Gentix Plasticwares Vol II
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
V L Scientific Udyog
+91-8049592713 V L Scientific Udyog https://www.indiamart.com/vlscientificudyog/ We “V L Scientific Udyog” are a leading Manufacturer and Trader of a wide range of Laboratory Thermometer, Laboratory Burette, Laboratory Condenser, Laboratory Flask, Laboratory Tubes, Glass Beakers, Imhoff Cones, etc. About Us Established as a Sole Proprietorship firm in the year 2010, we “V L Scientific Udyog” are a leading Manufacturer and Trader of a wide range of Laboratory Thermometer, Laboratory Burette, Laboratory Condenser, Laboratory Flask, Laboratory Tubes, Glass Beakers, Imhoff Cones, Measuring Cylinder, etc. Situated in Ambala (Haryana, India), we have constructed a wide and well functional infrastructural unit that plays an important role in the growth of our company. We offer these products at reasonable rates and deliver these within the promised time-frame. Under the headship of our mentor “Mr. Sachin Lamba”, we have gained a huge clientele across the nation. For more information, please visit https://www.indiamart.com/vlscientificudyog/profile.html LABORATORY FLASK O u r P r o d u c t R a n g e Conical Flask School Lab Flask 2000 ML Conical Flask Iodine Flask BOD INCUBATOR O u r P r o d u c t R a n g e Laboratory BOD Incubator BOD Incubator 2 Shelves BOD Incubator BOD Incubator LABORATORY MICROSCOPE O u r P r o d u c t R a n g e Olympus Biological Labomed LX300 Microscope Microscope Physiotherapy Medical Comparison Microscope Laboratory Microscope LABORATORY TUBES O u r P r o d u c t R a n g e Laboratory Culture Tubes Glass Testing Tubes -
Npgrj Nprot 406 2517..2526
PROTOCOL Identification and analysis of essential Aspergillus nidulans genes using the heterokaryon rescue technique Aysha H Osmani, Berl R Oakley & Stephen A Osmani Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43210, USA. Correspondence should be addressed to S.A.O. ([email protected]) Published online 29 December 2006; corrected online 25 January 2007 (details online); doi:10.1038/nprot.2006.406 s In the heterokaryon rescue technique, gene deletions are carried out using the pyrG nutritional marker to replace the coding region of target genes via homologous recombination in Aspergillus nidulans. If an essential gene is deleted, the null allele is maintained in spontaneously generated heterokaryons that consist of two genetically distinct types of nuclei. One nuclear type has the essential gene deleted but has a functional pyrG allele (pyrG+). The other has the wild-type allele of the essential gene but lacks a functional pyrG allele (pyrG–). Thus, a simple growth test applied to the uninucleate asexual spores formed from primary transformants can natureprotocol / m identify deletions of genes that are non-essential from those that are essential and can only be propagated by heterokaryon rescue. o c . The growth tests also enable the phenotype of the null allele to be defined. Diagnostic PCR can be used to confirm deletions at the e r molecular level. This technique is suitable for large-scale gene-deletion programs and can be completed within 3 weeks. u t a n . w w INTRODUCTION w / / : One of the most fundamental pieces of information regarding the non-essential gene is deleted, the resulting strains are able to grow p t t function of any gene is whether the gene is essential or not. -
Harvard Biolabs Stockroom
THE HARVARD BIOLABS STOCKROOM Biolabs Basement—B060 Biolabs Bldg ‐ 16 Divinity Ave Phone: 617.495.2385 Monday ‐ Friday: 8:00 am ‐ 4:50 pm* *Closed daily 12:00 ‐ 1:00 pm The Harvard Biolabs Stockroom The Harvard BioLabs Stockroom Biolabs Basement—B060 The current Harvard Biolabs Stockroom was created in collaboraon with Operaons and Facilies at FAS and VWR Internaonal to provide researchers with quick, convenient access to the most frequently ordered laboratory supplies, enzymes and biologicals. Products are sourced from VWR core suppliers, as well as other popular manufacturers such as Qiagen, NEB, Falcon and Corning. Researchers using Harvard funds for payment are eligible to purchase from the Stockroom. To ensure accurate billing, shoppers should be prepared to provide idenficaon and up‐to‐date grant informaon at the request