West China Cement Limited 中 國 西 部 水 泥 有 限
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Systematic Review and Meta-Analysis of X-Ray Detective
Wang et al. BMC Musculoskeletal Disorders (2019) 20:78 https://doi.org/10.1186/s12891-019-2461-z RESEARCHARTICLE Open Access The systematic review and meta-analysis of X-ray detective rate of Kashin-Beck disease from 1992 to 2016 Xi Wang1,2†, Yujie Ning1†, Amin Liu1, Xin Qi1, Meidan Liu1, Pan Zhang1 and Xiong Guo1* Abstract Background: Kashin-Beck disease (KBD) is a serious human endemic chronic osteochondral disease. However, quantitative syntheses of X-ray detective rate studies for KBD are rare. We performed an initial systematic review and meta-analysis to assess the X-ray detective rate of KBD in China. Methods: For this systematic review and meta-analysis, we searched five databases (PubMed, Web of Science, Chinese National Knowledge Infrastructure (CNKI), WanFang Data and the China Science and Technology Journal Database (VIP))using a comprehensive search strategy to identify studies of KBD X-ray detective rate in China that were published from database inception to January 13, 2018. The X-ray detective rate of KBD was determined via an analysis of published studies using a random effect meta-analysis with the proportions approach. Subgroup analysis and meta- regression were used to explore heterogeneity, and study quality was assessed using the risk of bias tool. Results: A total of 53 studies involving 14,039 samples with X-ray detective rate in 163,340 observations in total were included in this meta-analysis. These studies were geographically diverse (3 endemic areas). The pooled overall X-ray detective rate for KBD was 11% (95%CI,8–15%;Z = 13.14; p < 0.001). -
Pre-Primary Education
Detailed Sector Assessment: Pre-Primary Education Project Number: 53060-001 March 2021 People's Republic of China: Shaanxi Xi'an Preschool Education Development Program CONTENTS Page A. EARLY CHILDHOOD EDUCATION: CHALLENGES AND OPPORTUNITIES ............... 1 B. SECTOR PROFILE: EARLY CHILDHOOD EDUCATION IN XI'AN ............................... 5 1. Access to Early Childhood Education ....................................................................... 5 2. Quality of Early Childhood Education ..................................................................... 11 3. Early Childhood Education Management, Supervision, and Financing ..................... 19 4. Early Childhood Education Innovation .................................................................... 20 C. INTERNATIONAL AND NATIONAL LESSONS AND GOOD PRACTICE..................... 21 D. ADB COUNTRY AND SECTOR EXPERIENCE AND ASSISTANCE ........................... 27 E. RECOMMENDATIONS FOR ADB TO SUPPORT EARLY CHILDHOOD EDUCATION DEVELOPMENT IN XI'AN .................................................................................................... 28 APPENDIXES 1. Bilingual Glossary ............................................................................................................ 30 2. Problem Tree ................................................................................................................... 35 3. Xi'an Preschool Education Development Plan, 2019–2025 ................................................ 36 ABBREVIATIONS ADB – Asian Development Bank -
The Spreading of Christianity and the Introduction of Modern Architecture in Shannxi, China (1840-1949)
Escuela Técnica Superior de Arquitectura de Madrid Programa de doctorado en Concervación y Restauración del Patrimonio Architectónico The Spreading of Christianity and the introduction of Modern Architecture in Shannxi, China (1840-1949) Christian churches and traditional Chinese architecture Author: Shan HUANG (Architect) Director: Antonio LOPERA (Doctor, Arquitecto) 2014 Tribunal nombrado por el Magfco. y Excmo. Sr. Rector de la Universidad Politécnica de Madrid, el día de de 20 . Presidente: Vocal: Vocal: Vocal: Secretario: Suplente: Suplente: Realizado el acto de defensa y lectura de la Tesis el día de de 20 en la Escuela Técnica Superior de Arquitectura de Madrid. Calificación:………………………………. El PRESIDENTE LOS VOCALES EL SECRETARIO Index Index Abstract Resumen Introduction General Background........................................................................................... 1 A) Definition of the Concepts ................................................................ 3 B) Research Background........................................................................ 4 C) Significance and Objects of the Study .......................................... 6 D) Research Methodology ...................................................................... 8 CHAPTER 1 Introduction to Chinese traditional architecture 1.1 The concept of traditional Chinese architecture ......................... 13 1.2 Main characteristics of the traditional Chinese architecture .... 14 1.2.1 Wood was used as the main construction materials ........ 14 1.2.2 -
Table of Codes for Each Court of Each Level
