Feather Mosses, Nitrogen Fixation and the Boreal Biome 27 Feather Mosses, Nitrogen Fixation and the Boreal Biome

Total Page:16

File Type:pdf, Size:1020Kb

Feather Mosses, Nitrogen Fixation and the Boreal Biome 27 Feather Mosses, Nitrogen Fixation and the Boreal Biome 26 Feather mosses, nitrogen fixation and the boreal biome 27 Feather mosses, nitrogen fixation and the boreal biome Feather mosses, nitrogen fixation and the boreal biome > T. H. DeLuca School of the Environment and Natural Resources, Bangor University, Bangor, UK [email protected] Introduction Nitrogen (N) is the primary limiting nutrient for both productivity and decomposition in boreal forests (Tamm, 1991) yet we lack a clear understanding of the influence of N inputs from nitrogen fixation on forest ecosystem dynamics, productivity and carbon (C) cycling. Although our atmosphere is 78% N2 gas, none of that N is available Figure 1. A late succession Scots pine, Norway spruce forest in directly to land plants or animals; it must first be converted northern Sweden. Feather mosses make up the light green carpet on the forest floor. to ammoniacal (NH3) N by nitrogen-fixing microbes, often acting in symbiosis with plant species, and then further transformed to useful amino acids in plants or bacteria. As there is a general lack of woody or herbaceous N-fixing plant-microbe associations in upland boreal forests, the primary source of useful N supply in these ecosystems has until recently remained a mystery. There is currently a great deal of interest in boreal forest ecosystems and the vital role they play in global N and C balance. The boreal ecosystem is the second largest biome in the world and one of the largest terrestrial C sinks on Earth, storing approximately 30% of total terrestrial carbon stocks. Feather mosses are an ever-present component of the boreal forest floor (see Figs 1, 2), accounting for as Figure 2. A close up view of Pleurozium schreberi, pic: © Uwe much as 95% of ground cover, and a major contributor to the Drehwald annual productivity of the boreal biome. While the ecology formed from both feather mosses and sphagnum mosses, and ecosystems of these bryophytes within the boreal forest this dense insulting layer controls both heat flux from have been widely described by numerous researchers, the incoming radiation and losses from the largely mineral boreal contribution of bryophytes and, in particular, feather mosses, soils (Beringer et al., 2001), thereby directly controlling soil to global ecosystem models often goes unobserved. temperatures and indirectly regulating surface processes such as carbon cycling. The feather moss ‘bottom layer’ is a vital organ of the boreal forest, functioning to filter water, insulate against Over the past 10 years, we have investigated the notion temperature change, regulate nutrient uptake and minimise that feather mosses also serve as hosts for N-fixing nutrient losses. It provides the breathing, protective skin cyanobacteria, aiming to expand our knowledge of their of the forest floor (Lindo and Gonzeles, 2010). Potentially beneficial properties. Our results show that, for the biota 28 Feather mosses, nitrogen fixation and the boreal biome of the relatively pristine (low N deposition) environments in creating bioavailable N in the boreal forest. As stated of northern Scandinavia, feather mosses are a dominant previously, the conspicuous lack of any significant quantity source of N (DeLuca et al., 2002b; Zackrisson et al., 2004; of herbaceous or woody N-fixing plant-microbe associations DeLuca et al., 2007; Zackrisson et al., 2009), thus providing a across much of the boreal forest had long puzzled forest first step towards a holistic understanding of the role which ecologists, who therefore questioned the source of available natural N fixation plays in these high latitude boreal forests. N supply in fire-maintained or harvested boreal forest This research has also provided an insight into the means by ecosystems (Tamm, 1991). which N subsequently accumulates in such pristine forest ecosystems and the following paragraphs describe some of Repeated efforts to measure N fixation associated with the history of our studies and raise some future questions feather mosses have failed because most researchers would that have yet to be addressed. take their samples from high latitude ecosystems in late June to mid-July, a time of uniquely low N fixation activity Feather moss carpets in forest feather moss ecosystems (DeLuca et al., 2002b; Zackrisson et al., 2004; Zackrisson