Coniglio Thesis

Total Page:16

File Type:pdf, Size:1020Kb

Coniglio Thesis Dipl.-Ing. Nicolas Coniglio Aluminum Alloy Weldability: Identifi cation of Weld Solidifi cation Cracking Mechanisms through Novel Experimental Technique and Model Development BAM-Dissertationsreihe • Band 40 Berlin 2008 Die vorliegende Arbeit entstand an der BAM Bundesanstalt für Materialforschung und -prüfung. Impressum Aluminum Alloy Weldability: Identifi cation of Weld Solidifi cation Cracking Mechanisms through Novel Experimental Technique and Model Development 2008 Herausgeber: BAM Bundesanstalt für Materialforschung und -prüfung Unter den Eichen 87 12205 Berlin Telefon: +49 30 8104-0 Telefax: +49 30 8112029 E-Mail: [email protected] Internet: www.bam.de Copyright © 2008 by BAM Bundesanstalt für Materialforschung und -prüfung Layout: BAM-Arbeitsgruppe Z.64 ISSN 1613-4249 ISBN 978-3-9812354-3-2 Aluminum Alloy Weldability: Identification of Weld Solidification Cracking Mechanisms through Novel Experimental Technique and Model Development Dissertation zur Erlangung des akademischen Grades Doktor-Ingenieur (Dr.-Ing.) genehmigt durch die Fakultät für Maschinenbau der Otto-von-Guericke-Universität Madgeburg am 02.06.08 vorgelegte Dissertation von Dipl.-Ing. Nicolas Coniglio Thesis Committee: Prof. Dr.-Ing. A. Bertram Prof. Dr.-Ing. T. Böllinghaus Prof. C.E. Cross Prof. S. Marya Date of Examination: 23 October 2008 Abstract Abstract The objective of the present thesis is to make advancements in understanding solidification crack formation in aluminum welds, by investigating in particular the aluminum 6060/4043 system. Alloy 6060 is typical of a family of Al-Mg-Si extrusion alloys, which are considered weldable only when using an appropriate filler alloy such as 4043 (Al-5Si). The effect of 4043 filler dilution (i.e. weld metal silicon content) on cracking sensitivity and solidification path of Alloy 6060 welds are investigated. Afterwards, cracking models are developed to propose mechanisms for solidification crack initiation and growth. Cracking Sensitivity. Building upon the concept that silicon improves weldability and that weldability can be defined by a critical strain rate, strain rate-composition combinations required for solidification crack formation in the Al- 6060/4043 system were determined using the newly developed Controlled Tensile Weldability (CTW) test utilizing local strain extensometer measurements. Results, presented in a critical strain rate – dilution map, show a crack – no crack boundary which reveals that higher local strain rates require higher 4043 filler dilution to avoid solidification cracking when arc welding Alloy 6060. Using the established crack - no crack boundary as a line of reference, additional parameters were examined and their influence on cracking characterized. These parameter influences have included studies of weld travel speed, weld pool contaminants (Fe, O, and H), and grain refiner additions (TiAl3 + Boron). Each parameter has been independently varied and its effect on cracking susceptibility quantified in terms of strain rate – composition combinations. Solidification Path. Solidification path of the Al-6060/4043 system was characterized using thermal analysis and phase identification. Increasing 4043 filler dilution from 0 to 16% in Alloy 6060 arc welds resulted in little effect on thermal arrests and microstructure, no effect on solidification range, refinement in grain size from 63 to 51 μm, centerline columnar grains disappearance, and decreased cooling rate from 113 to 89 °C/s. Moreover, in order to make direct comparison with literature, castings of controlled mixtures of alloys 6060 and 4043 were also investigated, thereby simulating weld metal composition under controlled cooling conditions. Castings showed a different trend than welds with small increases in silicon content (i.e. increase in 4043 filler dilution) resulting in huge effect on microstructure, no effect on liquidus temperature, drop in solidus temperature from 577°C to 509°C, increase in quantity of interdendritic constituent from 2% to 14%, and different phase formation. Binary β-Al5FeSi, Mg2Si, and Si phases are replaced with ternary β-Al5FeSi, π−Al8FeMg3Si6, and a 5 Abstract low melting quaternary eutectic involving Mg2Si, π, and