Scaling Approach to Microbial Interactions in Soil Across Three Bioenergy Cropping Systems Racheal Nichole Upton(Erb) Iowa State University

Total Page:16

File Type:pdf, Size:1020Kb

Scaling Approach to Microbial Interactions in Soil Across Three Bioenergy Cropping Systems Racheal Nichole Upton(Erb) Iowa State University Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2017 Scaling approach to microbial interactions in soil across three bioenergy cropping systems Racheal Nichole Upton(Erb) Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Microbiology Commons Recommended Citation Upton(Erb), Racheal Nichole, "Scaling approach to microbial interactions in soil across three bioenergy cropping systems" (2017). Graduate Theses and Dissertations. 16295. https://lib.dr.iastate.edu/etd/16295 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Scaling approach to microbial interactions in soil across three bioenergy cropping systems by Racheal Nichole Upton (Racheal Nichole Erb) A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Microbiology Program of Study Committee: Kirsten Hofmockel, Co-Major Professor Brian Wilsey, Co-Major Professor Laura Jarboe Leonor Leandro Torey Looft The student author, whose presentation of the scholarship herein was approved by the program of study committee, is solely responsible for the content of this dissertation. The Graduate College will ensure this dissertation is globally accessible and will not permit alterations after a degree is conferred. Iowa State University Ames, Iowa 2017 ii TABLE OF CONTENTS Page LIST OF FIGURES ..……………………………………………………………………. iv LIST OF TABLES ………………………………………………………………………. vi ACKNOWLEDGEMENTS ……………………………………………………………… viii ABSTRACT……………………………………………………………………………….. x CHAPTER 1 GENERAL INTRODUCTION ……………………………………………. 1 CHAPTER 2 BELOWGROUND RESPONSE OF PRAIRIE RESTORATION AND RESILIENCY TO DROUGHT…………………………………………. 8 Abstract ..…………………….…………………………………………………… 8 Introduction ...……………………………………………………………………….. 9 Methods ……………….………………………………………………………….. 14 Results ….……………………………………………………………………….. 20 Discussion ……………….………………………………………………………….. 26 References …………………………….…………………………………………….. 32 Tables ……………………………….………………………………………….. 42 Figures .………………………………………………………………………….. 53 Supplemental……………………...…………………………………………………. 58 CHAPTER 3 LOCAL INTERACTIONS OF FUNGAL COMMUNITIES AND SPECIFIC PLANT SPECIES IN IOWAN PRAIRIES……...…………. 59 Abstract ..………………………………………….……………………………… 59 Introduction …………………………………...…………………………………….. 60 Methods …….…………………………………………………………………….. 65 Results ………………………….……………………………………………….. 72 Discussion ………………………………………………….……………………….. 74 References ………………….……………………………………………………….. 81 Tables……………………………………………………………..………………….. 90 Figures ……………………….………………………………………………….. 95 Supplemental…………………………………………………………………………. 99 iii CHAPTER 4 SPATIO-TEMPORAL MICROBIAL COMMUNITY DYNAMICS WITHIN SOIL AGGREGATES …………………………………….. 100 Abstract ..……………………………………………….…………………...…. 100 Introduction ……………………………………………………………………….. 101 Methods ……………………………………..………………………………….. 105 Results ……..………………………………………………………………….. 109 Discussion ……………………………..………………………………………….. 112 References ……………………………………..………………………………….. 117 Figures ………………………………………..……………………………….. 127 Tables ……………………………………..………………………………….. 134 Supplemental ……………………………………………………..……………….. 142 CHAPTER 5 FLUORESCENTLY LABELED CELLULOSE NANOCRYSTALS PROVIDE THE MEANS TO ISOLATE LIVE CELLULOSE DEGRADING CELLS FROM A COMPLEX COMMUNITY ….….. 150 Abstract ..……………………………..………………………………………… 150 Introduction ……………………………………………………………………….. 150 Methods …………………………………………..…………………………….. 152 Results …………..…………………………………………………………….. 158 Discussion ………………………………………..……………………………….. 159 References ……………………………………..………………………………….. 161 Tables ……..………………………………………………………………….. 165 Figures ……………………………..………………………………………….. 166 Supplemental ……………………..………………………………………….. 169 CHAPTER 6 GENERAL CONCLUSIONS ………………………………………… 170 iv LIST OF FIGURES Page Figure 2.1 : Relative mean abundance (%) of fungal classes by cropping system and sampling year……………………………………………………………… 53 Figure 2.2 : PCoA ordinations on Bray-Curtis Dissimilarity of fungal community sequence data with T-normal ordination ellipses…………………………. 54 Figure 2.3 : PCoA ordinations on Bray-Curtis Dissimilarity of bacterial community sequence data with T-normal ordination ellipses…………………………. 55 Figure 2.4 : Mean fungal community richness, evenness, and Shannon’s Diversity Index across cropping systems and sampling year………………………………. 56 Figure 2.5 : Mean bacterial community richness, evenness, and Shannon’s Diversity Index across cropping systems and sampling year…………..……………. 57 Figure 3.1 : Relative mean abundance (%) of fungal classes by cropping system……...… 95 Figure 3.2 : Mean % cover of legumes and fungal richness...............…………………….. 96 Figure 3.3 : PCoA ordinations on Bray-Curtis Dissimilarity of fungal community sequence by abundance of legumes…………………….…………………. 97 Figure 3.4 : Mean fungal community richness by targeted plant functional group……….. 