et al., 2009). Also, the Upland moss communities of the boreal forest contain spatial variation of N fixation in feather mosses obligates hundreds of species of bryophytes but are dominated an intensive sampling strategy, which was not the norm in by two pleurocarpous species (in which the female surveys of bryophyte N fixation. Our work has therefore archegonium reproductive structures are on a short side opened up the possibility that feather mosses are actually branch rather than on the main stalk): Pleurozium schreberi responsible for a great deal of the N accumulation resident and Hylocomium splendens, and one acrocarpous species in boreal forests and has underscored the importance of (in which the archegonia are at the top of the stem), feather mosses in the total N economy of the boreal biome Polytrichum commune. The photosynthetic capacity of these (DeLuca et al., 2002b; Zackrisson et al., 2004). feather mosses is reflected in an ecosystem productivity that rivals, and at times (during early to mid-succession) We have found cyanobacteria (see Fig. 3) residing in the can surpass, that of the overstorey (Bond-Lamberty et al., leaf incurve of some of the pleurocarpous moss species, 2007). Hylocomium and Pleurozium often account for 30- leaving them both difficult to observe and difficult to 95% of the average cover of the boreal forest floor and yield culture. Nevertheless, we have commonly retrieved three a net primary productivity (NPP) of 200 to >400 kg ha-1 yr-1, genera of cyanobacteria (Nostoc, Stigonema and Calothryx) comprising a total biomass of between 0.1–2.0 Mg C ha-1 associated with Pleurozium schreberi alone (Gentili et al., as live moss and 2.0–4.0 Mg C ha-1 as dead moss (Vogel 2005). These cyanobacteria demonstrate several unique and Gower, 1998; Turetsky, 2003). Their photosynthetic properties, including having biphasic temperature optima contribution to C fixation capacity has been found to be of for productivity at 13oC and 22oC, which makes them ideally particular importance when the overstorey is under stress, suited to N fixation in boreal ecosystems. The feather moss as, for example, in the large-scale bark beetle outbreak that carpets are thus a uniquely convenient system for studying recently raged across the Canadian boreal forest, where N fixation, as either individual shoots or whole moss carpets bryophyte productivity remained relatively consistent with can be placed in a vessel for manipulation or measurement the opening of the forest canopy in the absence of fire of fixation activity and this has allowed us to conduct (Olsson and Staff, 1995). With the dip in photosynthetic C intensive monitoring. fixation by trees and the net C emissions associated with dead tree decay, the carbon assimilation associated with Distribution of N fixation in Pleurozium the moss bottom layer becomes much more important for schreberi in Fennoscandia ecosystem maintenance. The carbon fixed by the mosses is slowly incorporated into the fibric materials that comprise Over the past 10 years, we have established sampling plots the dense humus and debris mat often associated with for Pleurozium schreberi and Hylocomium splendans at boreal Spodosol soils (Beringer et al., 2001). about 50 sites across northern Sweden, Finland and Norway (Fig.4). The majority of samples have been collected from Although feather mosses have long been known to intercept natural forest preserves to minimise site disturbance and and retain nutrients from forest throughfall, there has all sites occur within the mid- to northern boreal zone of previously been little understanding of the role they play Fennoscandia (59o–69oN; 17o–19oE). When samples from 500 ) -1 d Pleurozium 400 -2 Hylocomium m 29 Feather mosses, nitrogen fixation mol and the boreal biome μ 300 ( ! 200 these plots were assessed for N fixation activity using the acetylene reduction technique, there was a clear relationship 100 between the latitude and longitude of the sample collected Acetylene reduction and N fixation rate, wherein fixation rates were greater in the north, away from the Botinian Bay section of the Baltic Sea, likely as a result of the high rates of N deposition along 0 this more populated coast. In comparison, the boreal forests 59 59 59 60 61 64 j 65 Ty Br 59Bj So 59Fi Va 60In 60Gr Ab60 Ed60 60Lo o Ta 62 Ku Vi 64 Ki 64Vi 65 Ja 65 T Ku 65u Su65 66 2 Ad67 67 a An67 69 of northern Sweden exhibit exceptionally low rates of N H SonVat 61 61Lon Ro63 64 Mo 64 De 66 Ru Gu65 65 N Ai1Ai2 66Ai3 66Ai 66v3Aiv1 66Ai 67v