Si. Also, variation of the cooling conditions in castings revealed the existence of a critical cooling rate, above which the solidification path and microstructure undergo a major change. Cracking Model. Implementing the critical conditions for cracking into the Rappaz- Drezet-Gremaud (RDG) model revealed a pressure drop in the interdendritic liquid on the order of 10-1 atm, originating primarily from straining conditions. Since, according to literature, a minimum of 1,760 atm is required to fracture pure aluminum liquid (theoretical), this demonstrates that cavitation as a liquid fracture mechanism is not likely to occur, even when accounting for dissolved hydrogen gas. Instead, a porosity-based crack initiation model has been developed based upon pore stability criteria, assuming that gas pores expand from pre-existing nuclei. Crack initiation is taken to occur when stable pores form within the coherent dendrite region, critical to crack initiation being weld metal hydrogen content. Following initiation, a mass-balance approach developed by Braccini et al. (2000) revealed that crack growth is controlled by local strain rate conditions. Finally, a simplified strain partition model provides a link between critical strain rates measured across the weld and predicted at grain boundaries within the mushy zone. Although based on simplified assumptions, predicted and measured critical strain rate values are of the same order of magnitude. However, because of a longer mushy zone experienced at higher 4043 filler dilution related to a reduction in cooling rate, these models predict a lower weldability with increasing filler dilution, in contradiction with experimental observations. Combining the crack initiation and growth models suggests that hydrogen and strain rate, respectively, determine crack formation. An hypothetical hydrogen – strain rate map defines conceptually the conditions for cracking, suggesting better weldability at low weld metal hydrogen content. With the aid of the modified varestraint test (MVT) and a controlled hydrogen contamination system, results, presented in the form of ram speed – hydrogen map, revealed that hydrogen has little effect on crack growth, providing support to the proposed cracking models. However, a drop in weldability corresponding to the peak in weld metal hydrogen supersaturation suggests a different solidification cracking mechanism, where cavitation supports crack growth. 6 BAM-Dissertationsreihe Acknowledgements Acknowledgements The present work was funded by and carried out at the Bundesanstalt für Materialforschung und –prüfung (BAM) laboratory in Berlin, Germany, during the 2005-2008 time frame. I am grateful to Prof. C.E. Cross for having directed my thesis research. I am also grateful to Prof. Dr.-Ing. H. Herold and Dipl.-Ing. M. Streitenberger for my enrolment in the doctoral thesis program at the Institute for Materials and Joining Technology, Otto-von- Guericke-Universität Magdeburg, and to Prof. Dr.-Ing. T. Böllinghaus for the organization of the thesis defense. I am grateful to BAM for internal support of this project, and specifically wish to thank R. Breu, P. Friedersdorf, A. Hannemann, C. Hesse-Andres, F. Köhler, M. Lammers, M. Marten, T. Michael, M. Richter, K. Scheideck, K. Schlechter, W. Österle, G. Nolze, I. Dörfel, R. Neumann, and H.-J. Malitte. Also, material donated by Outokumpu Stainless and Metallurg London was greatly appreciated. I thank A. Cichon for the logistical support. I thank the thesis committee, Prof. Dr.-Ing. A. Bertram, Prof. Dr.-Ing. T. Böllinghaus, Prof. C.E. Cross, and Prof. S. Marya, for evaluating the thesis manuscript. Finally, this thesis is dedicated to Siegfried and Sonia Ramaut, my sister Charlène, my mother Evelyne, and my grand-mother Anna, to thank them for their support during all these years. 