98 Figure 4.1 : PCoA ordinations on Bray-Curtis Dissimilarity of fungal community sequence, by soil aggregate fraction and ecosystem…….………………... 127 Figure 4.2 : PCoA ordinations on Bray-Curtis Dissimilarity of bacterial community sequence, by soil aggregate fraction and ecosystem…….………..………. 128 Figure 4.3 : Mean fungal diversity measurements across soil aggregate fraction and sampling season…………………………………......……………………. 129 Figure 4.4 : Mean bacterial diversity measurements across soil aggregate fraction and sampling season………………………………………….……….………. 130 v Figure 4.5 : Mean fungal diversity measurements across ecosystem treatments………………………………………......……………………. 131 Figure 4.6 : Mean bacterial diversity measurements across ecosystem treatments………………………………………......……………………. 132 Figure 4.7 : Conceptual model of increases in diversity across our field site…………… 133 Figure 5.1 : Cumulative respiration over time………...…….…………………………... 166 Figure 5.2 : Optical density over time…………….…….………..……………………… 167 Figure 5.3 : Fluorescently labeled cells microscopic images, pre-sorting by FACS …… 168 Figure S5.1 : Methods overview of cellulose nancrystal incubation experiment........…...169 vi LIST OF TABLES Page Table 2.1 : Extracellular enzyme activity assay enzymes and substrates…………...……… 42 Table 2.2 : Results of main model effects on fungal and bacterial diversity measurements, abundant phyla, and potential extracellular enzyme activity………………. 43 Table 2.3 : Mean resiliency indices for bacterial and fungal richness and extracellular enzyme activity…………..…………...……………………………………. 45 Table 2.4 : Mean abundance of fungal phyla………………………………………………. 45 Table 2.5 : Indicator fungal families by cropping system and sampling year..…………….. 46 Table 2.6 : Mean abundance of bacterial phyla………………………..…………...………. 48 Table 2.7 : Indicator bacterial families by cropping system and sampling year……..…….. 50 Table 2.8 : Mean potential extracellular enzyme activity by cropping system and sampling year……………………………...……………………………….. 52 Table S2.1 : Environmental data from each sampling year..………………………………. 58 Table 3.1 : Plant functional group and plant species in study…………………………........ 90 Table 3.2 : Extracellular enzyme activity assay enzymes and substrate…………..……….. 92 Table 3.3 : Table of plant species only found in one of the prairie treatments…………….. 92 Table 3.4 : Indicator fungal families in the presence/absence of legumes………...……….. 93 Table 3.5 : Mean potential extracellular enzyme activity in targeted specific plant species/functional groups…………………………………………………... 94 Table S3.1 : Results of correlation test to determine inter-dependency of plant functional groups…………………………………………………………………..…... 99 Table 4.1 : Mean relative abundance of fungal phyla by soil aggregate fraction, ecosystem, and sampling season……….....................…………………….. 134 vii Table 4.2 : Mean relative abundance of bacterial phyla by soil aggregate fraction, ecosystem, and sampling season…………..….………..………………... 137 Table 4.3 : Results of main model effects (soil aggregate fraction, ecosystem treatment, sampling season, and sampling year) on fungal and bacterial diversity measurements…………………………....……………………. 141 Table S4.1 : Mean aggregate size distribution by ecosystem and sampling season and year…………………………..………………………….……….………. 142 Table S4.2 : Indicator fungal families by in the large marcoaggregate soil fraction by sampling season…..……………………………......……………………. 144 Table S4.3 : Indicator fungal families by in the small mircoaggregate soil fraction by sampling season…..……………………………......……………………. 145 Table S4.4 : Indicator bacterial families by in the large marcoaggregate soil fraction by sampling season…..……………………………......……………………. 146 Table S4.5 : Indicator bacterial families by in the small mircoaggregate soil fraction by sampling season…..……………………………......……………………. 148 Table 5.1 : Sorting event counts by rep for unlabeled and labeled events ..……………... 165 viii ACKNOWLEDGEMENTS I would like to thank my major professor, Kirsten Hofmockel, for all the support and cheerleading she has provided. Kirsten allowed me to explore a whole range of research topics and experiences that I would not have the opportunity to experience without her. I would also like to thank my committee, Brian Wilsey, Torey Looft, Leonor Leandro, and Laura Jarboe for their thoughtful insights
Recommended publications
  • Assemblage and Functioning of Bacterial Communities in Soil and Rhizosphere Issue Date: 2016-06-08