Table of Codes for Each Court of Each Level Corresponding Type Chinese Court Region Court Name Administrative Name Code Code Area Supreme People’s Court 最高人民法院 最高法 Higher People's Court of 北京市高级人民 Beijing 京 110000 1 Beijing Municipality 法院 Municipality No. 1 Intermediate People's 北京市第一中级 京 01 2 Court of Beijing Municipality 人民法院 Shijingshan Shijingshan District People’s 北京市石景山区 京 0107 110107 District of Beijing 1 Court of Beijing Municipality 人民法院 Municipality Haidian District of Haidian District People’s 北京市海淀区人 京 0108 110108 Beijing 1 Court of Beijing Municipality 民法院 Municipality Mentougou Mentougou District People’s 北京市门头沟区 京 0109 110109 District of Beijing 1 Court of Beijing Municipality 人民法院 Municipality Changping Changping District People’s 北京市昌平区人 京 0114 110114 District of Beijing 1 Court of Beijing Municipality 民法院 Municipality Yanqing County People’s 延庆县人民法院 京 0229 110229 Yanqing County 1 Court No. 2 Intermediate People's 北京市第二中级 京 02 2 Court of Beijing Municipality 人民法院 Dongcheng Dongcheng District People’s 北京市东城区人 京 0101 110101 District of Beijing 1 Court of Beijing Municipality 民法院 Municipality Xicheng District Xicheng District People’s 北京市西城区人 京 0102 110102 of Beijing 1 Court of Beijing Municipality 民法院 Municipality Fengtai District of Fengtai District People’s 北京市丰台区人 京 0106 110106 Beijing 1 Court of Beijing Municipality 民法院 Municipality 1 Fangshan District Fangshan District People’s 北京市房山区人 京 0111 110111 of Beijing 1 Court of Beijing Municipality 民法院 Municipality Daxing District of Daxing District People’s 北京市大兴区人 京 0115 -
Preparing the Shaanxi-Qinling Mountains Integrated Ecosystem Management Project (Cofinanced by the Global Environment Facility)
Technical Assistance Consultant’s Report Project Number: 39321 June 2008 PRC: Preparing the Shaanxi-Qinling Mountains Integrated Ecosystem Management Project (Cofinanced by the Global Environment Facility) Prepared by: ANZDEC Limited Australia For Shaanxi Province Development and Reform Commission This consultant’s report does not necessarily reflect the views of ADB or the Government concerned, and ADB and the Government cannot be held liable for its contents. (For project preparatory technical assistance: All the views expressed herein may not be incorporated into the proposed project’s design. FINAL REPORT SHAANXI QINLING BIODIVERSITY CONSERVATION AND DEMONSTRATION PROJECT PREPARED FOR Shaanxi Provincial Government And the Asian Development Bank ANZDEC LIMITED September 2007 CURRENCY EQUIVALENTS (as at 1 June 2007) Currency Unit – Chinese Yuan {CNY}1.00 = US $0.1308 $1.00 = CNY 7.64 ABBREVIATIONS ADB – Asian Development Bank BAP – Biodiversity Action Plan (of the PRC Government) CAS – Chinese Academy of Sciences CASS – Chinese Academy of Social Sciences CBD – Convention on Biological Diversity CBRC – China Bank Regulatory Commission CDA - Conservation Demonstration Area CNY – Chinese Yuan CO – company CPF – country programming framework CTF – Conservation Trust Fund EA – Executing Agency EFCAs – Ecosystem Function Conservation Areas EIRR – economic internal rate of return EPB – Environmental Protection Bureau EU – European Union FIRR – financial internal rate of return FDI – Foreign Direct Investment FYP – Five-Year Plan FS – Feasibility -
E-Commerce Poverty Alleviation Experience in Shaanxi Province
Best Practice on the Inclusive Trade of the APEC Region Xi’an Experience in E-commerce Poverty Alleviation APEC E-Commerce Business Alliance December 4, 2018 Contents Preface ........................................................................................................................... 2 E-commerce Poverty Alleviation Experience in Shaanxi Province ......................... 5 1. Do a Good Job in Design and Work in an All-round Way .................................. 5 2. Lay a Solid Foundation and Create a Good Environment .................................. 5 3. Bring in Competitive Enterprises to Lead E-commerce Poverty Alleviation ..... 6 4. Coordinate Production and Marketing to Promote Connectivity between Agriculture and Commerce ..................................................................................... 6 5. Conduct Personnel Training and Strengthen the Service System ....................... 6 6. Innovate the Business Modes.............................................................................. 7 Typical Cases of E-commerce Poverty Alleviation in Shaanxi Province ................ 9 1. Lantian County, Xi’an City .............................................................................. 9 2. Yaozhou District, Tongchuan City ................................................................. 12 3. Ankang City ................................................................................................... 14 4. Huinong E-commerce Co., Ltd. .................................................................... -
Analysis of the Spatial-Temporal Change of the Vegetation Index in the Upper Reach of Han River Basin in 2000–2016
