNRS–IRD–Collège de France, UMR 34 CEREGE, Technopôle de l'Environnement Arbois–Méditerranée, BP80, 13545 Aix-en-Provence, France c Univ Lyon Lumière, Department of Geography, UMR 5600 CNRS Environnement Ville Société, 5 avenue Pierre Mendès-France, F-69676 Bron, France article info abstract Article history: Cirques are emblematic landforms of alpine landscapes.
    [Show full text]