Ru N67 Site and latitude (name and degrees north) deposition, both compared to southern Sweden and to other ! more industrial regions of the world (Gundale et al., 2011). Indeed, nitrogen deposition in Sweden ranges from about 20 kg N ha-1 yr-1 in southern Sweden to less than 1.0 kg ha-1 yr-1 in Northern Sweden where most of our studies have been performed. Nitrogen deposition can interfere greatly with N fixation in cyanobacteria and this may partially account for the geographic variation in our results. Successional influence on N-fixation rates Figure 3. The cyanobacteria, Stigonema sp., taken from the leaf incurve of Pleurozium schreberi. Fire is the primary form of chronic disturbance in the boreal forest ecosystems of northern Europe and is a potent driver of shifts in nutrient cycling and plant community composition. The recovery of organic N resources lost Pleurozium during severe wildfire is dependent upon biological N fixation 400 (Smithwick et al., 2005) and, in the boreal forest, this is primarily accomplished by the feather moss-cyanobacterial 300 associations (Fig.
Recommended publications
  • Coptis Trifolia Conservation Assessment
    CONSERVATION ASSESSMENT for Coptis trifolia (L.) Salisb. Originally issued as Management Recommendations December 1998 Marty Stein Reconfigured-January 2005 Tracy L. Fuentes USDA Forest Service Region 6 and USDI Bureau of Land Management, Oregon and Washington CONSERVATION ASSESSMENT FOR COPTIS TRIFOLIA Table of Contents Page List of Tables ................................................................................................................................. 2 List of Figures ................................................................................................................................ 2 Summary........................................................................................................................................ 4 I. NATURAL HISTORY............................................................................................................. 6 A. Taxonomy and Nomenclature.......................................................................................... 6 B. Species Description ........................................................................................................... 6 1. Morphology ................................................................................................................... 6 2. Reproductive Biology.................................................................................................... 7 3. Ecological Roles ............................................................................................................. 7 C. Range and Sites
    [Show full text]
  • Economic and Ethnic Uses of Bryophytes
    Economic and Ethnic Uses of Bryophytes Janice M. Glime Introduction Several attempts have been made to persuade geologists to use bryophytes for mineral prospecting. A general lack of commercial value, small size, and R. R. Brooks (1972) recommended bryophytes as guides inconspicuous place in the ecosystem have made the to mineralization, and D. C. Smith (1976) subsequently bryophytes appear to be of no use to most people. found good correlation between metal distribution in However, Stone Age people living in what is now mosses and that of stream sediments. Smith felt that Germany once collected the moss Neckera crispa bryophytes could solve three difficulties that are often (G. Grosse-Brauckmann 1979). Other scattered bits of associated with stream sediment sampling: shortage of evidence suggest a variety of uses by various cultures sediments, shortage of water for wet sieving, and shortage around the world (J. M. Glime and D. Saxena 1991). of time for adequate sampling of areas with difficult Now, contemporary plant scientists are considering access. By using bryophytes as mineral concentrators, bryophytes as sources of genes for modifying crop plants samples from numerous small streams in an area could to withstand the physiological stresses of the modern be pooled to provide sufficient material for analysis. world. This is ironic since numerous secondary compounds Subsequently, H. T. Shacklette (1984) suggested using make bryophytes unpalatable to most discriminating tastes, bryophytes for aquatic prospecting. With the exception and their nutritional value is questionable. of copper mosses (K. G. Limpricht [1885–]1890–1903, vol. 3), there is little evidence of there being good species to serve as indicators for specific minerals.
