Detection of Bacteriophage Infection Using Absorbance
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Npgrj Nprot 406 2517..2526
PROTOCOL Identification and analysis of essential Aspergillus nidulans genes using the heterokaryon rescue technique Aysha H Osmani, Berl R Oakley & Stephen A Osmani Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43210, USA. Correspondence should be addressed to S.A.O. ([email protected]) Published online 29 December 2006; corrected online 25 January 2007 (details online); doi:10.1038/nprot.2006.406 s In the heterokaryon rescue technique, gene deletions are carried out using the pyrG nutritional marker to replace the coding region of target genes via homologous recombination in Aspergillus nidulans. If an essential gene is deleted, the null allele is maintained in spontaneously generated heterokaryons that consist of two genetically distinct types of nuclei. One nuclear type has the essential gene deleted but has a functional pyrG allele (pyrG+). The other has the wild-type allele of the essential gene but lacks a functional pyrG allele (pyrG–). Thus, a simple growth test applied to the uninucleate asexual spores formed from primary transformants can natureprotocol / m identify deletions of genes that are non-essential from those that are essential and can only be propagated by heterokaryon rescue. o c . The growth tests also enable the phenotype of the null allele to be defined. Diagnostic PCR can be used to confirm deletions at the e r molecular level. This technique is suitable for large-scale gene-deletion programs and can be completed within 3 weeks. u t a n . w w INTRODUCTION w / / : One of the most fundamental pieces of information regarding the non-essential gene is deleted, the resulting strains are able to grow p t t function of any gene is whether the gene is essential or not. -
Harvard Biolabs Stockroom
THE HARVARD BIOLABS STOCKROOM Biolabs Basement—B060 Biolabs Bldg ‐ 16 Divinity Ave Phone: 617.495.2385 Monday ‐ Friday: 8:00 am ‐ 4:50 pm* *Closed daily 12:00 ‐ 1:00 pm The Harvard Biolabs Stockroom The Harvard BioLabs Stockroom Biolabs Basement—B060 The current Harvard Biolabs Stockroom was created in collaboraon with Operaons and Facilies at FAS and VWR Internaonal to provide researchers with quick, convenient access to the most frequently ordered laboratory supplies, enzymes and biologicals. Products are sourced from VWR core suppliers, as well as other popular manufacturers such as Qiagen, NEB, Falcon and Corning. Researchers using Harvard funds for payment are eligible to purchase from the Stockroom. To ensure accurate billing, shoppers should be prepared to provide idenficaon and up‐to‐date grant informaon at the request of Stockroom personnel. All non‐stockroom orders should be placed on‐line via HCOM or by calling VWR at 866‐229‐9967 “Call Ahead” ‐The Stockroom offers walk‐ in service. However, you may want to “call ahead” to 617‐495‐2385 so the VWR associate can ensure availability of the products requested. VWR will provide a receipt detailing all items on the order. Only products in stock will be included. Back orders will not be accepted. Backordered products should be ordered as a new transacon when stock arrives. Check with VWR at 866‐229‐9967 or HCOM for availability. VWR manages the 190 and 200 proof tax free ethanol program for Harvard University. Ethanol can be purchased by the gallon(s) or pint in the Stockroom. The on‐campus stockroom is intended to meet immediate needs for less‐ than‐case quanty products; for larger orders it is recommended purchases be made on line via HCOM, by calling 866‐229‐9967 or by e‐mailing [email protected]. -
First Description of a Temperate Bacteriophage (Vb Fhim KIRK) of Francisella Hispaniensis Strain 3523