Innovative water resources management – understanding and balancing interactions between humankind and nature Proc. IAHS, 379, 287–292, 2018 https://doi.org/10.5194/piahs-379-287-2018 Open Access © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. Analysis of the spatial-temporal change of the vegetation index in the upper reach of Han River Basin in 2000–2016 Jinkai Luan1, Dengfeng Liu1,2, Lianpeng Zhang1, Qiang Huang1, Jiuliang Feng3, Mu Lin4, and Guobao Li5 1State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, School of Water Resources and Hydropower, Xi’an University of Technology, Xi’an 710048, China 2Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT 59717, USA 3Shanxi Provincal Water and Soil Conservation and Ecological Environment Construction Center, Taiyuan 030002, China 4School of statistics and Mathematics, Central University of Finance and Economics, Beijing 100081, China 5Work team of hydraulic of Yulin City, Yulin 719000, China Correspondence: Dengfeng Liu ([email protected]) Received: 29 December 2017 – Revised: 25 March 2018 – Accepted: 26 March 2018 – Published: 5 June 2018 Abstract. Han River is the water source region of the middle route of South-to-North Water Diversion in China and the ecological projects were implemented since many years ago. In order to monitor the change of vegetation in Han River and evaluate the effect of ecological projects, it is needed to reveal the spatial-temporal change of the vegetation in the upper reach of Han River quantitatively. The study is based on MODIS/Terra NDVI remote sensing data, and analyzes the spatial-temporal changes of the NDVI in August from 2000 to 2016 at pixel scale in the upper reach of Han River Basin. -
Multi-Disciplinary Determination of the Rural/Urban Boundary: a Case Study in Xi’An, China
sustainability Article Multi-Disciplinary Determination of the Rural/Urban Boundary: A Case Study in Xi’an, China Lei Fang 1,2 and Yingjie Wang 1,2,* 1 State Key Lab of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A Datun Road, Chaoyang District, Beijing 100101, China; [email protected] 2 University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China * Correspondence: [email protected]; Tel.: +86-010-6488-9077 Received: 19 June 2018; Accepted: 23 July 2018; Published: 26 July 2018 Abstract: Rapid urbanization in China has blurred the boundaries between rural and urban areas in both geographic and conceptual terms. Accurately identifying this boundary in a given area is an important prerequisite for studies of these areas, but previous research has used fairly simplistic factors to distinguish the two areas (such as population density). In this study, we built a model combining multi-layer conditions and cumulative percentage methods based on five indicators linking spatial, economic, and demographic factors to produce a more comprehensive and quantitative method for identifying rural and urban areas. Using Xi’an, China as a case study, our methods produced a more accurate determination of the rural-urban divide when compared to data from the National Bureau of Statistics of the People’s Republic of China. Specifically, the urbanization level was 3.24% lower in the new model, with a total urban area that was 621.87 km2 lower. These results were checked by field survey and satellite imagery for accuracy. -
Minimum Wage Standards in China August 11, 2020
Minimum Wage Standards in China August 11, 2020 Contents Heilongjiang ................................................................................................................................................. 3 Jilin ............................................................................................................................................................... 3 Liaoning ........................................................................................................................................................ 4 Inner Mongolia Autonomous Region ........................................................................................................... 7 Beijing......................................................................................................................................................... 10 Hebei ........................................................................................................................................................... 11 Henan .......................................................................................................................................................... 13 Shandong .................................................................................................................................................... 14 Shanxi ......................................................................................................................................................... 16 Shaanxi ...................................................................................................................................................... -
Understanding Chinese Jade in a World Context
