Amphibian Populations Utilizing Historic Military Maneuver Damage

Total Page:16

File Type:pdf, Size:1020Kb

Amphibian Populations Utilizing Historic Military Maneuver Damage Amphibian Use of Man-Made Pools Created by Military Activity on Kisatchie National Forest, Louisiana A thesis presented to the faculty of the College of Arts and Sciences of Ohio University In partial fulfillment of the requirements for the degree Master of Science Stephen M. Ecrement August 2014 © 2014. Stephen M. Ecrement. All Rights Reserved. 2 This thesis titled Amphibian Use of Man-Made Pools Created by Military Activity on Kisatchie National Forest, Louisiana by STEPHEN M. ECREMENT has been approved for the Program of Environmental Studies and the College of Arts and Sciences by Kelly Johnson Associate Professor of Biological Sciences Robert Frank Dean, College of Arts and Sciences 3 ABSTRACT ECREMENT, STEPHEN M., M.S., August 2014, Environmental Studies Amphibian Use of Man-Made Pools Created by Military Activity on Kisatchie National Forest, Louisiana (46 pp.) Director of Thesis: Kelly Johnson Pools created from military training provide breeding habitat for many amphibian species. Six hundred and twenty four surveys were conducted for larval amphibians on 48 small man-made pools, created from military maneuver training (tank defilades), on the Fort Polk Intensive Use Area (IUA) of Kisatchie National Forest, Louisiana. Surveys were conducted monthly from April to early October 2012 and March to September 2013. Anuran species composition varied across tank defilades, with environmental variables explaining the presence and abundance of some species. Bronze frogs (Lithobates clamitans), Northern Cricket frogs (Acris crepitans), Fowler’s toads (Anaxyrus fowleri), Eastern Narrow-Mouthed toads (Gastrophryne carolinensis), Gray tree frog complex (Hyla versicolor/chrysoscelis), and Squirrel tree frogs (Hyla squirellii) were not abundant enough for analysis. Cajun Chorus frogs (Pseudacris fouquettei) and Southern Leopard frogs (Lithobates sphenocephalus) occurred in 79% of the pools. Salamanders were not encountered at the study site either year. Of seven variables evaluated using regression models, open canopy, low percent slope, and fish absence were positively related to the abundance of Cajun Chorus frogs (Pseudacris fouquettei). Percent dissolved oxygen and low canopy closure were positively associated with Southern Leopard frogs (Lithobates sphenocephalus) abundance. My results show that 4 the two species use these man-made pools differently, highlighting the importance of having pools in varying conditions. In light of documented declines of anuran populations, it has become increasingly important to protect their breeding habitat. It is equally important to gain an understanding of habitat characteristics that attract or deter breeding amphibians from natural or man-made aquatic systems. Although these pools were created unintentionally they now serve as amphibian breeding habitat. 5 ACKNOWLEDGEMENTS I would like to thank my wife, Mariamar Gutierrez Ramirez, for her love and unconditional support during the duration of my master’s thesis. I am eternally grateful because without her I would not have achieved this goal. I also want my family to know how much I appreciate their continuously optimistic attitudes toward my ambition to complete a Master’s degree even when I gave them reason to believe otherwise. I give special recognition and appreciation to Dr. Stephen Richter (Eastern Kentucky University) for walking me through the research design and statistical analysis via emails and phone conferences. Dr. Richter went above and beyond expectations. A special thanks to my advisor Dr. Kelly Johnson, first for accepting me as a graduate student and second for guiding me through the data analysis and writing process. I thank my committee members – Dr. Natalie Kruse and Dr. Matthew White – for their support and guidance. Special appreciation for the Fort Polk, Conservation Branch and the Center for the Environmental Management of Military Lands (CEMML) supervisors for providing me with the opportunity to finish my graduate course work. My gratitude to the Kisatchie National Forest for allowing me to conduct my research on their property. I also want to express my sincere gratitude to everyone that assisted me from the day we “discovered” the tank defilades through one year of trial and error and two years of field data collection: Brian Early, Jeff Wilson, Bridgett Goldsmith, Brett Cooper, Jim Johnson, Christopher Melder, Dean Maas, Willis Sylvest, Ray Geroso, Shane Carnahan, Brittany Chaumont, Mariamar Gutierrez, Ken Moore, Sheila Guzman, Rocky Numbers, Sarah Pearce, Jeanne Daigle, Madison Daigle, and Stacy Huskins. 