viruses Article First Description of a Temperate Bacteriophage (vB_FhiM_KIRK) of Francisella hispaniensis Strain 3523 Kristin Köppen 1,†, Grisna I. Prensa 1,†, Kerstin Rydzewski 1, Hana Tlapák 1, Gudrun Holland 2 and Klaus Heuner 1,* 1 Centre for Biological Threats and Special Pathogens, Cellular Interactions of Bacterial Pathogens, ZBS 2, Robert Koch Institute, 13353 Berlin, Germany; [email protected] (K.K.); [email protected] (G.I.P.); [email protected] (K.R.); [email protected] (H.T.) 2 Centre for Biological Threats and Special Pathogens, Advanced Light and Electron Microscopy, ZBS 4, Robert Koch Institute, D-13353 Berlin, Germany; [email protected] * Correspondence: [email protected]; Tel.: +49-30-18754-2226 † Both authors contributed equally to this work. Abstract: Here we present the characterization of a Francisella bacteriophage (vB_FhiM_KIRK) includ- ing the morphology, the genome sequence and the induction of the prophage. The prophage sequence (FhaGI-1) has previously been identified in F. hispaniensis strain 3523. UV radiation induced the prophage to assemble phage particles consisting of an icosahedral head (~52 nm in diameter), a tail of up to 97 nm in length and a mean width of 9 nm. The double stranded genome of vB_FhiM_KIRK contains 51 open reading frames and is 34,259 bp in length. The genotypic and phylogenetic analysis indicated that this phage seems to belong to the Myoviridae family of bacteriophages. Under the Citation: Köppen, K.; Prensa, G.I.; conditions tested here, host cell (Francisella hispaniensis 3523) lysis activity of KIRK was very low, and Rydzewski, K.; Tlapák, H.; Holland, the phage particles seem to be defective for infecting new bacterial cells. -
Bacterial Survival in Microscopic Surface Wetness Maor Grinberg†, Tomer Orevi†, Shifra Steinberg, Nadav Kashtan*
RESEARCH ARTICLE Bacterial survival in microscopic surface wetness Maor Grinberg†, Tomer Orevi†, Shifra Steinberg, Nadav Kashtan* Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University, Rehovot, Israel Abstract Plant leaves constitute a huge microbial habitat of global importance. How microorganisms survive the dry daytime on leaves and avoid desiccation is not well understood. There is evidence that microscopic surface wetness in the form of thin films and micrometer-sized droplets, invisible to the naked eye, persists on leaves during daytime due to deliquescence – the absorption of water until dissolution – of hygroscopic aerosols. Here, we study how such microscopic wetness affects cell survival. We show that, on surfaces drying under moderate humidity, stable microdroplets form around bacterial aggregates due to capillary pinning and deliquescence. Notably, droplet-size increases with aggregate-size, and cell survival is higher the larger the droplet. This phenomenon was observed for 13 bacterial species, two of which – Pseudomonas fluorescens and P. putida – were studied in depth. Microdroplet formation around aggregates is likely key to bacterial survival in a variety of unsaturated microbial habitats, including leaf surfaces. DOI: https://doi.org/10.7554/eLife.48508.001 Introduction *For correspondence: The phyllosphere – the aerial parts of plants – is a vast microbial habitat that is home to diverse [email protected] microbial communities (Lindow and Brandl, 2003; Lindow and Leveau, 2002; Vorholt, 2012; Vacher et al., 2016; Leveau, 2015; Bringel and CouA˜ ce, 2015). These communities, dominated by †These authors contributed bacteria, play a major role in the function and health of their host plant, and take part in global bio- equally to this work geochemical cycles. -
The Diversity of Bacterial Lifestyles Hampers Bacteriophage Tenacity
viruses Review The Diversity of Bacterial Lifestyles Hampers Bacteriophage Tenacity Marta Lourenço 1,2, Luisa De Sordi 1 and Laurent Debarbieux 1,* ID 1 Department of Microbiology, Institut Pasteur, F-75015 Paris, France; [email protected] (M.L.); [email protected] (L.D.S.) 2 Collège Doctoral, Sorbonne Université, F-75005 Paris, France * Correspondence: [email protected] Received: 18 May 2018; Accepted: 11 June 2018; Published: 15 June 2018 Abstract: Phage therapy is based on a simple concept: the use of a virus (bacteriophage) that is capable of killing specific pathogenic bacteria to treat bacterial infections. Since the pioneering work of Félix d’Herelle, bacteriophages (phages) isolated in vitro have been shown to be of therapeutic value. Over decades of study, a large number of rather complex mechanisms that are used by phages to hijack bacterial resources and to produce their progeny have been deciphered. While these mechanisms have been identified and have been studied under optimal conditions in vitro, much less is known about the requirements for successful viral infections in relevant natural conditions. This is particularly true in the context of phage therapy. Here, we highlight