    [Show full text]
  • Vermont Natural Community Types
    Synonymy of Vermont Natural Community Types with National Vegetation Classification Associations Eric Sorenson and Bob Zaino Natural Heritage Inventory Vermont Fish and Wildlife Department October 17, 2019 Vermont Natural Community Type Patch State National and International Vegetation Classification. NatureServe. 2019. Size Rank NatureServe Explorer: An online encyclopedia of life. NatureServe, Arlington, Virginia. Spruce-Fir-Northern Hardwood Forest Formation Subalpine Krummholz S S1 Picea mariana - Abies balsamea / Sibbaldiopsis tridentata Shrubland (CEGL006038); (Picea mariana, Abies balsamea) / Kalmia angustifolia - Ledum groenlandicum Dwarf-shrubland Montane Spruce-Fir Forest L-M S3 Picea rubens - Abies balsamea - Sorbus americana Forest (CEGL006128) Variant: Montane Fir Forest L-M S3 Abies balsamea - (Betula papyrifera var. cordifolia) Forest (CEGL006112) Variant: Montane Spruce Forest Lowland Spruce-Fir Forest L-M S3 Picea mariana - Picea rubens / Pleurozium schreberi Forest (CEGL006361) Variant: Well-Drained Lowland Spruce- L S2 Picea rubens - Abies balsamea - Betula papyrifera Forest (CEGL006273); Fir Forest Picea mariana - Picea rubens / Rhododendron canadense / Cladina spp. Woodland (CEGL006421) Montane Yellow Birch-Red Spruce Forest M S3 Betula alleghaniensis - Picea rubens / Dryopteris campyloptera Forest (CEGL006267) Variant: Montane Yellow Birch-Sugar L S3 Maple-Red Spruce Forest Red Spruce-Northern Hardwood Forest M S5 Betula alleghaniensis - Picea rubens / Dryopteris campyloptera Forest (CEGL006267) Red Spruce-Heath
    [Show full text]
  • Appendix 2: Plant Lists
    Appendix 2: Plant Lists Master List and Section Lists Mahlon Dickerson Reservation Botanical Survey and Stewardship Assessment Wild Ridge Plants, LLC 2015 2015 MASTER PLANT LIST MAHLON DICKERSON RESERVATION SCIENTIFIC NAME NATIVENESS S-RANK CC PLANT HABIT # OF SECTIONS Acalypha rhomboidea Native 1 Forb 9 Acer palmatum Invasive 0 Tree 1 Acer pensylvanicum Native 7 Tree 2 Acer platanoides Invasive 0 Tree 4 Acer rubrum Native 3 Tree 27 Acer saccharum Native 5 Tree 24 Achillea millefolium Native 0 Forb 18 Acorus calamus Alien 0 Forb 1 Actaea pachypoda Native 5 Forb 10 Adiantum pedatum Native 7 Fern 7 Ageratina altissima v. altissima Native 3 Forb 23 Agrimonia gryposepala Native 4 Forb 4 Agrostis canina Alien 0 Graminoid 2 Agrostis gigantea Alien 0 Graminoid 8 Agrostis hyemalis Native 2 Graminoid 3 Agrostis perennans Native 5 Graminoid 18 Agrostis stolonifera Invasive 0 Graminoid 3 Ailanthus altissima Invasive 0 Tree 8 Ajuga reptans Invasive 0 Forb 3 Alisma subcordatum Native 3 Forb 3 Alliaria petiolata Invasive 0 Forb 17 Allium tricoccum Native 8 Forb 3 Allium vineale Alien 0 Forb 2 Alnus incana ssp rugosa Native 6 Shrub 5 Alnus serrulata Native 4 Shrub 3 Ambrosia artemisiifolia Native 0 Forb 14 Amelanchier arborea Native 7 Tree 26 Amphicarpaea bracteata Native 4 Vine, herbaceous 18 2015 MASTER PLANT LIST MAHLON DICKERSON RESERVATION SCIENTIFIC NAME NATIVENESS S-RANK CC PLANT HABIT # OF SECTIONS Anagallis arvensis Alien 0 Forb 4 Anaphalis margaritacea Native 2 Forb 3 Andropogon gerardii Native 4 Graminoid 1 Andropogon virginicus Native 2 Graminoid 1 Anemone americana Native 9 Forb 6 Anemone quinquefolia Native 7 Forb 13 Anemone virginiana Native 4 Forb 5 Antennaria neglecta Native 2 Forb 2 Antennaria neodioica ssp.