6 TABLE OF CONTENTS Page Abstract……………………………………………………………………………………3 Acknowledgements……………………………………………………………….……….5 List of Tables……………………………………………………………………………...7 List of Figures……………………………………………………………………………..8 Introduction………………………………………………………………………………..9 Methods…………………………………………………………………………………..13 Study Site………………………………………………………………………...13 Data Collection…………………………………………………………………..14 Data Analysis…………………………………………………………………….16 Results……………………………………………………………………………………19 Discussion………………………………………………………………………………..34 Literature Cited…………………………………………………………………………..40 7 LIST OF TABLES Page Table 1: Minimum, maximum and mean of the seven variables used in a Global model for predicting amphibian Catch Per Unit Effort in tank defilade pools in 2012 (A) and 2013 (B), Kisatchie National Forest, Louisiana…………………………………………18 Table 2: Species of anurans confirmed using the tank defilades pools for reproduction..19 Table 3: Seven anuran species confirmed using the tank defilade pools for reproduction in 2012…………………………………………………………………………………...20 Table 4: 2012 species abundant enough for analysis of abundance and the output from the Tweedie regression model for statistically significant independent variables……..…….21 Table 5: Five anuran species confirmed using the tank defilade pools for reproduction in 2013….……..…………………………………………………………………………….23 Table 6: 2013 species abundant enough for analysis and the output from the Tweedie regression model for statistically significant independent variables…………………….24 8 LIST OF FIGURES Page Figure 1: Aerial photo of the 48 tank defilades on the Kisatchie National Forest Intensive Use Area....……………………………..……………………………….…….…….........14 Figure 2: Total tadpole count for other species encountered at the tank defilade study site in 2012………………....………………………………………………………...………21 Figure 3: Relationship of fish presence (A) (P = 0.010) and canopy closure (B) (P = 0.041) on Pseudacris fouquettei maximum catch per unit effort in 2012. Only two pools with relatively open canopy and no P. fouquettei had established fish populations.…….22 Figure 4: Relationships of percent canopy closure (A) (P = 0.037) and dissolved oxygen (B) (P = 0.081) on Lithobates sphenocephalus maximum Catch Per Unit Effort in 2013………………………………………………………………………………………25 Figure 5: Relationship of fish presence (P = 0.067) to Pseudacris fouquetteii maximum CPUE in 2013…………………………………………………….……………………...26 Figure 6: Relationship of mean % slope (A) (P = 0.015), and % canopy closure (B) (P = 0.026) to Pseudacris fouquetteii maximum CPUE in 2013. Red diamonds indicate pools with relatively open canopy, established fish populations, and no P. fouquetteii larvae..27 Figure 7: Monthly rain data for Fort Polk, Louisiana in 2012 and 2013……….…..........28 Figure 8: Mean and standard error values for center depth for all 48 tank defilades during each month that the pools were sampled in 2012 (A) and 2013 (B) …………………….29 Figure 9: Mean values and standard error values for wetted surface area for all 48 tank defilades during each month pools were sampled in 2012 (A) and 2013 (B)...………….30 Figure 10: Mean and standard error values for bottom temperature on all 48 tank defilades each month pools were sampled in 2012 (A) and 2013 (B) ……...…………...31 Figure 11: 2012 3D NMDS ordination based on similarity of presence/absence of anuran species and vectors showing the influence of environmental variables (Stress = 0.09, Axis 1R² = 0.62, Axis 2R² = 0.32)…………………………………………………………….33 Figure 12: 2013 3D NMDS ordination based on similarity of presence/absence of anuran species and vectors showing the influence of environmental variables (Stress = 0.07, Axis 1R² = 0.64, Axis 2R² = 0.27)……………………………………………………….....