7 Table of Contents Table of Contents Abstract ................................................................................................................................5 Acknowledgements..............................................................................................................7 1 Introduction ................................................................................................................11 1.1 Aluminium Alloy Application ..................................................................................11 1.2 Al-Mg-Si Alloy System...........................................................................................12 1.3 Objectives and Methodology.................................................................................12 2 Background ................................................................................................................15 2.1 Solidification Cracking Phenomenon.....................................................................15 2.1.1 Solidification Cracking Characteristics...........................................................15 2.1.2 Solidification Cracking Models.......................................................................19 2.1.3 Liquid Fracture Mechanism ...........................................................................38 2.1.4 Semi-Solid Material Behavior Characterization..............................................46 2.1.5 Weldability Characterization ..........................................................................48
Recommended publications
  • Parshwamani Metals
    +91-8048554624 Parshwamani Metals https://www.indiamart.com/parshwamanimetals/ Parshwamani Metals is one of the leading manufacturers, supplier and traders of Industrial Metal Tube, Beryllium Product, Shim Sheet, SS Round And Square Bar, Aluminium Products, Aluminum Bronze Products etc. About Us Parshwamani Metals was established in the year 2015 as a professionally managed Manufacturer, Trader and Wholesaler specialized in providing premium grade Copper and Brass Metals Products. Today, we endeavor to revolutionize the industry by fabricating a wide gamut of quality products, which includes Brass Products, Copper Products and Copper Alloy. Our claim to success is hallmarked by the offered quality products that gained us huge recognizance for its high strength, wear and tear resistance, accurate dimensions, flexibility and durable finish. Our products find their wide applications in architectural fittings, hardware and telecommunication. Owing to swift delivery schedules, easy payment modes and overt business practices, we have been successful in earning huge client base. We deal in Jindal Brand. Our efforts are determined with the objective of industrial leadership that equips our team members to manufacture customized products. And, to achieve this, we have developed modernized R&D centers and cutting edge manufacturing facilities. Furthermore, the facility is divided into various functional units like procurement, engineering, production, research & development, quality-testing, warehousing & packaging etc. Our organization is backed
    [Show full text]
  • Linear) Thermal Expansion for Selected Materials (COE Or CTE
    Appendix 1: Coefcient of (Linear) Thermal Expansion for Selected Materials (COE or CTE) Coefficient of (linear) thermal expansion, α, for selected (continued) − − materials (COE or CTE) (units are ×10 6 °C 1 (i.e. ppm/°C)) Indium–lead 33.0 Lead (95 %) tin solder 28.0 Tin–lead solder 60/40 25.0 A. Pure metals Magnesium, AZ31B 26.0 Aluminium 25 Ni-clad Molybdenum 5–6 Chromium 6 Steel, 1020 12.0 Cobalt 12 Stainless steel (18-8) 17.0 Copper 17 Tungsten/copper (90/10) 6.5 Gold 14 Aluminium MMC with SiC particles 6–14 Iron 12 (80–50 % reinforcement) Lead 29 C. Insulators and substrate materials (for electronic systems)a Magnesium 25 E glass 5.5 Molybdenum 5 S glass 2.6 Nickel 13 Glass–ceramic >3.0 Platinum 9 Silicon 2.6 Silver 19 Diamond 0.9 Tantalum 7 Aluminium nitride 4.5 Tin 20 Silicon nitride 3.7 Titanium 9 Quartz, fused silica 0.5 Tungsten 5 Kevlar 49 –5 Zinc 35 Beryllia 6–9 B. Alloys and MMCs Cubic boron nitride Alloy 42 4.4 x–y 3.7 Aluminium (40 % silicon) 13.5 z 7.2 Aluminium, AA 6061 23.6 E glass/epoxy Aluminium, AA 3003 23.2 x–y 14–17 Aluminium, AA 2017 22.9 z 80–280 Boron aluminium (20 %) 12.7 E glass/polyimide Brass 18.0 x–y 12–16 Copper/invar/copper 20/60/20 thick 5.8 z 40–80 Copper/molybdenum/copper 20/60/20 7.0 E glass/PTFE thick x–y 24 Graphite/aluminium 4–6 z 260 Invar 36 1.6 Kevlar/epoxy Invar 42 4.5 x–y 5–7 Inconel 600 13.0 z 70 Kovar (Fe–Ni–Co) 5.0 (continued) Kevlar/polyimide (continued) © Springer International Publishing Switzerland 2016 557 B.D.