the parameters affecting phage replication in both in vitro and in vivo environments, focusing, in particular, on the mammalian digestive tract. We propose avenues for increasing the knowledge-guided implementation of phages as therapeutic tools. Keywords: virus–host interactions; bacteriophage efficacy; gastrointestinal tract; phage therapy 1. Introduction With the alarming worldwide increase in the prevalence of multidrug-resistant bacteria, phage therapy—the use of phages to target pathogenic bacteria [1]—has recently returned to the spotlight in the USA and Europe, although it had never fallen out of favour in countries such as Georgia [2]. -
Geographic Differences in Sexual Reassortment in Rna Phage
ORIGINAL ARTICLE doi:10.1111/j.1558-5646.2010.01040.x GEOGRAPHIC DIFFERENCES IN SEXUAL REASSORTMENT IN RNA PHAGE Kara J. O’Keefe,1,2 Olin K. Silander,3 Helen McCreery,4 Daniel M. Weinreich,5 Kevin M. Wright,6 Lin Chao,7 Scott V. Edwards,2 Susanna K. Remold,8 and Paul E. Turner1,9 1Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut 06520-8106 2Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138 3Core Program Computational and Systems Biology, Biozentrum, University of Basel, Basel, Switzerland 4Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 5Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island 02912 6Department of Biology, Duke University, Durham, North Carolina 27708 7Section of Ecology, Evolution and Behavior, University of California, San Diego, La Jolla, California 92093 8Department of Biology, University of Louisville, Louisville, Kentucky 40292 9E-mail: [email protected] Received November 5, 2008 Accepted April 20, 2010 The genetic structure of natural bacteriophage populations is poorly understood. Recent metagenomic studies suggest that phage biogeography is characterized by frequent migration. Using virus samples mostly isolated in Southern California, we recently showed that very little population structure exists in segmented RNA phage of the Cystoviridae family due to frequent segment reassortment (sexual genetic mixis) between unrelated virus individuals. Here we use a larger genetic dataset to examine the structure of Cystoviridae phage isolated from three geographic locations in Southern New England. We document extensive natural variation in the physical sizes of RNA genome segments for these viruses. -
WL Brewery Contaminates Instructions Highres
WHITE LABS ® TEST KITS BREWERY CONTAMINANTS DETECTION SAMPLE KIT PLEASE READ ALL PROCEDURAL INSTRUCTIONS THOROUGHLY BEFORE STARTING THE TEST. YOUR KIT INCLUDES: • (5) 15mL sterile culture tubes with rack • (10) 15mL sterile culture tubes with 9mL sterile water (for dilutions) • (1) 2oz 70% isopropanol solution • (1) 90mL Hsu’s Lactobacillus and Pediococcus (HLP) Media (keep refrigerated) • (6) Lin’s Cupric Sulfate Media (LCSM) plates (please keep plates stored media side up in refrigerator until 1 hour before use) • (6) Schwartz Differential Media (SDA) plates (please keep plates stored media side up in refrigerator until 1 hour before use) • (10) sterile cell spreaders • (2) 50mL vials sterile, distilled water • (2) pair laboratory gloves • (16) sterile transfer pipettes with graduations • Instructions OTHER SUGGESTED MATERIALS: (MUST BE PURCHASED SEPARATELY) • Alcohol lamp • Micropipettor and tips BACKGROUND: This kit provides three types of selective medias for the detection of aerobic bacteria (SDA medium), anaerobic bacteria (HLP medium), and wild yeast (LCSM medium). White round colonies will be present in HLP is Lactobacillus or Pediococcus is present. Teal or blue bacterial colonies will be present on SDA if bacterial contamination is present. LCSM provides the best means for a brewery to test for the presence of Non-Saccharomyces wild yeast. This medium inhibits, or markedly restricts, growth of brewery culture yeast while permitting growth of a variety of wild yeast using cupric sulfate. Some specific brewing yeast strains (typically Hefeweizen, Belgian strains) of brewer’s yeast show weak growth on LWYM. TAKING THE SAMPLE: How to take a sterile sample from a heat exchanger: • Collect wort from a valve after heat exchanger in sterile 50 ml tube (provided) How to take a fermentor/brite tank sample: • Use cotton swab to swab any sediment in the zwiggle/stop cock. -
Polypropylene