…33 9 INTRODUCTION Evidence indicates that amphibian populations are suffering from declines, range restrictions, and species extinctions on a local and potentially global scale (Blaustein et. al. 1994, Alford and Richards 1999, Gardner 2001, Babbitt et. al. 2009), which are often directly or indirectly the result of human activity (Dorcas and Gibbons 2008). Amphibians require both terrestrial and aquatic habitats, and thus are negatively impacted by clear cuts and habitat fragmentation, poor water quality, development, invasive species, and wetland destruction (Alford and Richards 1999). The conservation of amphibians requiring a habitat mosaic of small, isolated breeding pools in addition to large areas of upland habitat is of global interest (Colburn 2004). Dispersing juveniles and migrating adults of most pool-breeding amphibians are also dependent on terrestrial habitat for foraging and overwintering (Semlitsch 1998; Semlitsch and Bodie 2003). Conservation planning for pool-breeding amphibians thus must be informed from habitat investigations at multiple scales – pool, local, and landscape scales (Baldwin et al. 2006; Marsh and Trenham 2001; Semlitsch 2002; Porej et al. 2004) At the pool-scale, unique environmental features may influence breeding of particular
Recommended publications
  • Veterans Park Herpetological Report Manning 2015
    To Whom It May Concern, The information in this document is the summary of a series of volunteer reptile and amphibian observations conducted in Hamilton Veteran’s Park in Mercer County, NJ. The document has been prepared for the Township of Hamilton. The results presented are from field observations and data collected in 2012, 2013, 2014, and 2015. The data from the first three years was taken informally during morning and evening walks with family. The data from 2015 was taken for a volunteer reptile and amphibian survey performed upon the request of the Township of Hamilton, Mercer County, NJ. This information is presented voluntarily for use in conservation endeavors. General Profile: Hamilton Veteran’s Park is a 350‐acre park managed by the Township of Hamilton in Mercer County, New Jersey. The park features a diversity of habitats within its boundaries, including a field which was the site of a former farm, a wetlands meadow, a smaller upland meadow, several patches of deciduous forest, a man‐made lake, temporary and permanent wetlands, an intermittent stream, and several permanent streams. The park is located on the physiographic province known as the inner coastal plain. Comments on General Fauna: The Veteran’s Park property provides a variety of habitats for native fauna to flourish. Healthy numbers of invertebrates have been observed during the survey. Checking under logs and other cover debris reveals a multitude of native decomposers, such as ants, earthworms, slugs, centipedes, harvestmen, and others. Ticks are occasionally seen in the fields, however most of those observed were dog ticks.
    [Show full text]
  • Mitochondrial Discordance and Gene Flow in a Recent Radiation of Toads
    Molecular Phylogenetics and Evolution 59 (2011) 66–80 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Nuclear–mitochondrial discordance and gene flow in a recent radiation of toads ⇑ Brian E. Fontenot , Robert Makowsky 1, Paul T. Chippindale Department of Biology, University of Texas at Arlington, Arlington, TX 76019, United States article info abstract Article history: Natural hybridization among recently diverged species has traditionally been viewed as a homogenizing Received 28 April 2010 force, but recent research has revealed a possible role for interspecific gene flow in facilitating species Revised 12 December 2010 radiations. Natural hybridization can actually contribute to radiations by introducing novel genes or Accepted 23 December 2010 reshuffling existing genetic variation among diverging species. Species that have been affected by natural Available online 19 January 2011 hybridization often demonstrate patterns of discordance between phylogenies generated using nuclear and mitochondrial markers. We used Amplified Fragment Length Polymorphism (AFLP) data in conjunc- Keywords: tion with mitochondrial DNA in order to examine patterns of gene flow and nuclear–mitochondrial dis- Toads cordance in the Anaxyrus americanus group, a recent radiation of North American toads. We found high Hybridization Gene flow levels of gene flow between putative species, particularly in species pairs sharing similar male advertise- Speciation ment calls that occur in close geographic proximity, suggesting that prezygotic reproductive isolating AFLPs mechanisms and isolation by distance are the primary determinants of gene flow and genetic differenti- Nuclear–mitochondrial discordance ation among these species. Additionally, phylogenies generated using AFLP and mitochondrial data were markedly discordant, likely due to recent and/or ongoing natural hybridization events between sympatric populations.
