Insights Into the Dynamics Between Viruses and Their Hosts in a Hot Spring Microbial Mat
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Shedding Light on Microbial Dark Matter with a Universal Language
bioRxiv preprint doi: https://doi.org/10.1101/2020.12.23.424215; this version posted December 26, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 Shedding Light on Microbial Dark Matter with A 2 Universal Language of Life 1,* 2 3 2,* 3 Hoarfrost A , Aptekmann, A , Farfañuk, G , Bromberg Y 4 1 Department of Marine and Coastal Sciences, Rutgers University, 71 Dudley Road, New Brunswick, NJ 08873, USA 5 2 Department of Biochemistry and Microbiology, 76 Lipman Dr, Rutgers University, New Brunswick, NJ 08901, USA 6 3 Department of Biological Chemistry, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina 7 8 * Corresponding author: [email protected]; [email protected] 9 Running Title: LookingGlass: a universal language of life 10 11 Abstract 12 The majority of microbial genomes have yet to be cultured, and most proteins 13 predicted from microbial genomes or sequenced from the environment cannot be 14 functionally annotated. As a result, current computational approaches to describe 15 microbial systems rely on incomplete reference databases that cannot adequately 16 capture the full functional diversity of the microbial tree of life, limiting our ability to 17 model high-level features of biological sequences. The scientific community needs a 18 means to capture the functionally and evolutionarily relevant features underlying 19 biology, independent of our incomplete reference databases. Such a model can form 20 the basis for transfer learning tasks, enabling downstream applications in 21 environmental microbiology, medicine, and bioengineering. -
First Description of a Temperate Bacteriophage (Vb Fhim KIRK) of Francisella Hispaniensis Strain 3523
viruses Article First Description of a Temperate Bacteriophage (vB_FhiM_KIRK) of Francisella hispaniensis Strain 3523 Kristin Köppen 1,†, Grisna I. Prensa 1,†, Kerstin Rydzewski 1, Hana Tlapák 1, Gudrun Holland 2 and Klaus Heuner 1,* 1 Centre for Biological Threats and Special Pathogens, Cellular Interactions of Bacterial Pathogens, ZBS 2, Robert Koch Institute, 13353 Berlin, Germany; [email protected] (K.K.); [email protected] (G.I.P.); [email protected] (K.R.); [email protected] (H.T.) 2 Centre for Biological Threats and Special Pathogens, Advanced Light and Electron Microscopy, ZBS 4, Robert Koch Institute, D-13353 Berlin, Germany; [email protected] * Correspondence: [email protected]; Tel.: +49-30-18754-2226 † Both authors contributed equally to this work. Abstract: Here we present the characterization of a Francisella bacteriophage (vB_FhiM_KIRK) includ- ing the morphology, the genome sequence and the induction of the prophage. The prophage sequence (FhaGI-1) has previously been identified in F. hispaniensis strain 3523. UV radiation induced the prophage to assemble phage particles consisting of an icosahedral head (~52 nm in diameter), a tail of up to 97 nm in length and a mean width of 9 nm. The double stranded genome of vB_FhiM_KIRK contains 51 open reading frames and is 34,259 bp in length. The genotypic and phylogenetic analysis indicated that this phage seems to belong to the Myoviridae family of bacteriophages. Under the Citation: Köppen, K.; Prensa, G.I.; conditions tested here, host cell (Francisella hispaniensis 3523) lysis activity of KIRK was very low, and Rydzewski, K.; Tlapák, H.; Holland, the phage particles seem to be defective for infecting new bacterial cells. -
Actinobacterial Rare Biospheres and Dark Matter Revealed in Habitats of the Chilean Atacama Desert
Idris H, Goodfellow M, Sanderson R, Asenjo JA, Bull AT. Actinobacterial Rare Biospheres and Dark Matter Revealed in Habitats of the Chilean Atacama Desert. Scientific Reports 2017, 7(1), 8373. Copyright: © The Author(s) 2017. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. DOI link to article: https://doi.org/10.1038/s41598-017-08937-4 Date deposited: 18/10/2017 This work is licensed under a Creative Commons Attribution 4.0 International License Newcastle University ePrints - eprint.ncl.ac.uk www.nature.com/scientificreports OPEN Actinobacterial Rare Biospheres and Dark Matter Revealed in Habitats of the Chilean Atacama Received: 13 April 2017 Accepted: 4 July 2017 Desert Published: xx xx xxxx Hamidah Idris1, Michael Goodfellow1, Roy Sanderson1, Juan A. Asenjo2 & Alan T. Bull3 The Atacama Desert is the most extreme non-polar biome on Earth, the core region of which is considered to represent the dry limit for life and to be an analogue for Martian soils. -