    [Show full text]
  • 924 Iaea-Sm-310/ 69P
    924 IAEA-SM-310/ 69P RESULTS FROM POST-MORTEM TESTS WITH MATERIAL FROM THE OLD CORE-BOX OF THE HIGH FLUX REACTOR (HFR) AT PETTEN M.I. de Vries Netherlands Energy Research Foundation, ECN, Eetten, The Netherlands M.R.. Cundy Joint Research Centre, Patten, The Netherlands 925 RESULTS FROM POST-MORTEM TESTS WITH MATERIAL FROM THE OLD CORE-BOX OF THE HIGH FLUX REACTOR (HFR) AT PETTEN ABSTRACT Results are reported from hardness measurements, tensile tests and fracture mechanics experiments (fatigue crack growth and fracture toughness) on 5154 aluminium specimens, fabricated from remnants of the old HFR core box. The specimen material was exposed to a maximum thermal neutron fluence of 7.5 * 1026n/m2(E < 0.4eV). Test results for this fluence (ratio of the thermal to fast neutron flux density is 1.17) are: hardness 63HR15N, 0.2 - yield strength 525 MPa and total elongation 2.2% strain. Material which was exposed to a lower thermal fluence of 5.6 * 10 n/m , but with a thermal to fast neutron ratio of about 4, shows more radiation hardening : 67HR15N, 0.2 - yield strength 580 MPa and 1.5% total elongation. -5 -3 Fatigue crack growth rates range from 5 * 10 mm/cycle to 10 mm/cycle for AK ranging from 8 to 20 MPa)|m. The most highly exposed (7.5 * 10 n/m ) material shows accelerated fatigue crack growth due to unstable crack extension at AK of about 15 Mpa^m. The lowermost meaningful measure of plane strain fracture toughness is 18 MPa^m. Except for the fracture toughness which is a factor of about 3 higher the results show reasonable agreement with the expected mechanical properties estimated in the "safe end-of-life" assessment of the old HFR vessel.
    [Show full text]
  • The Processing and Characterisation of Recycled Ndfeb Based Magnets
    The Processing and Characterisation of Recycled NdFeB based Magnets By Salahadin Muhammed Ali Adrwish A thesis submitted to the University of Birmingham for the degree of Doctor of Philosphy Supervisors Prof. I.R. Harris Dr. A.J. Williams School of Metallurgy and materials University of Birmingham B15 2TT University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. CONTENTS Acknowledgement List of abbreviations Synopsis Chapter One 1.0 Aims of the Project 1 Chapter Two 2.0 Commercial use of NdFeB magnets 5 2.1 Development of NdFeB-type magnets 5 2. 2 Global NdFeB market 6 2.3 Major NdFeB producers 8 2.4 Applications 12 2.5 Factors affecting NdFeB supply and demand 14 2.5.1 IT sector 14 2.5.2 Global price of Dy and Nd 16 2.5.3 Environmental considerations 18 Chapter Three 3.0 Detailed aspects of NdFeB-type magnets recycling 22 3.1 Introduction 22 3.2 Introduction 22 3.3 Processing of recycled NdFeB over the years 25 3.3.1 Recycling of NdFeB magnets 26 3.3.2 Recycling of machine (internal) waste (sludge) 27
    [Show full text]
  • Aluminium Level 2 2019 CES Edupack
    Level 2 Age-hardening wrought Al-alloys The 2000 and 7000 series age -hardening aluminum alloys are the backbone of the aerospace industry. The 6000 series has lower strength but is more easily extruded: it is used for marine and ground transport systems. THE MATERIAL The high -strength aluminum alloys rely on age -hardening: a sequence of heat treatment steps that causes the precipitation of a nano-scale dispersion of intermetallics that impede dislocation motion and impart strength. This can be as high as 700 MPa giving them a strength-to-weight ratio exceeding even that of the strongest steels. This record describes for the series of wrought Al alloys that rely on age-hardening requiring a solution heat treatment followed by quenching and ageing. This is recorded by adding TX to the series number, where X is a number between 0 and 8 that records the state of heat treatment. They are listed below using the IADS designations (see Technical notes for details).2000 series: Al with 2 to 6% Cu -- the oldest and most widely used aerospace series.6000 series: Al with up to 1.2% Mg and 1.3% Si -- medium strength extrusions and forgings.7000 series: Al with up to 8% Zn and 3% Mg -- the Hercules of aluminum alloys, used for high strength aircraft structures, forgings and sheet. Certain special alloys also contain silver. So this record, like that for the non-age hardening alloys, is broad, encompassing all of these. COMPOSITION 2000 series: Al + 2 to 6% Cu + Fe, Mn, Zn and sometimes Zr 6000 series: Al + up to 1.2%Mg + 0.25% Zn + Si, Fe a nd Mn 7000 series: Al + 4 to 9 % Zn + 1 to 3% Mg + Si, Fe, Cu and occasionally Zr and Ag GENERAL PROPERTIES Density 2500 - 2900 kg/m^3 Price *1.