of Stockroom personnel. All non‐stockroom orders should be placed on‐line via HCOM or by calling VWR at 866‐229‐9967 “Call Ahead” ‐The Stockroom offers walk‐ in service. However, you may want to “call ahead” to 617‐495‐2385 so the VWR associate can ensure availability of the products requested. VWR will provide a receipt detailing all items on the order. Only products in stock will be included. Back orders will not be accepted. Backordered products should be ordered as a new transacon when stock arrives. Check with VWR at 866‐229‐9967 or HCOM for availability. VWR manages the 190 and 200 proof tax free ethanol program for Harvard University. Ethanol can be purchased by the gallon(s) or pint in the Stockroom. The on‐campus stockroom is intended to meet immediate needs for less‐ than‐case quanty products; for larger orders it is recommended purchases be made on line via HCOM, by calling 866‐229‐9967 or by e‐mailing [email protected]. -
Bacterial Survival in Microscopic Surface Wetness Maor Grinberg†, Tomer Orevi†, Shifra Steinberg, Nadav Kashtan*
RESEARCH ARTICLE Bacterial survival in microscopic surface wetness Maor Grinberg†, Tomer Orevi†, Shifra Steinberg, Nadav Kashtan* Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University, Rehovot, Israel Abstract Plant leaves constitute a huge microbial habitat of global importance. How microorganisms survive the dry daytime on leaves and avoid desiccation is not well understood. There is evidence that microscopic surface wetness in the form of thin films and micrometer-sized droplets, invisible to the naked eye, persists on leaves during daytime due to deliquescence – the absorption of water until dissolution – of hygroscopic aerosols. Here, we study how such microscopic wetness affects cell survival. We show that, on surfaces drying under moderate humidity, stable microdroplets form around bacterial aggregates due to capillary pinning and deliquescence. Notably, droplet-size increases with aggregate-size, and cell survival is higher the larger the droplet. This phenomenon was observed for 13 bacterial species, two of which – Pseudomonas fluorescens and P. putida – were studied in depth. Microdroplet formation around aggregates is likely key to bacterial survival in a variety of unsaturated microbial habitats, including leaf surfaces. DOI: https://doi.org/10.7554/eLife.48508.001 Introduction *For correspondence: The phyllosphere – the aerial parts of plants – is a vast microbial habitat that is home to diverse [email protected] microbial communities (Lindow and Brandl, 2003; Lindow and Leveau, 2002; Vorholt, 2012; Vacher et al., 2016; Leveau, 2015; Bringel and CouA˜ ce, 2015). These communities, dominated by †These authors contributed bacteria, play a major role in the function and health of their host plant, and take part in global bio- equally to this work geochemical cycles. -
AP Galaxy Enterprises
+91-8068442236,295 A. P. Galaxy Enterprises https://www.indiamart.com/ap-galaxy-enterprises/ We “A. P. Galaxy Enterprises” are a Partnership firm that is an affluent manufacturer of a wide array of Glass Cylinder, Laboratory Flask, Laboratory Beaker, Laboratory Microscope, Glass Test Tubes, etc. About Us Incepted in the year 2002 at Ambala (Haryana, India), we “A. P. Galaxy Enterprises” are a Partnership firm that is an affluent manufacturer of a wide array of Glass Cylinder, Laboratory Flask, Laboratory Beaker, Laboratory Microscope, Glass Test Tubes, etc. We provide these products as per the latest market trends and deliver these at client's premises within the scheduled time frame. We have also selected a team of devoted and capable professionals who helped us to run the operation in a systematic and planned manner. Apart from this, we also export these products to Sirlanka, Gulf Country, African Country and Nepal. Under the supervision of “Mr. Iqbal" (Partner), we have gained huge success in this field. For more information, please visit https://www.indiamart.com/ap-galaxy-enterprises/profile.html O u r P r o d u c t R K a S n A L g F e Y R O T A R O B A L Lab Glass Beaker Conical Flask Laboratory Conical Flask Lab Conical Flask O u r P r o d u c t R a n R g E e D N I L Y C S S A L G Laboratory Glass Scale Measuring Cylinder Cylinder Glass Measuring Cylinder Lab Measuring Cylinder E R O A W u S r S P A L r o G d D u N c A t E R L T a T n O g B e Y R O T A R O B A L Laboratory Reagent Bottle Lab Reagent Bottle Reagent Bottles Laboratory -