    [Show full text]
  • Checklist Reptile and Amphibian
    To report sightings, contact: Natural Resources Coordinator 980-314-1119 www.parkandrec.com REPTILE AND AMPHIBIAN CHECKLIST Mecklenburg County, NC: 66 species Mole Salamanders ☐ Pickerel Frog ☐ Ground Skink (Scincella lateralis) ☐ Spotted Salamander (Rana (Lithobates) palustris) Whiptails (Ambystoma maculatum) ☐ Southern Leopard Frog ☐ Six-lined Racerunner ☐ Marbled Salamander (Rana (Lithobates) sphenocephala (Aspidoscelis sexlineata) (Ambystoma opacum) (sphenocephalus)) Nonvenomous Snakes Lungless Salamanders Snapping Turtles ☐ Eastern Worm Snake ☐ Dusky Salamander (Desmognathus fuscus) ☐ Common Snapping Turtle (Carphophis amoenus) ☐ Southern Two-lined Salamander (Chelydra serpentina) ☐ Scarlet Snake1 (Cemophora coccinea) (Eurycea cirrigera) Box and Water Turtles ☐ Black Racer (Coluber constrictor) ☐ Three-lined Salamander ☐ Northern Painted Turtle ☐ Ring-necked Snake (Eurycea guttolineata) (Chrysemys picta) (Diadophis punctatus) ☐ Spring Salamander ☐ Spotted Turtle2, 6 (Clemmys guttata) ☐ Corn Snake (Pantherophis guttatus) (Gyrinophilus porphyriticus) ☐ River Cooter (Pseudemys concinna) ☐ Rat Snake (Pantherophis alleghaniensis) ☐ Slimy Salamander (Plethodon glutinosus) ☐ Eastern Box Turtle (Terrapene carolina) ☐ Eastern Hognose Snake ☐ Mud Salamander (Pseudotriton montanus) ☐ Yellow-bellied Slider (Trachemys scripta) (Heterodon platirhinos) ☐ Red Salamander (Pseudotriton ruber) ☐ Red-eared Slider3 ☐ Mole Kingsnake Newts (Trachemys scripta elegans) (Lampropeltis calligaster) ☐ Red-spotted Newt Mud and Musk Turtles ☐ Eastern Kingsnake
    [Show full text]
  • American Toad (Anaxyrus Americanus) Fowler's Toad (Anaxyrus Fowleri
    Vermont has eleven known breeding species of frogs. Their exact distributions are still being determined. In order for these species to survive and flourish, they need our help. One way you can help is to report the frogs that you come across in the state. Include in your report as much detail as you can on the appearance and location of the animal; also include the date of the sighting, your name, and how to contact you. Photographs are ideal, but not necessary. When attempting to identify a particular species, check at least three different field markings so that you can be sure of what it is. To contribute a report, you may use our website (www.vtherpatlas.org) or contact Jim Andrews directly at [email protected]. American Bullfrog (Lithobates catesbeianus) American Toad (Anaxyrus americanus) The American Bullfrog is our largest frog and can reach 7 inches long. The Bullfrog is one of the three The American Toad is one of Vermont’s two toad species. Toads can be distinguished from other green-faced frogs in Vermont. It has a green and brown mottled body with dark stripes across its legs. frogs in Vermont by their dry and bumpy skin, and the long oval parotoid glands on each side of their The Bullfrog does not have dorsolateral ridges, but it does have a ridge that starts at the eye and goes necks. The American Toad has at least one large wart in each of the large black spots found along its around the eardrum (tympana) and down. The Bullfrog’s call is a deep low jum-a-rum.