    [Show full text]
  • Machining of Aluminum and Aluminum Alloys / 763
    ASM Handbook, Volume 16: Machining Copyright © 1989 ASM International® ASM Handbook Committee, p 761-804 All rights reserved. DOI: 10.1361/asmhba0002184 www.asminternational.org MachJning of Aluminum and AlumJnum Alloys ALUMINUM ALLOYS can be ma- -r.. _ . lul Tools with small rake angles can normally chined rapidly and economically. Because be used with little danger of burring the part ," ,' ,,'7.,','_ ' , '~: £,~ " ~ ! f / "' " of their complex metallurgical structure, or of developing buildup on the cutting their machining characteristics are superior ,, A edges of tools. Alloys having silicon as the to those of pure aluminum. major alloying element require tools with The microconstituents present in alumi- larger rake angles, and they are more eco- num alloys have important effects on ma- nomically machined at lower speeds and chining characteristics. Nonabrasive con- feeds. stituents have a beneficial effect, and ,o IIR Wrought Alloys. Most wrought alumi- insoluble abrasive constituents exert a det- num alloys have excellent machining char- rimental effect on tool life and surface qual- acteristics; several are well suited to multi- ity. Constituents that are insoluble but soft B pie-operation machining. A thorough and nonabrasive are beneficial because they e,,{' , understanding of tool designs and machin- assist in chip breakage; such constituents s,~ ,.t ing practices is essential for full utilization are purposely added in formulating high- of the free-machining qualities of aluminum strength free-cutting alloys for processing in alloys. high-speed automatic bar and chucking ma- Strain-hardenable alloys (including chines. " ~ ~p /"~ commercially pure aluminum) contain no In general, the softer ailoys~and, to a alloying elements that would render them lesser extent, some of the harder al- c • o c hardenable by solution heat treatment and ,p loys--are likely to form a built-up edge on precipitation, but they can be strengthened the cutting lip of the tool.
    [Show full text]
  • Aluminium Alloys Chemical Composition Pdf
    Aluminium alloys chemical composition pdf Continue Alloy in which aluminum is the predominant lye frame of aluminum welded aluminium alloy, manufactured in 1990. Aluminum alloys (or aluminium alloys; see spelling differences) are alloys in which aluminium (Al) is the predominant metal. Typical alloy elements are copper, magnesium, manganese, silicon, tin and zinc. There are two main classifications, namely casting alloys and forged alloys, both further subdivided into heat-treatable and heat-free categories. Approximately 85% of aluminium is used for forged products, e.g. laminated plates, foils and extrusions. Aluminum cast alloys produce cost-effective products due to their low melting point, although they generally have lower tensile strength than forged alloys. The most important cast aluminium alloy system is Al–Si, where high silicon levels (4.0–13%) contributes to giving good casting features. Aluminum alloys are widely used in engineering structures and components where a low weight or corrosion resistance is required. [1] Alloys composed mostly of aluminium have been very important in aerospace production since the introduction of metal leather aircraft. Aluminum-magnesium alloys are both lighter than other aluminium alloys and much less flammable than other alloys containing a very high percentage of magnesium. [2] Aluminum alloy surfaces will develop a white layer, protective of aluminum oxide, if not protected by proper anodization and/or dyeing procedures. In a wet environment, galvanic corrosion can occur when an aluminum alloy is placed in electrical contact with other metals with a more positive corrosion potential than aluminum, and an electrolyte is present that allows the exchange of ions.