CELLTREAT® Scientific Products is dedicated to manufacturing unique, high-quality laboratory plastic consumables at significant savings compared to alternative brands. User-friendly features are incorporated into the CELLTREAT product line to improve research efficiency with easier handling and outstanding performance. We provide high levels of personalized service and regularly challenge everything we do to improve and exceed customer expectations. Experience the CELLTREAT difference. CELLTREAT Table of Contents Accessories (Bag Cutter & Timer) .............................. 9 Flasks, Erlenmeyer - PETG ......................................... 43 Beakers ...................................................................... 9 Flasks, Erlenmeyer & Fernbach - Polycarbonate ....... 42 Bio-reaction Tubes .................................................... 19 Flasks, Non-Treated Suspension Culture ................... 29 Vent Control Labels .......................................... 19 Flasks, Tissue Culture Treated ................................... 28 Bottles, Centrifuge .................................................. 21 Flasks, Caps Only ....................................................... 29 Bottles, Media ........................................................... 44 Glass Fiber Filter Disks .............................................. 45 Bottles, Roller ........................................................... 41 Lab Grab Multi-Use Extension Grabber .................... 37 Bottles, Solution ..................................................... -
CELLTREAT Cell and Tissue Culture Labware
Table of Contents Table of Contents Tissue and Suspension Culture Flasks .................................................. 1 Flask Caps and Cell Strainers ............................................................... 2 Tissue Culture Dishes ............................................................................. 3 Multiwell Plates, Treated and Non-Treated .....................................4-5 Chambered Cell Culture Slides ........................................................... 6 Bio-reaction Tubes .............................................................................6-7 Fernbach and Erlenmeyer Culture Flasks ........................................... 8 Roller Bottles and Square Media Bottles ............................................ 9 Cell Scrapers and Lifters ..................................................................... 10 Vacuum Filter Systems ........................................................................ 11 Solution Bottles .................................................................................... 11 Filter Adapters & Centrifuge Tube Filters .......................................... 12 Syringe Filters ........................................................................................ 13 Petri-Dishes ........................................................................................... 14 Inoculating Loops, Needles and Cell Spreaders ............................. 15 Pipets and Reagent Reservoirs .....................................................16-21 Centrifuge Tubes -
Insights Into the Dynamics Between Viruses and Their Hosts in a Hot Spring Microbial Mat
The ISME Journal (2020) 14:2527–2541 https://doi.org/10.1038/s41396-020-0705-4 ARTICLE Insights into the dynamics between viruses and their hosts in a hot spring microbial mat 1,2,11 1,2 1,2 1,2 1,2 Jessica K. Jarett ● Mária Džunková ● Frederik Schulz ● Simon Roux ● David Paez-Espino ● 1,2 1,2 1,2 3 4 Emiley Eloe-Fadrosh ● Sean P. Jungbluth ● Natalia Ivanova ● John R. Spear ● Stephanie A. Carr ● 5 6 7 8,9 1,2 Christopher B. Trivedi ● Frank A. Corsetti ● Hope A. Johnson ● Eric Becraft ● Nikos Kyrpides ● 9 1,2,10 Ramunas Stepanauskas ● Tanja Woyke Received: 13 January 2020 / Revised: 3 June 2020 / Accepted: 11 June 2020 / Published online: 13 July 2020 © The Author(s) 2020. This article is published with open access Abstract Our current knowledge of host–virus interactions in biofilms is limited to computational predictions based on laboratory experiments with a small number of cultured bacteria. However, natural biofilms are diverse and chiefly composed of uncultured bacteria and archaea with no viral infection patterns and lifestyle predictions described to date. Herein, we predict the first DNA sequence-based host–virus interactions in a natural biofilm. Using single-cell genomics and metagenomics – 1234567890();,: 1234567890();,: applied to a hot spring mat of the Cone Pool in Mono County, California, we provide insights into virus host range, lifestyle and distribution across different mat layers. Thirty-four out of 130 single cells contained at least one viral contig (26%), which, together with the metagenome-assembled genomes, resulted in detection of 59 viruses linked to 34 host species. -