Journal of the British Academy, 6, 1–63. DOI https://doi.org/10.5871/jba/006.001 Posted 05 March 2018. © The British Academy 2018 Understanding Chinese jade in a world context Elsley Zeitlyn Lecture on Chinese Archaeology and Culture read 2 February 2017 GINA L. BARNES SOAS, University of London Abstract: For millennia, jade has been valued in many cultures in Chinese archaeology. The favoured types and sources of jade have changed over time, as has our knowledge of the stones themselves. One of the greatest problems in dealing with archaeological jades is the correct identification of the stones in order to trace their source and thereby understand the social relations underlying their patterns of procurement, pro duction, and consumption. This paper examines the problems of identification and sourcing of Chinese archaeological jades from a worldwide point of view, dissecting terminological problems arising from mineralogy and rock geochemistry, and expli citly identifying the geological constraints on the formation of nephrite and jadeite. In particular, the role of plate tectonics in determining the occurrence of jade provides an overarching perspective on where in China jade sources might occur and how nephrite might be mined and distributed, together with its associated rocks and minerals. The latter associations are equally important to this jade sourcing endeavour. Keywords: jade, geochemistry, mineralogy, plate tectonics, nephrite, jadeite, Chinese archaeology INTRODUCTION The first problem encountered in discussing ‘jade’ is defining what we mean by this term. It is commonly used to translate the Chinese word yu (玉), traditionally desig nating ‘beautiful stones’ worthy of fashioning into ritual objects and personal ornaments. -
Study on Temporal and Spatial Variation Characteristics and Influencing Factors of Land Use Efficiency in Xi’An, China
sustainability Article Study on Temporal and Spatial Variation Characteristics and Influencing Factors of Land Use Efficiency in Xi’an, China Jing Huang and Dongqian Xue * School of Geographical Science and Tourism, Shaanxi Normal University, Xi’an 710062, China; [email protected] * Correspondence: [email protected] Received: 17 October 2019; Accepted: 22 November 2019; Published: 25 November 2019 Abstract: China’s urban land use has shifted from incremental expansion to inventory eradication. The traditional extensive management mode is difficult to maintain, and the fundamental solution is to improve land use efficiency. Xi’an, the largest central city in Western China, was selected as the research area. The super-efficiency data envelopment analysis (DEA) model and Malmquist index method were used to measure the land use efficiency of each district and county in the city from the micro perspective, and the spatial-temporal change characteristics and main influencing factors of land use efficiency were analyzed, which not only made up for the research content of urban land use efficiency in China’s underdeveloped areas, but also pointed out the emphasis and direction for the improvement of urban land use efficiency. The results showed that: (1) The land use efficiency of Xi’an reflected the land use intensive level of the underdeveloped areas in Western China, that is, the overall intensive level was not high, the gap between the urban internal land use efficiency was large, the land use efficiency of the old urban area and the mature built-up area was relatively high, and the land use efficiency of the emerging expansion area and the edge area was relatively low. -
General Report on Migrant Resettlement Plan Xi'an Urban
RP563 V1 General Report on Migrant Public Disclosure Authorized Resettlement Plan Xi’an Urban Comprehensive Transportation Improvement Project The World Bank Evaluating Version Public Disclosure Authorized Public Disclosure Authorized Authorized by Xi’an Development and Reform Committee Shaanxi Academy of Social Science Public Disclosure Authorized 2008.04 Contents Purpose of Resettlement Action Plan and Definition of Resettlement Terms ............................ i 1.General......................................................................................................................................... 1 1.1 Purpose of the project construction...................................................................................... 1 1.2 .Project background............................................................................................................... 2 1.3 Contents of the project........................................................................................................... 4 1.4 Measures to reduce migrants................................................................................................. 6 1.5 Policy Goals of this report ..................................................................................................... 6 2. Analysis on the Affected Object Index by the Project............................................................ 7 2.1 The affected land .................................................................................................................... 9 2.2 The affected