    [Show full text]
  • Summary Data
    Table 11. Summary List of Species Identified in 2001-2002, Squam Lakes Watershed, New Hampshire. Page 1 of 12 Type Common Name Scientific Name Amphibians Bullfrog Rana catesbeiana Amphibians Eastern American toad Bufo americanus Amphibians Gray treefrog Hyla versicolor Amphibians Green frog Rana clamitans Amphibians Northern leopard frog Rana pipiens Amphibians Northern dusky salamander Desmognathus fuscus Amphibians Northern spring peeper Pseudacris crucifer Amphibians Northern two-lined salamander Eurycea bislineata Amphibians Pickerel frog Rana palustris Amphibians Redback salamander Plethodon cinereus Amphibians Red-spotted newt Notophthalmus viridescens Amphibians Spotted salamander Ambystoma maculatum Amphibians Wood frog Rana sylvatica Birds Alder Flycatcher Empidonax alnorum Birds American Bittern Botaurus lentiginosus Birds American Black Duck Anas rubripes Birds American Coot Fulica americana Birds American Crow Corvus brachyrhynchos Birds American Goldfinch Carduelis tristis Birds American Green-winged Teal Anas crecca Birds American Kestrel Falco sparverius Birds American Redstart Setophaga ruticilla Birds American Robin Turdus migratorius Birds American Tree Sparrow Spizella arborea Birds American Woodcock Scolopax minor Birds Atlantic Brant Branta bernicla Birds Bald Eagle* Haliaeetus leucocephalus* Birds Baltimore Oriole Icterus galbula Birds Bank Swallow Riparia riparia Birds Barn Swallow Hirundo rustica Birds Barred Owl Strix varia Birds Belted Kingfisher Ceryle alcyon Birds Black-and-white Warbler Mniotilta varia Birds
    [Show full text]
  • Species List For: Labarque Creek CA 750 Species Jefferson County Date Participants Location 4/19/2006 Nels Holmberg Plant Survey
    Species List for: LaBarque Creek CA 750 Species Jefferson County Date Participants Location 4/19/2006 Nels Holmberg Plant Survey 5/15/2006 Nels Holmberg Plant Survey 5/16/2006 Nels Holmberg, George Yatskievych, and Rex Plant Survey Hill 5/22/2006 Nels Holmberg and WGNSS Botany Group Plant Survey 5/6/2006 Nels Holmberg Plant Survey Multiple Visits Nels Holmberg, John Atwood and Others LaBarque Creek Watershed - Bryophytes Bryophte List compiled by Nels Holmberg Multiple Visits Nels Holmberg and Many WGNSS and MONPS LaBarque Creek Watershed - Vascular Plants visits from 2005 to 2016 Vascular Plant List compiled by Nels Holmberg Species Name (Synonym) Common Name Family COFC COFW Acalypha monococca (A. gracilescens var. monococca) one-seeded mercury Euphorbiaceae 3 5 Acalypha rhomboidea rhombic copperleaf Euphorbiaceae 1 3 Acalypha virginica Virginia copperleaf Euphorbiaceae 2 3 Acer negundo var. undetermined box elder Sapindaceae 1 0 Acer rubrum var. undetermined red maple Sapindaceae 5 0 Acer saccharinum silver maple Sapindaceae 2 -3 Acer saccharum var. undetermined sugar maple Sapindaceae 5 3 Achillea millefolium yarrow Asteraceae/Anthemideae 1 3 Actaea pachypoda white baneberry Ranunculaceae 8 5 Adiantum pedatum var. pedatum northern maidenhair fern Pteridaceae Fern/Ally 6 1 Agalinis gattingeri (Gerardia) rough-stemmed gerardia Orobanchaceae 7 5 Agalinis tenuifolia (Gerardia, A. tenuifolia var. common gerardia Orobanchaceae 4 -3 macrophylla) Ageratina altissima var. altissima (Eupatorium rugosum) white snakeroot Asteraceae/Eupatorieae 2 3 Agrimonia parviflora swamp agrimony Rosaceae 5 -1 Agrimonia pubescens downy agrimony Rosaceae 4 5 Agrimonia rostellata woodland agrimony Rosaceae 4 3 Agrostis elliottiana awned bent grass Poaceae/Aveneae 3 5 * Agrostis gigantea redtop Poaceae/Aveneae 0 -3 Agrostis perennans upland bent Poaceae/Aveneae 3 1 Allium canadense var.