The Diversity of Bacterial Lifestyles Hampers Bacteriophage Tenacity
viruses Review The Diversity of Bacterial Lifestyles Hampers Bacteriophage Tenacity Marta Lourenço 1,2, Luisa De Sordi 1 and Laurent Debarbieux 1,* ID 1 Department of Microbiology, Institut Pasteur, F-75015 Paris, France; [email protected] (M.L.); [email protected] (L.D.S.) 2 Collège Doctoral, Sorbonne Université, F-75005 Paris, France * Correspondence: [email protected] Received: 18 May 2018; Accepted: 11 June 2018; Published: 15 June 2018 Abstract: Phage therapy is based on a simple concept: the use of a virus (bacteriophage) that is capable of killing specific pathogenic bacteria to treat bacterial infections. Since the pioneering work of Félix d’Herelle, bacteriophages (phages) isolated in vitro have been shown to be of therapeutic value. Over decades of study, a large number of rather complex mechanisms that are used by phages to hijack bacterial resources and to produce their progeny have been deciphered. While these mechanisms have been identified and have been studied under optimal conditions in vitro, much less is known about the requirements for successful viral infections in relevant natural conditions. This is particularly true in the context of phage therapy. Here, we highlight the parameters affecting phage replication in both in vitro and in vivo environments, focusing, in particular, on the mammalian digestive tract. We propose avenues for increasing the knowledge-guided implementation of phages as therapeutic tools. Keywords: virus–host interactions; bacteriophage efficacy; gastrointestinal tract; phage therapy 1. Introduction With the alarming worldwide increase in the prevalence of multidrug-resistant bacteria, phage therapy—the use of phages to target pathogenic bacteria [1]—has recently returned to the spotlight in the USA and Europe, although it had never fallen out of favour in countries such as Georgia [2]. -
UC Berkeley Electronic Theses and Dissertations
UC Berkeley UC Berkeley Electronic Theses and Dissertations Title Interactions of Microbes in Communities Permalink https://escholarship.org/uc/item/2hg5h7k6 Author Sczesnak, Andrew Publication Date 2018 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California Interactions of Microbes in Communities By Andrew Sczesnak A dissertation submitted in partial satisfaction of the requirements for the degree of Joint Doctor of Philosophy with University of California, San Francisco in Bioengineering in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Adam P. Arkin, Chair Professor Matthew Traxler Professor Michael Fischbach Fall 2018 Abstract Interactions of Microbes in Communities By Andrew Sczesnak Joint Doctor of Philosophy with University of California, San Francisco in Bioengineering University of California, Berkeley Professor Adam P. Arkin, Chair Groups of microorganisms sharing an environment (microbial communities) are ubiquitous in nature. Microbial communities provide essential ecosystem services to other life on Earth by e.g., participating in global biogeochemical processes or interacting with a host’s immune system. Such microbes compete for scarce resources, modify an environment for their own purposes, actively war, and occasionally cooperate. Though numerous studies have surveyed the diversity of microbial life in different environments, few have determined the ways in which members of microbial communities interact with one another. Understanding the ways and means by which microbes interact is essential if we are to understand how microbial communities form, persist, and change over time. Knowledge of these processes will allow us to rationally design microbial communities to perform useful functions and predict how our actions might shift the balance of microbes in a community, and thus affect its function. -
Geographic Differences in Sexual Reassortment in Rna Phage