Practical Manual Engineering Chemistry
VPCOE CHEMISTRY LAB MANUAL VPCOE VIDYA PRATHISHTHAN’S COLLEGE OF ENGINEERING PRACTICAL MANUAL ENGINEERING CHEMISTRY (Academic year 20152015----16)16) FOR FIRST YEAR ENGINEERING DEGREE COURSES ACCORDING TO THE REVISED SYLLABUS OF S.P.PUNE UNIVERSITY (W.E.F. 2012) Head PrinPrinPrincipalPrin cipal Gen. Sc. & Engg. Dept VPCoE PREPARED BY Dr. APARNA G. SAJJAN Assistant Professor of Chemistry VPCOE (2014 -15) Page 1 of 46 VPCOE CHEMISTRY LAB MANUAL CONTENTS Common Laboratory Glassware I Titration Assembly II Glassware and Their Use III - V Safety Rules & Acknowledgement by Student V - VII I) Determination of Alkalinity of Water Sample 1−4 II) Determination of Hardness of Water by EDTA Method 5−8 III) Determination of Dissociation Constant of Weak Acid (Acetic Acid) using 9−13 PH - Meter IV) To Determine Maximum Wavelength of Absorption of FeSO 4, to Verify Beer’s Law and to Find Unknown Concentration of Ferrous ions (Fe 2+ ) in 14−17 Given Sample by Spectrophotomety / colorimetry V) Titration of Mixture of Weak Acid and Strong Acid with Strong Base 18−20 Using Conductometer VI) Preparation of Polystyrene and Phenol - Formaldehyde or Urea - 21−24 Formaldehyde Resin and their Characterization VII) To Determine Molecular Weight of a Polymer using Ostwald’s Viscometer 25−27 VIII) Proximate Analysis of Coal 28−30 Appendix 31–34 References 35 Development of Intellectual and Motor Skills 35 Grid Table 36 Page 2 of 46 VPCOE CHEMISTRY LAB MANUAL COMMON LABORATORY GLASSWARES Burette Pipette Test-tube Measuring cylinder Conical flask Separating funnel Volumetric flask Beaker Filter funnel I Page 3 of 46 VPCOE CHEMISTRY LAB MANUAL TITRATION ASSEMBLY White tile (To observe sharp colour changes) Correct method to note down the readings Graduated Cylinder Burette The reading is 36.5 ml. -
WL Brewery Contaminates Instructions Highres
WHITE LABS ® TEST KITS BREWERY CONTAMINANTS DETECTION SAMPLE KIT PLEASE READ ALL PROCEDURAL INSTRUCTIONS THOROUGHLY BEFORE STARTING THE TEST. YOUR KIT INCLUDES: • (5) 15mL sterile culture tubes with rack • (10) 15mL sterile culture tubes with 9mL sterile water (for dilutions) • (1) 2oz 70% isopropanol solution • (1) 90mL Hsu’s Lactobacillus and Pediococcus (HLP) Media (keep refrigerated) • (6) Lin’s Cupric Sulfate Media (LCSM) plates (please keep plates stored media side up in refrigerator until 1 hour before use) • (6) Schwartz Differential Media (SDA) plates (please keep plates stored media side up in refrigerator until 1 hour before use) • (10) sterile cell spreaders • (2) 50mL vials sterile, distilled water • (2) pair laboratory gloves • (16) sterile transfer pipettes with graduations • Instructions OTHER SUGGESTED MATERIALS: (MUST BE PURCHASED SEPARATELY) • Alcohol lamp • Micropipettor and tips BACKGROUND: This kit provides three types of selective medias for the detection of aerobic bacteria (SDA medium), anaerobic bacteria (HLP medium), and wild yeast (LCSM medium). White round colonies will be present in HLP is Lactobacillus or Pediococcus is present. Teal or blue bacterial colonies will be present on SDA if bacterial contamination is present. LCSM provides the best means for a brewery to test for the presence of Non-Saccharomyces wild yeast. This medium inhibits, or markedly restricts, growth of brewery culture yeast while permitting growth of a variety of wild yeast using cupric sulfate. Some specific brewing yeast strains (typically Hefeweizen, Belgian strains) of brewer’s yeast show weak growth on LWYM. TAKING THE SAMPLE: How to take a sterile sample from a heat exchanger: • Collect wort from a valve after heat exchanger in sterile 50 ml tube (provided) How to take a fermentor/brite tank sample: • Use cotton swab to swab any sediment in the zwiggle/stop cock. -
Desiccator Glassware