    [Show full text]
  • <I>Sphagnum</I> Peat Mosses
    ORIGINAL ARTICLE doi:10.1111/evo.12547 Evolution of niche preference in Sphagnum peat mosses Matthew G. Johnson,1,2,3 Gustaf Granath,4,5,6 Teemu Tahvanainen, 7 Remy Pouliot,8 Hans K. Stenøien,9 Line Rochefort,8 Hakan˚ Rydin,4 and A. Jonathan Shaw1 1Department of Biology, Duke University, Durham, North Carolina 27708 2Current Address: Chicago Botanic Garden, 1000 Lake Cook Road Glencoe, Illinois 60022 3E-mail: [email protected] 4Department of Plant Ecology and Evolution, Evolutionary Biology Centre, Uppsala University, Norbyvagen¨ 18D, SE-752 36, Uppsala, Sweden 5School of Geography and Earth Sciences, McMaster University, Hamilton, Ontario, Canada 6Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, SE-750 07, Uppsala, Sweden 7Department of Biology, University of Eastern Finland, P.O. Box 111, 80101, Joensuu, Finland 8Department of Plant Sciences and Northern Research Center (CEN), Laval University Quebec, Canada 9Department of Natural History, Norwegian University of Science and Technology University Museum, Trondheim, Norway Received March 26, 2014 Accepted September 23, 2014 Peat mosses (Sphagnum)areecosystemengineers—speciesinborealpeatlandssimultaneouslycreateandinhabitnarrowhabitat preferences along two microhabitat gradients: an ionic gradient and a hydrological hummock–hollow gradient. In this article, we demonstrate the connections between microhabitat preference and phylogeny in Sphagnum.Usingadatasetof39speciesof Sphagnum,withan18-locusDNAalignmentandanecologicaldatasetencompassingthreelargepublishedstudies,wetested
    [Show full text]
  • Liverworts Mosses
    LIVERWORTS LIVERWORTS MOSSES Heller’s Notchwort (Anastrophyllum hellerianum) Hatcher’s Paw-wort (Barbilophozia hatcheri) Key features for identifying Key features for identifying liverworts Mosses Growth form. There are two sorts of liverworts; leafy Growth form. Leaving aside the very distinctive bog- liverworts have a stem and leaves and resemble a mosses (Sphagnum), mosses can be split into two moss, whereas thallose or thalloid liverworts have a groups, acrocarpous and pleurocarpous. There is a simple strap of tissue with no stem or leaves. Leafy technical difference between these two forms but in liverworts can form erect cushions and turfs while some practical terms, acrocarps usually have erect stems are creeping and closely apressed to rock or tree. The and grow in cushions or turfs while pleurocarps tend size of the plant is also important; a number of oceanic Michael Lüth to grow with main stems parallel to the ground (or rock Leafy liverwort NS; size: very small and forming thin patches Leafy liverwort; size: small to medium-sized forming tight liverworts are very, very small. Above - Left: acrocarpous Scott’s Fork moss (Dicranum Above - Left: a thallose liverwort, Overleaf Pellia (Pellia or tree trunk) and form wefts. The often dense growth of upright stems; colour: yellow or yellow green with shoot patches of erect stems; colour: mid or yellow green, often with Leaf shape. This is all-important in leafy liverworts and scottianum) ; right: pleurocarpous Larger Mouse-tail epiphylla) with fruits; right: a leafy liverwort with round form of acrocarps means that their sparse branches tips red with gemmae; leaves: tiny with two lobes but hardly some shoot tips red with gemmae; leaves: rounded-rectangular leaves, Autumn Flapwort (Jamesoniella autumnalis).