ORIGINAL ARTICLE doi:10.1111/j.1558-5646.2010.01040.x GEOGRAPHIC DIFFERENCES IN SEXUAL REASSORTMENT IN RNA PHAGE Kara J. O’Keefe,1,2 Olin K. Silander,3 Helen McCreery,4 Daniel M. Weinreich,5 Kevin M. Wright,6 Lin Chao,7 Scott V. Edwards,2 Susanna K. Remold,8 and Paul E. Turner1,9 1Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut 06520-8106 2Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138 3Core Program Computational and Systems Biology, Biozentrum, University of Basel, Basel, Switzerland 4Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 5Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island 02912 6Department of Biology, Duke University, Durham, North Carolina 27708 7Section of Ecology, Evolution and Behavior, University of California, San Diego, La Jolla, California 92093 8Department of Biology, University of Louisville, Louisville, Kentucky 40292 9E-mail: [email protected] Received November 5, 2008 Accepted April 20, 2010 The genetic structure of natural bacteriophage populations is poorly understood. Recent metagenomic studies suggest that phage biogeography is characterized by frequent migration. Using virus samples mostly isolated in Southern California, we recently showed that very little population structure exists in segmented RNA phage of the Cystoviridae family due to frequent segment reassortment (sexual genetic mixis) between unrelated virus individuals. Here we use a larger genetic dataset to examine the structure of Cystoviridae phage isolated from three geographic locations in Southern New England. We document extensive natural variation in the physical sizes of RNA genome segments for these viruses. -
Aquatic Microbial Ecology 79:1
Vol. 79: 1–12, 2017 AQUATIC MICROBIAL ECOLOGY Published online March 28 https://doi.org/10.3354/ame01811 Aquat Microb Ecol Contribution to AME Special 6 ‘SAME 14: progress and perspectives in aquatic microbial ecology’ OPENPEN ACCESSCCESS REVIEW Exploring the oceanic microeukaryotic interactome with metaomics approaches Anders K. Krabberød1, Marit F. M. Bjorbækmo1, Kamran Shalchian-Tabrizi1, Ramiro Logares2,1,* 1University of Oslo, Department of Biosciences, Section for Genetics and Evolutionary Biology (Evogene), Blindernv. 31, 0316 Oslo, Norway 2Institute of Marine Sciences (ICM), CSIC, Passeig Marítim de la Barceloneta, Barcelona, Spain ABSTRACT: Biological communities are systems composed of many interacting parts (species, populations or single cells) that in combination constitute the functional basis of the biosphere. Animal and plant ecologists have advanced substantially our understanding of ecological inter- actions. In contrast, our knowledge of ecological interaction in microbes is still rudimentary. This represents a major knowledge gap, as microbes are key players in almost all ecosystems, particu- larly in the oceans. Several studies still pool together widely different marine microbes into broad functional categories (e.g. grazers) and therefore overlook fine-grained species/population-spe- cific interactions. Increasing our understanding of ecological interactions is particularly needed for oceanic microeukaryotes, which include a large diversity of poorly understood symbiotic rela- tionships that range from mutualistic to parasitic. The reason for the current state of affairs is that determining ecological interactions between microbes has proven to be highly challenging. How- ever, recent technological developments in genomics and transcriptomics (metaomics for short), coupled with microfluidics and high-performance computing are making it increasingly feasible to determine ecological interactions at the microscale. -
Detection of Bacteriophage Infection Using Absorbance
DETECTION OF BACTERIOPHAGE INFECTION USING ABSORBANCE, BIOLUMINESCENCE, AND FLUORESCENCE TESTS Thesis Submitted to The School of Engineering of the UNIVERSITY OF DAYTON In Partial Fulfillment of the Requirements for The Degree Master of Science in Civil Engineering By Lindsey Marie Staley UNIVERSITY OF DAYTON Dayton, Ohio May, 2011 DETECTION OF BACTERIOPHAGE INFECTION USING ABSORBANCE, BIOLUMINESCENCE, AND FLUORESCENCE TESTS Name: Staley, Lindsey Marie APPROVED BY: ___________________________ __________________________ Denise Taylor, Ph. D., P.E. Kenya Crosson, Ph.D. Advisory Committee Chairman Committee Member Assistant Professor Assistant Professor Department of Civil and Department of Civil and Environmental Engineering and Environmental Engineering and Engineering Mechanics Engineering Mechanics ____________________________ Deogratias Eustace, Ph.D. Committee Member Assistant Professor Department of Civil and Environmental Engineering and Engineering Mechanics ___________________________ __________________________ John G. Weber, Ph.D. Tony E. Saliba, Ph.D. Associate