    [Show full text]
  • Check List 17 (1): 27–38
    17 1 ANNOTATED LIST OF SPECIES Check List 17 (1): 27–38 https://doi.org/10.15560/17.1.27 A herpetological survey of Edith L. Moore Nature Sanctuary Dillon Jones1, Bethany Foshee2, Lee Fitzgerald1 1 Biodiversity Research and Teaching Collections, Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX, USA. 2 Houston Audubon, 440 Wilchester Blvd. Houston, TX 77079 USA. Corresponding author: Dillon Jones, [email protected] Abstract Urban herpetology deals with the interaction of amphibians and reptiles with each other and their environment in an ur- ban setting. As such, well-preserved natural areas within urban environments can be important tools for conservation. Edith L. Moore Nature Sanctuary is an 18-acre wooded sanctuary located west of downtown Houston, Texas and is the headquarters to Houston Audubon Society. This study compared iNaturalist data with results from visual encounter surveys and aquatic funnel traps. Results from these two sources showed 24 species belonging to 12 families and 17 genera of herpetofauna inhabit the property. However, several species common in surrounding areas were absent. Combination of data from community science and traditional survey methods allowed us to better highlight herpe- tofauna present in the park besides also identifying species that may be of management concern for Edith L. Moore. Keywords Community science, iNaturalist, urban herpetology Academic editor: Luisa Diele-Viegas | Received 27 August 2020 | Accepted 16 November 2020 | Published 6 January 2021 Citation: Jones D, Foshee B, Fitzgerald L (2021) A herpetology survey of Edith L. Moore Nature Sanctuary. Check List 17 (1): 27–28. https://doi.
    [Show full text]
  • Triadica Sebifera), on Development and Survival of Anuran Larvae Author(S): Taylor B
    Effects of an Invasive Plant, Chinese Tallow (Triadica sebifera), on Development and Survival of Anuran Larvae Author(s): Taylor B. Cotten, Matthew A. Kwiatkowski, Daniel Saenz, and Michael Collyer Source: Journal of Herpetology, 46(2):186-193. Published By: The Society for the Study of Amphibians and Reptiles https://doi.org/10.1670/10-311 URL: http://www.bioone.org/doi/full/10.1670/10-311 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Journal of Herpetology, Vol. 46, No. 2, 186–193, 2012 Copyright 2012 Society for the Study of Amphibians and Reptiles Effects of an Invasive Plant, Chinese Tallow (Triadica sebifera), on Development and Survival of Anuran Larvae 1,2 1,3 4 1 TAYLOR B. COTTEN, MATTHEW A. KWIATKOWSKI, DANIEL SAENZ, AND MICHAEL COLLYER 1Department of Biology, Stephen F. Austin State University, PO Box 13003, Nacogdoches, Texas 75962, USA 4Southern Research Station, U.S.
    [Show full text]
  • Annotated Checklist of Amphibian and Reptile Species Observed at the Gordon Natural Area (West Chester University, PA) 2008-2020
    West Chester University Digital Commons @ West Chester University Gordon Natural Area Biodiversity Studies Documents Gordon Natural Area Biodiversity Studies 7-28-2020 Annotated Checklist of Amphibian and Reptile Species Observed at the Gordon Natural Area (West Chester University, PA) 2008-2020. Version I Nur Ritter Harry Tiebout Follow this and additional works at: https://digitalcommons.wcupa.edu/gna_bds_series Part of the Biodiversity Commons Annotated Checklist of Amphibian and Reptile Species Observed at the Gordon Natural Area (West Chester University, PA) 2008-2020. Version I Summary Data Number of Taxa: Species, in 14 Genera, 6 Families, and 4 Orders. Description Data were compiled from surveys by Dr. Harry Tiebout, augmented by observations from GNA staff (which, as used here, includes student interns), graduate student Steven Clay, the Stroud Water Research Center, additional WCU Faculty, and members of the WCU Grounds Department. Local residents who are regular visitors to the Gordon have also occasionally contributed observations. Because herptile data haven't been systematically archived by the GNA staff until recent years, there are many gaps in the observation timeline that are clearly artificial. For example, although the observation history for the Eastern American Toad, Eastern Redback Salamander, and Eastern Box Turtle suggests that there were a number of years in which one, or all, of these species were not seen at the GNA, it is very likely that all three of these species have been observed numerous times during every year that the GNA has been in existence. Hopefully, moving forward, we'll be able to maintain a more complete record of observations.