· WUBO® Laboratory Glassware PRODUCT CATALOG CONSTENTS Burning Glassware.........................目..录........................................................P1 LOW WALL BEAKER........................................................................................................................................................................ 1 HIGH WALL BEAKER....................................................................................................................................................................... 1 CONICAL BEAKER............................................................................................................................................................................2 NARROW NECK CONICAL FLASK................................................................................................................................................2 WIDE NECK CONICAL FLASK....................................................................................................................................................... 3 IODINE FLASK................................................................................................................................................................................... 3 AMBER CONICAL FLASK................................................................................................................................................................4 CONICAL FLASK WITH CAP...........................................................................................................................................................4 -
Polypropylene
CELLTREAT® Scientific Products is dedicated to manufacturing unique, high-quality laboratory plastic consumables at significant savings compared to alternative brands. User-friendly features are incorporated into the CELLTREAT product line to improve research efficiency with easier handling and outstanding performance. We provide high levels of personalized service and regularly challenge everything we do to improve and exceed customer expectations. Experience the CELLTREAT difference. CELLTREAT Table of Contents Accessories (Bag Cutter & Timer) .............................. 9 Flasks, Erlenmeyer - PETG ......................................... 43 Beakers ...................................................................... 9 Flasks, Erlenmeyer & Fernbach - Polycarbonate ....... 42 Bio-reaction Tubes .................................................... 19 Flasks, Non-Treated Suspension Culture ................... 29 Vent Control Labels .......................................... 19 Flasks, Tissue Culture Treated ................................... 28 Bottles, Centrifuge .................................................. 21 Flasks, Caps Only ....................................................... 29 Bottles, Media ........................................................... 44 Glass Fiber Filter Disks .............................................. 45 Bottles, Roller ........................................................... 41 Lab Grab Multi-Use Extension Grabber .................... 37 Bottles, Solution ..................................................... -
CELLTREAT Cell and Tissue Culture Labware
Table of Contents Table of Contents Tissue and Suspension Culture Flasks .................................................. 1 Flask Caps and Cell Strainers ............................................................... 2 Tissue Culture Dishes ............................................................................. 3 Multiwell Plates, Treated and Non-Treated .....................................4-5 Chambered Cell Culture Slides ........................................................... 6 Bio-reaction Tubes .............................................................................6-7 Fernbach and Erlenmeyer Culture Flasks ........................................... 8 Roller Bottles and Square Media Bottles ............................................ 9 Cell Scrapers and Lifters ..................................................................... 10 Vacuum Filter Systems ........................................................................ 11 Solution Bottles .................................................................................... 11 Filter Adapters & Centrifuge Tube Filters .......................................... 12 Syringe Filters ........................................................................................ 13 Petri-Dishes ........................................................................................... 14 Inoculating Loops, Needles and Cell Spreaders ............................. 15 Pipets and Reagent Reservoirs .....................................................16-21 Centrifuge Tubes -