Dean Wilke Distinguished Professor & School of Engineering Dean School of Engineering ii ABSTRACT DETECTION OF BACTERIOPHAGE INFECTION USING ABSORBANCE, BIOLUMINESCENCE, AND FLUORESCENCE TESTS Name: Staley, Lindsey Marie University of Dayton Advisor: Dr. Denise Taylor The activated sludge treatment process is a common method employed to treat wastewater. Normal operation of this process results in a floc-forming bacterial mixture, which settles rapidly. However, filamentous bacteria can cause sludge bulking, which interferes with the compaction and settling of flocs. A common method to control sludge bulking is adding a chemical such as chlorine to the activated sludge basin, which kills not only the problematic bacteria, but also the essential floc-forming bacteria. Bacteriophages (phages) are viruses that only infect bacteria. It is hypothesized that phages of filamentous bacteria can be added to the activated sludge basin to control sludge bulking, rather than a chemical. -
Rapid Detection of Enterohaemorrhagic E.Coli Using
Review Article Clinician’s corner Images in Medicine Experimental Research Case Report Miscellaneous Letter to Editor DOI: 10.7860/JCDR/2018/36748.12251 Original Article Postgraduate Education Rapid Detection of Enterohaemorrhagic E.coli Case Series Using Phage-Based Bioluminescent Assay Microbiology Section Microbiology Short Communication SABAH AA JASSIM1, RAND R HAFIDH2, ZAHRAA Q ALI3, AHMED S ABDULAMIR4 ABSTRACT Results: AKBA showed positive detection of E.coli bacteria Introduction: There is a need for a reliable, time-saving, and at 103 CFU in just 20 minutes. The phage-based detection specific detection assay for coliforms, environmental E. coli, was highly specific at strain level of E.coli. The sensitivity and and Enterobacteriaceae worldwide. specificity of AKBA was 74% and 78%, respectively. Aim: To innovate a new principle of phage-based rapid diagnostic Conclusion: A rapid and strain-specific diagnostic test was test for detecting E. coli bacteria in short time and low titer. prepared for E.coli by using coliphages. The significance and impact of the study shows that it might be feasible to formulate Materials and Methods: A phage mixture of 200 E. coli specific a phage-based assay against any Gram negative or positive phages, including 22 specific for Enterohaemorrhagic E.coli bacteria using the same approaches of the current AKBA assay (EHEC), were used in a new detection platform, a phage-based with slight modifications. Adenylate Kinase Bioluminescence Assay (AKBA). Ten EHEC E. coli and 30 universal E.coli isolates were used for AKBA assay. Keywords: Adenylate kinase, Bacteriophage, Bioluminescence, Rapid diagnostic tests INTRODUCTION Media E. coli detection is considered more specific than the detection of Bacterial dilutions from 18 hour Luria Broth (LB) cultures grown at fecal coliforms in water quality testing [1]. -
GSC Workshop 10 Grant Finances Monthly Teleconference Calls
Standards in Genomic Sciences (2010) 3:225-231 DOI:10.4056/sigs.1423520 Meeting Report from the Genomic Standards Consortium (GSC) Workshop 10 Elizabeth Glass1, Folker Meyer1,2, Jack A Gilbert1,3, Dawn Field4, Sarah Hunter5, Renzo Kottmann6, Nikos Kyrpides7, Susanna Sansone8, Lynn Schriml9, Peter Sterk10, Owen White9 and John Wooley11 1 Argonne National Laboratory, Argonne, IL USA 2 Computation Institute, University of Chicago, Chicago, IL USA 3 Department of Ecology and Evolution, University of Chicago, Chicago, IL USA, 4 Centre for Ecology & Hydrology, Oxfordshire, UK 5 European Molecular Biology Laboratory (EMBL) Outstation, European Bioinformatics Insti- tute (EBI), Hinxton, Cambridge UK 6 Microbial Genomics Group, Max Planck Institute for Marine Microbiology and Jacobs University Bremen, Bremen, Germany 7 DOE Joint Genome Institute, Walnut Creek, CA, USA 8 University of Oxford, Oxford e-Research Centre, Oxford, UK 9 Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD USA 10 Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge UK 11 University of California San Diego, La Jolla, CA USA *Corresponding Author: Dawn Field This report summarizes the proceedings of the 10th workshop of the Genomic Standards Consortium (GSC), held at Argonne National Laboratory, IL, USA. It was the second GSC workshop to have open registration and attracted over 60 participants who worked together to progress the full range of projects ongoing within the GSC. Overall, the primary focus of the workshop was on advancing the M5 platform for next-generation collaborative computa- tional infrastructures. Other key outcomes included the formation of a GSC working group focused on MIGS/MIMS/MIENS compliance using the ISA software suite and the formal launch of the GSC Developer Working Group. -