    [Show full text]
  • Response of Reptile and Amphibian Communities to the Reintroduction of Fire T in an Oak/Hickory Forest ⁎ Steven J
    Forest Ecology and Management 428 (2018) 1–13 Contents lists available at ScienceDirect Forest Ecology and Management journal homepage: www.elsevier.com/locate/foreco Response of reptile and amphibian communities to the reintroduction of fire T in an oak/hickory forest ⁎ Steven J. Hromadaa, , Christopher A.F. Howeyb,c, Matthew B. Dickinsond, Roger W. Perrye, Willem M. Roosenburgc, C.M. Giengera a Department of Biology and Center of Excellence for Field Biology, Austin Peay State University, Clarksville, TN 37040, United States b Biology Department, University of Scranton, Scranton, PA 18510, United States c Ohio Center for Ecology and Evolutionary Studies, Department of Biological Sciences, Ohio University, Athens, OH 45701, United States d Northern Research Station, U.S. Forest Service, Delaware, OH 43015, United States e Southern Research Station, U.S. Forest Service, Hot Springs, AR 71902, United States ABSTRACT Fire can have diverse effects on ecosystems, including direct effects through injury and mortality and indirect effects through changes to available resources within the environment. Changes in vegetation structure suchasa decrease in canopy cover or an increase in herbaceous cover from prescribed fire can increase availability of preferred microhabitats for some species while simultaneously reducing preferred conditions for others. We examined the responses of herpetofaunal communities to prescribed fires in an oak/hickory forest in western Kentucky. Prescribed fires were applied twice to a 1000-ha area one and four years prior to sampling, causing changes in vegetation structure. Herpetofaunal communities were sampled using drift fences, and vegetation attributes were sampled via transects in four burned and four unburned plots. Differences in reptile community structure correlated with variation in vegetation structure largely created by fires.
    [Show full text]
  • Field Guide Field Journal Blanchard's Cricket Frog
    Field Guide Frogs and Toads of the Washington, D.C. Area Field Journal Name: Date: Blanchard's cricket frog Location: Acris crepitans Baird, 1854 Weather: Time of Day: Observations / Data / Activity Overview General Description Acris crepitans is 1.6-3.5 cm long and has a blunt, pointed head with an occasional triangular marking. Its back and legs are covered with various dark markings. It has a middorsal bright green or brown stripe and the rear of its thigh has a distinct ragged dark stripe. A white bar extends from its eye to its foreleg. The body is slim-waisted and small while the skin is granular and warty. Hind toes are extensively webbed and toe pads are poorly developed (Stebbins 2003). Acris crepitans paludicola and Acris crepitans blanchardi are recognized as subspecies. A. c. paludicola has smooth skin with a pinkish patterned coloration. The throat Write down questions that you have for further exploration. remains pink, even for males during breeding season. A. c. blanchardi by comparison is wartier, bulkier, and heavier with a light brown or gray uniform coloration (Conant and Collins 1991). Males have more ventral spotting than females (Stebbins 2003). Distribution Unlike most small frogs in its range, A. c. crepitans does not leave the vicinity of water in its adult stage. It is found at the edge of ponds and slow-moving streams, tending to avoid wooded areas and dense vegetation (Hulse McCoy and Censky 2001). A. c. blanchardi is found in Michigan, Ohio, Nebraska, eastern Colorado, and most of Texas. A few have been spotted in Minnesota and New Mexico as well.
    [Show full text]
  • Checklist of Amphibians, Reptiles, Birds and Mammals of New York
    CHECKLIST OF AMPHIBIANS, REPTILES, BIRDS AND MAMMALS OF NEW YORK STATE Including Their Legal Status Eastern Milk Snake Moose Blue-spotted Salamander Common Loon New York State Artwork by Jean Gawalt Department of Environmental Conservation Division of Fish and Wildlife Page 1 of 30 February 2019 New York State Department of Environmental Conservation Division of Fish and Wildlife Wildlife Diversity Group 625 Broadway Albany, New York 12233-4754 This web version is based upon an original hard copy version of Checklist of the Amphibians, Reptiles, Birds and Mammals of New York, Including Their Protective Status which was first published in 1985 and revised and reprinted in 1987. This version has had substantial revision in content and form. First printing - 1985 Second printing (rev.) - 1987 Third revision - 2001 Fourth revision - 2003 Fifth revision - 2005 Sixth revision - December 2005 Seventh revision - November 2006 Eighth revision - September 2007 Ninth revision - April 2010 Tenth revision – February 2019 Page 2 of 30 Introduction The following list of amphibians (34 species), reptiles (38), birds (474) and mammals (93) indicates those vertebrate species believed to be part of the fauna of New York and the present legal status of these species in New York State. Common and scientific nomenclature is as according to: Crother (2008) for amphibians and reptiles; the American Ornithologists' Union (1983 and 2009) for birds; and Wilson and Reeder (2005) for mammals. Expected occurrence in New York State is based on: Conant and Collins (1991) for amphibians and reptiles; Levine (1998) and the New York State Ornithological Association (2009) for birds; and New York State Museum records for terrestrial mammals.