Detection of Bacteriophage Infection Using Absorbance
DETECTION OF BACTERIOPHAGE INFECTION USING ABSORBANCE, BIOLUMINESCENCE, AND FLUORESCENCE TESTS Thesis Submitted to The School of Engineering of the UNIVERSITY OF DAYTON In Partial Fulfillment of the Requirements for The Degree Master of Science in Civil Engineering By Lindsey Marie Staley UNIVERSITY OF DAYTON Dayton, Ohio May, 2011 DETECTION OF BACTERIOPHAGE INFECTION USING ABSORBANCE, BIOLUMINESCENCE, AND FLUORESCENCE TESTS Name: Staley, Lindsey Marie APPROVED BY: ___________________________ __________________________ Denise Taylor, Ph. D., P.E. Kenya Crosson, Ph.D. Advisory Committee Chairman Committee Member Assistant Professor Assistant Professor Department of Civil and Department of Civil and Environmental Engineering and Environmental Engineering and Engineering Mechanics Engineering Mechanics ____________________________ Deogratias Eustace, Ph.D. Committee Member Assistant Professor Department of Civil and Environmental Engineering and Engineering Mechanics ___________________________ __________________________ John G. Weber, Ph.D. Tony E. Saliba, Ph.D. Associate Dean Wilke Distinguished Professor & School of Engineering Dean School of Engineering ii ABSTRACT DETECTION OF BACTERIOPHAGE INFECTION USING ABSORBANCE, BIOLUMINESCENCE, AND FLUORESCENCE TESTS Name: Staley, Lindsey Marie University of Dayton Advisor: Dr. Denise Taylor The activated sludge treatment process is a common method employed to treat wastewater. Normal operation of this process results in a floc-forming bacterial mixture, which settles rapidly. However, filamentous bacteria can cause sludge bulking, which interferes with the compaction and settling of flocs. A common method to control sludge bulking is adding a chemical such as chlorine to the activated sludge basin, which kills not only the problematic bacteria, but also the essential floc-forming bacteria. Bacteriophages (phages) are viruses that only infect bacteria. It is hypothesized that phages of filamentous bacteria can be added to the activated sludge basin to control sludge bulking, rather than a chemical. -
Mb352 General Microbiology Laboratory 2021
MB352 GENERAL MICROBIOLOGY LABORATORY 2021 Alice Lee North Carolina State University North Carolina State University MB352 General Microbiology Laboratory 2021 (Lee) This text is disseminated via the Open Education Resource (OER) LibreTexts Project (https://LibreTexts.org) and like the hundreds of other texts available within this powerful platform, it freely available for reading, printing and "consuming." Most, but not all, pages in the library have licenses that may allow individuals to make changes, save, and print this book. Carefully consult the applicable license(s) before pursuing such effects. Instructors can adopt existing LibreTexts texts or Remix them to quickly build course-specific resources to meet the needs of their students. Unlike traditional textbooks, LibreTexts’ web based origins allow powerful integration of advanced features and new technologies to support learning. The LibreTexts mission is to unite students, faculty and scholars in a cooperative effort to develop an easy-to-use online platform for the construction, customization, and dissemination of OER content to reduce the burdens of unreasonable textbook costs to our students and society. The LibreTexts project is a multi-institutional collaborative venture to develop the next generation of open-access texts to improve postsecondary education at all levels of higher learning by developing an Open Access Resource environment. The project currently consists of 13 independently operating and interconnected libraries that are constantly being optimized by students, faculty, and outside experts to supplant conventional paper-based books. These free textbook alternatives are organized within a central environment that is both vertically (from advance to basic level) and horizontally (across different fields) integrated.