Rapid Detection of Enterohaemorrhagic E.Coli Using
Review Article Clinician’s corner Images in Medicine Experimental Research Case Report Miscellaneous Letter to Editor DOI: 10.7860/JCDR/2018/36748.12251 Original Article Postgraduate Education Rapid Detection of Enterohaemorrhagic E.coli Case Series Using Phage-Based Bioluminescent Assay Microbiology Section Microbiology Short Communication SABAH AA JASSIM1, RAND R HAFIDH2, ZAHRAA Q ALI3, AHMED S ABDULAMIR4 ABSTRACT Results: AKBA showed positive detection of E.coli bacteria Introduction: There is a need for a reliable, time-saving, and at 103 CFU in just 20 minutes. The phage-based detection specific detection assay for coliforms, environmental E. coli, was highly specific at strain level of E.coli. The sensitivity and and Enterobacteriaceae worldwide. specificity of AKBA was 74% and 78%, respectively. Aim: To innovate a new principle of phage-based rapid diagnostic Conclusion: A rapid and strain-specific diagnostic test was test for detecting E. coli bacteria in short time and low titer. prepared for E.coli by using coliphages. The significance and impact of the study shows that it might be feasible to formulate Materials and Methods: A phage mixture of 200 E. coli specific a phage-based assay against any Gram negative or positive phages, including 22 specific for Enterohaemorrhagic E.coli bacteria using the same approaches of the current AKBA assay (EHEC), were used in a new detection platform, a phage-based with slight modifications. Adenylate Kinase Bioluminescence Assay (AKBA). Ten EHEC E. coli and 30 universal E.coli isolates were used for AKBA assay. Keywords: Adenylate kinase, Bacteriophage, Bioluminescence, Rapid diagnostic tests INTRODUCTION Media E. coli detection is considered more specific than the detection of Bacterial dilutions from 18 hour Luria Broth (LB) cultures grown at fecal coliforms in water quality testing [1]. -
Mb352 General Microbiology Laboratory 2021
MB352 GENERAL MICROBIOLOGY LABORATORY 2021 Alice Lee North Carolina State University North Carolina State University MB352 General Microbiology Laboratory 2021 (Lee) This text is disseminated via the Open Education Resource (OER) LibreTexts Project (https://LibreTexts.org) and like the hundreds of other texts available within this powerful platform, it freely available for reading, printing and "consuming." Most, but not all, pages in the library have licenses that may allow individuals to make changes, save, and print this book. Carefully consult the applicable license(s) before pursuing such effects. Instructors can adopt existing LibreTexts texts or Remix them to quickly build course-specific resources to meet the needs of their students. Unlike traditional textbooks, LibreTexts’ web based origins allow powerful integration of advanced features and new technologies to support learning. The LibreTexts mission is to unite students, faculty and scholars in a cooperative effort to develop an easy-to-use online platform for the construction, customization, and dissemination of OER content to reduce the burdens of unreasonable textbook costs to our students and society. The LibreTexts project is a multi-institutional collaborative venture to develop the next generation of open-access texts to improve postsecondary education at all levels of higher learning by developing an Open Access Resource environment. The project currently consists of 13 independently operating and interconnected libraries that are constantly being optimized by students, faculty, and outside experts to supplant conventional paper-based books. These free textbook alternatives are organized within a central environment that is both vertically (from advance to basic level) and horizontally (across different fields) integrated.