    [Show full text]
  • Dimensions of Biodiversity
    Dimensions of Biodiversity NATIONAL SCIENCE FOUNDATION CO-FUNDED BY 2010–2015 PROJECTS Introduction 4 Project Abstracts 2015 8 Project Updates 2014 30 Project Updates 2013 42 Project Updates 2012 56 Project Updates 2011 72 Project Updates 2010 88 FRONT COVER IMAGES A B f g h i k j C l m o n q p r D E IMAGE CREDIT THIS PAGE FRONT COVER a MBARI & d Steven Haddock f Steven Haddock k Steven Haddock o Carolyn Wessinger Peter Girguis e Carolyn g Erin Tripp l Lauren Schiebelhut p Steven Litaker b James Lendemer Wessinger h Marty Condon m Lawrence Smart q Sahand Pirbadian & c Matthew L. Lewis i Marty Condon n Verity Salmon Moh El-Naggar j Niklaus Grünwald r Marty Condon FIELD SITES Argentina France Singapore Australia French Guiana South Africa Bahamas French Polynesia Suriname Belize Germany Spain Bermuda Iceland Sweden Bolivia Japan Switzerland Brazil Madagascar Tahiti Canada Malaysia Taiwan China Mexico Thailand Colombia Norway Trinidad Costa Rica Palau United States Czech Republic Panama United Kingdom Dominican Peru Venezuela Republic Philippines Labrador Sea Ecuador Poland North Atlantic Finland Puerto Rico Ocean Russia North Pacific Ocean Saudi Arabia COLLABORATORS Argentina Finland Palau Australia France Panama Brazil Germany Peru Canada Guam Russia INTERNATIONAL PARTNERS Chile India South Africa China Brazil China Indonesia Sri Lanka (NSFC) (FAPESP) Colombia Japan Sweden Costa Rica Kenya United Denmark Malaysia Kingdom Ecuador Mexico ACKNOWLEDGMENTS Many NSF staff members, too numerous to We thank Mina Ta and Matthew Pepper for mention individually, assisted in the development their graphic design contribution to the abstract and implementation of the Dimensions of booklet.
    [Show full text]
  • Patterns of Bryophyte Succession in a 160-Year Chronosequence in Deciduous and Coniferous Forests of Boreal Alaska Mélanie Jean, Heather D
    1021 ARTICLE Patterns of bryophyte succession in a 160-year chronosequence in deciduous and coniferous forests of boreal Alaska Mélanie Jean, Heather D. Alexander, Michelle C. Mack, and Jill F. Johnstone Abstract: Bryophytes are dominant components of boreal forest understories and play a large role in regulating soil microcli- mate and nutrient cycling. Therefore, shifts in bryophyte communities have the potential to affect boreal forests’ ecosystem processes. We investigated how bryophyte communities varied in 83 forest stands in interior Alaska that ranged in age (since fire) from 8 to 163 years and had canopies dominated by deciduous broadleaf (Populus tremuloides Michx. or Betula neoalaskana Sarg.) or coniferous trees (Picea mariana Mill B.S.P.). In each stand, we measured bryophyte community composition, along with environ- mental variables (e.g., organic layer depth, leaf litter cover, moisture). Bryophyte communities were initially similar in deciduous vs. coniferous forests but diverged in older stands in association with changes in organic layer depth and leaf litter cover. Our data suggest two tipping points in bryophyte succession: one at the disappearance of early colonizing taxa 20 years after fire and another at 40 years after fire, which corresponds to canopy closure and differential leaf litter inputs in mature deciduous and coniferous canopies. Our results enhance understanding of the processes that shape compositional patterns and ecosystem services of bryophytes in relation to stand age, canopy composition, and changing disturbances such as fire that may trigger changes in canopy composition. Key words: boreal forest, succession, moss, chronosequence, leaf litter, canopy effects, fire, bryophyte. Résumé : Les bryophytes sont des éléments dominants du sous-bois de la forêt boréale et jouent un grand rôle dans la régulation du recyclage des nutriments et du microclimat dans le sol.