The Minimum Information About a Genome Sequence (MIGS) Specification
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln US Department of Energy Publications U.S. Department of Energy 2008 The minimum information about a genome sequence (MIGS) specification Dawn Field Natural Environmental Research Council Centre for Ecology and Hydrology, [email protected] George Garrity Michigan State University Tanya Gray Natural Environmental Research Council Centre for Ecology and Hydrology Norman Morrison FUnivollowersity this of and Manchester additional works at: https://digitalcommons.unl.edu/usdoepub Jer emyPart ofSelengut the Bior esource and Agricultural Engineering Commons J. Craig Venter Institute SeeField, next Dawn; page Garrity for additional, George; Grauthorsay, Tany a; Morrison, Norman; Selengut, Jeremy; Sterk, Peter; Tatusova, Tatiana; Thomson, Nicholas; Allen, Michael J.; Angiuoli, Samuel V.; Ashburner, Michael; Axelrod, Nelson; Baldauf, Sandra; Ballard, Stuart; Boore, Jeffrey; Cochrane, Guy; Cole, James; Dawyndt, Peter; De Vos, Paul; dePamphilis, Claude; Edwards, Robert; Faruque, Nadeem; Feldman, Robert; Gilbert, Jack; Gilna, Paul; Glöckner, Frank Oliver; Goldstein, Philip; Guralnick, Robert; Haft, Dan; Hancock, David; Hermjakob, Henning; Hertz-Fowler, Christiane; Hugenholtz, Phil; Joint, Ian; Kagan, Leonid; Kane, Matthew; Kennedy, Jessie; Kowalchuk, George; Kottmann, Renzo; Kolker, Eugene; Kravitz, Saul; Kyrpides, Nikos; Leebens-Mack, Jim; Lewis, Suzanna E.; Li, Kelvin; Lister, Allyson L.; Lord, Phillip; Maltsev, Natalia; Markowitz, Victor; Martiny, Jennifer; Methe, Barbara; Mizrachi, Ilene; Moxon, Richard; Nelson, Karen; Parkhill, Julian; Proctor, Lita; White, Owen; Sansone, Susanna-Assunta; Spiers, Andrew; Stevens, Robert; Swift, Paul; Taylor, Chris; Tateno, Yoshio; Tett, Adrian; Turner, Sarah; Ussery, David; Vaughan, Bob; Ward, Naomi; Whetzel, Trish; San Gil, Ingio; Wilson, Gareth; and Wipat, Anil, "The minimum information about a genome sequence (MIGS) specification" (2008). US Department of Energy Publications. -
Activated Sludge Microbial Community and Treatment Performance of Wastewater Treatment Plants in Industrial and Municipal Zones
International Journal of Environmental Research and Public Health Article Activated Sludge Microbial Community and Treatment Performance of Wastewater Treatment Plants in Industrial and Municipal Zones Yongkui Yang 1,2 , Longfei Wang 1, Feng Xiang 1, Lin Zhao 1,2 and Zhi Qiao 1,2,* 1 School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China; [email protected] (Y.Y.); [email protected] (L.W.); [email protected] (F.X.); [email protected] (L.Z.) 2 China-Singapore Joint Center for Sustainable Water Management, Tianjin University, Tianjin 300350, China * Correspondence: [email protected]; Tel.: +86-22-87402072 Received: 14 November 2019; Accepted: 7 January 2020; Published: 9 January 2020 Abstract: Controlling wastewater pollution from centralized industrial zones is important for reducing overall water pollution. Microbial community structure and diversity can adversely affect wastewater treatment plant (WWTP) performance and stability. Therefore, we studied microbial structure, diversity, and metabolic functions in WWTPs that treat industrial or municipal wastewater. Sludge microbial community diversity and richness were the lowest for the industrial WWTPs, indicating that industrial influents inhibited bacterial growth. The sludge of industrial WWTP had low Nitrospira populations, indicating that influent composition affected nitrification and denitrification. The sludge of industrial WWTPs had high metabolic functions associated with xenobiotic and amino acid metabolism. Furthermore, bacterial richness was positively correlated with conventional pollutants (e.g., carbon, nitrogen, and phosphorus), but negatively correlated with total dissolved solids. This study was expected to provide a more comprehensive understanding of activated sludge microbial communities in full-scale industrial and municipal WWTPs. Keywords: activated sludge; industrial zone; metabolic function; microbial community; wastewater treatment 1.