    [Show full text]
  • Aluminum Alloy Weldability: Identification of Weld Solidification Cracking Mechanisms Through Novel Experimental Technique and Model Development
    Dipl.-Ing. Nicolas Coniglio Aluminum Alloy Weldability: Identifi cation of Weld Solidifi cation Cracking Mechanisms through Novel Experimental Technique and Model Development BAM-Dissertationsreihe • Band 40 Berlin 2008 Die vorliegende Arbeit entstand an der BAM Bundesanstalt für Materialforschung und -prüfung. Impressum Aluminum Alloy Weldability: Identifi cation of Weld Solidifi cation Cracking Mechanisms through Novel Experimental Technique and Model Development 2008 Herausgeber: BAM Bundesanstalt für Materialforschung und -prüfung Unter den Eichen 87 12205 Berlin Telefon: +49 30 8104-0 Telefax: +49 30 8112029 E-Mail: [email protected] Internet: www.bam.de Copyright © 2008 by BAM Bundesanstalt für Materialforschung und -prüfung Layout: BAM-Arbeitsgruppe Z.64 ISSN 1613-4249 ISBN 978-3-9812354-3-2 Aluminum Alloy Weldability: Identification of Weld Solidification Cracking Mechanisms through Novel Experimental Technique and Model Development Dissertation zur Erlangung des akademischen Grades Doktor-Ingenieur (Dr.-Ing.) genehmigt durch die Fakultät für Maschinenbau der Otto-von-Guericke-Universität Madgeburg am 02.06.08 vorgelegte Dissertation von Dipl.-Ing. Nicolas Coniglio Thesis Committee: Prof. Dr.-Ing. A. Bertram Prof. Dr.-Ing. T. Böllinghaus Prof. C.E. Cross Prof. S. Marya Date of Examination: 23 October 2008 Abstract Abstract The objective of the present thesis is to make advancements in understanding solidification crack formation in aluminum welds, by investigating in particular the aluminum 6060/4043 system. Alloy 6060 is typical of a family of Al-Mg-Si extrusion alloys, which are considered weldable only when using an appropriate filler alloy such as 4043 (Al-5Si). The effect of 4043 filler dilution (i.e. weld metal silicon content) on cracking sensitivity and solidification path of Alloy 6060 welds are investigated.
    [Show full text]
  • Mechanical Milling of Co-Rich Melt-Spun Sm-Co Alloys
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Mechanical & Materials Engineering, Engineering Mechanics Dissertations & Theses Department of Spring 5-2010 MECHANICAL MILLING OF CO-RICH MELT-SPUN SM-CO ALLOYS Farhad Reza Golkar-Fard University of Nebraska - Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/engmechdiss Part of the Engineering Mechanics Commons, and the Mechanical Engineering Commons Golkar-Fard, Farhad Reza, "MECHANICAL MILLING OF CO-RICH MELT-SPUN SM-CO ALLOYS" (2010). Engineering Mechanics Dissertations & Theses. 6. https://digitalcommons.unl.edu/engmechdiss/6 This Article is brought to you for free and open access by the Mechanical & Materials Engineering, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Engineering Mechanics Dissertations & Theses by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. MECHANICAL MILLING OF CO-RICH MELT-SPUN SM-CO ALLOYS by FARHAD REZA GOLKAR-FARD A THESIS Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Master Science Major: Engineering Mechanics Under the Supervision of Professor Jeffrey E. Shield Lincoln, Nebraska May, 2010 MECHANICAL MILLING OF CO-RICH MELT-SPUN SM-CO ALLOYS Farhad Reza Golkar-Fard, M.S UNIVERSITY OF NEBRASKA, 2010 Advisor: Jeffrey E. Shield Rare-earth, high-energy permanent magnets are currently the best performing permanent magnets used today. The discovery of single domain magnetism in 1950’s ultimately led to the development of nanocomposite magnets which had superior magnetic properties. Previous work has shown that mechanical milling (MM) effectively generates nanoscale structures in Sm-Co-based alloys.