    [Show full text]
  • Effects of Forest Fires
    Ecological Effects of Forest Fires s 21 .A72 no.1133 letin No. 1133 MARC: 1956 U.S. DEPARTMENT OF AGRICULTURE ACKNOWLEDGMENTS Throughout the course of the investigations reported here, R. R. Robinson, Area Forester, Bureau of Land Management, U. S. Department of the Interior, was very cooperative. He and his staff assisted greatly in the successful completion of the studies, Officials of the Fish and Wildlife Service, U. S. Department of the Interior, also were very helpful. The University of Alaska generously furnished office space and living quarters during the time the author was completing the report. Various specialists identified . the plants collected in Alaska. Special recognition is given to their assistance, as follows: William A. Dayton, U. S. Forest Service-in charge of identification of the higher plants; Elbert L. Little-trees; Doris W. Hayd-most of the herbaceous plants except grasses; Carleton R. Ball (retired), U. S. Department of Agriculture-willows; Jason R. Swallen, Head Curator, U. S. National Herbarium-grasses; William C. Steere, Professor of. Botany, Stanford University-bryophytes; Alexander W. Evans, Emeritus Professor of Botany, Yale Uni­ versity-Cladoniae; John W. Thomson, Jr., Associate Professor of Bot~ny, University of Wisconsin-various groups of lichens; and I. MacKenzie Lamb, National Museum ~f Canada-Stereocaula. I CONTENTS Page Page Introduction____________________ 1 Effect of fire on soils-Continued Interior of Alaska_______________ 3 Sqil productivity______________ 78 Geography___________________ 3 Effect
    [Show full text]
  • (Black Spruce)- Pleurozium Forests of South-Eastern Labrador, Canada Author(S): David R
    Vegetation Development Following Fire in Picea Mariana (Black Spruce)- Pleurozium Forests of South-Eastern Labrador, Canada Author(s): David R. Foster Source: Journal of Ecology, Vol. 73, No. 2 (Jul., 1985), pp. 517-534 Published by: British Ecological Society Stable URL: http://www.jstor.org/stable/2260491 . Accessed: 05/08/2011 12:57 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. British Ecological Society is collaborating with JSTOR to digitize, preserve and extend access to Journal of Ecology. http://www.jstor.org Journal of Ecology (1985), 73, 5 17-534 VEGETATION DEVELOPMENT FOLLOWING FIRE IN PICEA MARIANA (BLACK SPRUCE)-PLEUR OZIUM FORESTS OF SOUTH-EASTERN LABRADOR, CANADA DAVID R. FOSTER Harvard University,Harvard Forest, Petersham, Massachusetts 01366, U.S.A. SUMMARY (1) The pattern of post-fire vegetation development in Picea mariana (black spruce)- Pleurozium forests in south-eastern Labrador,Canada, is evaluated using palaeoecological methods and vegetation analysis of extant stands. (2) Macrofossil analysis of mor humus profiles in mature stands yields the following stratigraphy: mineral soil-charcoal-Polytrichum juniperinum-Cladonia lichens- Pleurozium schreberi-feather mosses and Sphagnum girgensohnii. The stratigraphic record of the post-fire dynamics of the vegetation at individual sites strengthens the conclusions obtained from the detailed analysis of a chronosequence of stands.
    [Show full text]