    [Show full text]
  • Frogs and Toads of the Atchafalaya Basin
    Frogs and Toads of the Atchafalaya Basin True Toads (Family Bufonidae) Microhylid Frogs and Toads Two true toads occur in the Atchafalaya Basin: (Family Microhylidae) True Toads Fowler’s Toad and the Gulf Coast Toad. Both The Eastern Narrow-Mouthed Toad is the Microhylid Frogs and Toads of these species are moderately sized and have only representative in the Atchafalaya Basin dry, warty skin. They have short hind limbs of this family. It is a plump frog with smooth and do not leap like other frogs, but rather skin, a pointed snout, and short limbs. There they make short hops to get around. They are is a fold of skin across the back of the head active primarily at night and use their short that can be moved forward to clear the hind limbs for burrowing into sandy soils eyes. They use this fold of skin especially during the day. They are the only two frogs when preying upon ants, a favorite food, to in the basin that lay long strings of eggs, as remove any attackers. Because of its plump opposed to clumps laid by other frog species. body and short limbs the male must secrete a Fowler’s Toad Gulf Coast Toad Both of these toad species possess enlarged sticky substance from a gland on its stomach Eastern Narrow-Mouthed Toad (Anaxyrus fowleri ) (Incilius nebulifer) glands at the back of the head that secrete a to stay attached to a female for successful (Gastrophryne carolinensis) white poison when attacked by a predator. mating; in most other frogs, the limbs are When handling these toads, one should avoid long enough to grasp around the female.
    [Show full text]
  • Standard Common and Current Scientific Names for North American Amphibians, Turtles, Reptiles & Crocodilians
    STANDARD COMMON AND CURRENT SCIENTIFIC NAMES FOR NORTH AMERICAN AMPHIBIANS, TURTLES, REPTILES & CROCODILIANS Sixth Edition Joseph T. Collins TraVis W. TAGGart The Center for North American Herpetology THE CEN T ER FOR NOR T H AMERI ca N HERPE T OLOGY www.cnah.org Joseph T. Collins, Director The Center for North American Herpetology 1502 Medinah Circle Lawrence, Kansas 66047 (785) 393-4757 Single copies of this publication are available gratis from The Center for North American Herpetology, 1502 Medinah Circle, Lawrence, Kansas 66047 USA; within the United States and Canada, please send a self-addressed 7x10-inch manila envelope with sufficient U.S. first class postage affixed for four ounces. Individuals outside the United States and Canada should contact CNAH via email before requesting a copy. A list of previous editions of this title is printed on the inside back cover. THE CEN T ER FOR NOR T H AMERI ca N HERPE T OLOGY BO A RD OF DIRE ct ORS Joseph T. Collins Suzanne L. Collins Kansas Biological Survey The Center for The University of Kansas North American Herpetology 2021 Constant Avenue 1502 Medinah Circle Lawrence, Kansas 66047 Lawrence, Kansas 66047 Kelly J. Irwin James L. Knight Arkansas Game & Fish South Carolina Commission State Museum 915 East Sevier Street P. O. Box 100107 Benton, Arkansas 72015 Columbia, South Carolina 29202 Walter E. Meshaka, Jr. Robert Powell Section of Zoology Department of Biology State Museum of Pennsylvania Avila University 300 North Street 11901 Wornall Road Harrisburg, Pennsylvania 17120 Kansas City, Missouri 64145 Travis W. Taggart Sternberg Museum of Natural History Fort Hays State University 3000 Sternberg Drive Hays, Kansas 67601 Front cover images of an Eastern Collared Lizard (Crotaphytus collaris) and Cajun Chorus Frog (Pseudacris fouquettei) by Suzanne L.
    [Show full text]