    [Show full text]
  • International Alloy Designations and Chemical Composition Limits for Wrought Aluminum and Wrought Aluminum Alloys
    International Alloy Designations and Chemical Composition Limits for Wrought Aluminum and Wrought Aluminum Alloys 1525 Wilson Boulevard, Arlington, VA 22209 www.aluminum.org With Support for On-line Access From: Aluminum Extruders Council Australian Aluminium Council Ltd. European Aluminium Association Japan Aluminium Association Alro S.A, R omania Revised: January 2015 Supersedes: February 2009 © Copyright 2015, The Aluminum Association, Inc. Unauthorized reproduction and sale by photocopy or any other method is illegal . Use of the Information The Aluminum Association has used its best efforts in compiling the information contained in this publication. Although the Association believes that its compilation procedures are reliable, it does not warrant, either expressly or impliedly, the accuracy or completeness of this information. The Aluminum Association assumes no responsibility or liability for the use of the information herein. All Aluminum Association published standards, data, specifications and other material are reviewed at least every five years and revised, reaffirmed or withdrawn. Users are advised to contact The Aluminum Association to ascertain whether the information in this publication has been superseded in the interim between publication and proposed use. CONTENTS Page FOREWORD ........................................................................................................... i SIGNATORIES TO THE DECLARATION OF ACCORD ..................................... ii-iii REGISTERED DESIGNATIONS AND CHEMICAL COMPOSITION
    [Show full text]
  • Advantages of Aluminium
    Aluminium Information Advantages of Aluminium Advantages of Aluminium A unique combination of properties makes aluminium and its alloys one of the most versatile engineering and construction materials available today. Lightweight Aluminium is one of the lightest available commercial metals with a density approximately one third that of steel or copper. Its high strength to weight ratio makes it particularly important to transportation industries allowing increased payloads and fuel savings. Catamaran ferries, petroleum tankers and aircraft are good examples of aluminium’s use in transport. In other fabrications, aluminium’s lightweight can reduce the need for special handling or lifting equipment. Excellent Corrosion Resistance Aluminium has excellent resistance to corrosion due to the thin layer of aluminium oxide that forms on the surface of aluminium when it is exposed to air. In many applications, aluminium can be left in the mill finished condition. Should additional protection or decorative finishes be required, then aluminium can be either anodised or painted. Strong Although tensile strength of pure aluminium is not high, mechanical properties can be markedly increased by the addition of alloying elements and tempering. You can choose the alloy with the most suitable characteristics for your application. Typical alloying elements are manganese, silicon, copper and magnesium. Strong at Low Temperatures Where as steel becomes brittle at low temperatures, aluminium increases in tensile strength and retains excellent toughness. 1 © Capral Aluminium Limited Aluminium Information Advantages of Aluminium Easy to Work Aluminium can be easily fabricated into various forms such as foil, sheets, geometric shapes, rod, tube and wire. It also displays excellent machinability and plasticity ideal for bending, cutting, spinning, roll forming, hammering, forging and drawing.
    [Show full text]
  • Conversion Coatings for Aluminium Alloys: a Surface Investigation for Corrosion Mechanisms
    Conversion coatings for aluminium alloys: a surface investigation for corrosion mechanisms. by Rossana Grilli Submitted for the Degree of Doctor of Philosophy March 2010 The Surface Analysis Laboratory Surrey Materials Institute and Faculty of Engineering & Physical Sciences University of Surrey Guildford Surrey GU2 7XH UK Abstract Abstract Cr(VI) based conversion coatings are currently the treatments of choice for aluminium alloys to prevent corrosion, and are widely used in the aerospace industry also because of their good electrical conductivity and because they are good primers for paints and adhesives. Hexavalent chromium though is harmful for humans and for the environment, thus it needs to be replaced with more environmentally friendly materials. In this work three alternative pre-treatments for aluminium alloys were proposed and their properties were investigated and compared with the performance of a Cr(VI) based treatment. The selected “green” alternatives are based on titanium and zirconium compounds and they were applied to three different aluminium alloys relevant for spacecraft applications: Al2219, Al7075 and Al5083. After the characterization of the chosen materials by means of SEM, AES, XPS, EDX and SAM, some of their surface properties were explored: the adsorption of an epoxy acrylate resin used for UV-cured coatings, and the stability under UV and thermal exposure. The outcome of this preliminary investigation provided the basis for a further selection of materials to use in a corrosion study, and Al2219 was chosen as a substrate, together with an hybrid (organic/inorganic) coating, Nabutan STI/310. Alodine 1200S was proposed as chromate treatment and used as reference. A comparison of the behaviour during the exposure to a corrosive environment, as a NaCl solution, was made between the untreated Al2219 alloy, and the alloy treated with Nabutan STI/310 and Alodine 1200S.
    [Show full text]