    Cover Page The handle http://hdl.handle.net/1887/40026 holds various files of this Leiden University dissertation. Author: Yan Y. Title: Assemblage and functioning of bacterial communities in soil and rhizosphere Issue Date: 2016-06-08 Assemblage and functioning of bacterial communities in soil and rhizosphere Yan Yan 闫 燕 503396-L-bw-Yan Assemblage and functioning of bacterial communities in soil and rhizosphere PhD thesis, Leiden University, The Netherlands. The research described in this thesis was performed at the Netherlands Institute of Ecology, NIOO-KNAW and at the Institute of Biology of Leiden University. 2016 闫燕 Yan Yan. No part of this thesis may be reoroduced or transmitted without prior written permission of the author. Cover (封面): Tree Roots (树根), Vincent van Gogh (梵⾼), 1890. Inspiration to rhizosphere. Lay-out by Yan Yan Printed by Ipskamp Printing ISBN: 978-94-028-0205-4 503396-L-bw-Yan Assemblage and functioning of bacterial communities in soil and rhizosphere Proefschrift ter verkrijging van de graad van Doctor aan de Universiteit Leiden, op gezag van Rector Magnificus prof.mr.C.J.J.M.Stolker, volgens besluit van het College voor Promoties te verdedigen op woensdag 8 juni 2016 klokke 16.15 uur door Yan Yan geboren te Shijiazhuang, Hebei, China in 1986 503396-L-bw-Yan Promotiecommissie Promotor: Prof. dr. J. A. van Veen Promotor: Prof. dr. P. G. L. Klinkhamer Co-promotor: Dr. E. E. Kuramae, Nederlands Instituut voor Ecologie-KNAW Overige leden Prof. dr. H.P.Spaink Prof. dr. G.A.Kowalchuk, Universiteit Utrecht Prof. dr. Jos Raaijmakers Prof.
    [Show full text]
  • Validation of the Asaim Framework and Its Workflows on HMP Mock Community Samples
    Validation of the ASaiM framework and its workflows on HMP mock community samples The ASaiM framework and its workflows have been tested and validated on two mock metagenomic data of an artificial community (with 22 known microbial strains). The datasets are available on EBI metagenomics database (project accession number: SRP004311). First we checked that the targeted abundances (based on number of PCR product) from both mock datasets were similar to the effective abundance (by mapping reads on reference genomes). Second, taxonomic and functional results produced by the ASaiM framework have been extensively analyzed and compared to expectations and to results obtained with the EBI metagenomics pipeline (S. Hunter et al. 2014). For these datasets, the ASaiM framework produces accurate and precise taxonomic assignations, different functional results (gene families, pathways, GO slim terms) and results combining taxonomic and functional information. Despite almost 1.4 million of raw metagenomic sequences, these analyses were executed in less than 6h on a commodity computer. Hence, the ASaiM framework and its workflows are proven to be relevant for the analysis of microbiota datasets. 1Data On EBI metagenomics database, two mock community samples for Human Microbiome Project (HMP) are available. Both samples contain a genomic mixture of 22 known microbial strains. Relative abundance of each strain has been targeted using the number of PCR product of their respective 16S sequences (Table 1). In first sample (SRR072232), the targeted 16S copies of the strains vary by up to four orders of magnitude between the strains (Table 1), whereas in second sample (SRR072233) the same 16S copy number is targeted for each strain (Table 1).
    [Show full text]
  • Inoculation with Mycorrhizal Fungi and Irrigation Management Shape the Bacterial and Fungal Communities and Networks in Vineyard Soils
    microorganisms Article Inoculation with Mycorrhizal Fungi and Irrigation Management Shape the Bacterial and Fungal Communities and Networks in Vineyard Soils Nazareth Torres † , Runze Yu and S. Kaan Kurtural * Department of Viticulture and Enology, University of California Davis, 1 Shields Avenue, Davis, CA 95616, USA; [email protected] (N.T.); [email protected] (R.Y.) * Correspondence: [email protected] † Current address: Advanced Fruit and Grape Growing Group, Public University of Navarra, 31006 Pamplona, Spain. Abstract: Vineyard-living microbiota affect grapevine health and adaptation to changing environ- ments and determine the biological quality of soils that strongly influence wine quality. However, their abundance and interactions may be affected by vineyard management. The present study was conducted to assess whether the vineyard soil microbiome was altered by the use of biostimulants (arbuscular mycorrhizal fungi (AMF) inoculation vs. non-inoculated) and/or irrigation management (fully irrigated vs. half irrigated). Bacterial and fungal communities in vineyard soils were shaped by both time course and soil management (i.e., the use of biostimulants and irrigation). Regarding alpha diversity, fungal communities were more responsive to treatments, whereas changes in beta diversity were mainly recorded in the bacterial communities. Edaphic factors rarely influence bacte- rial and fungal communities. Microbial network analyses suggested that the bacterial associations Citation: Torres, N.; Yu, R.; Kurtural, were weaker than the fungal ones under half irrigation and that the inoculation with AMF led to S.K. Inoculation with Mycorrhizal the increase in positive associations between vineyard-soil-living microbes. Altogether, the results Fungi and Irrigation Management highlight the need for more studies on the effect of management practices, especially the addition Shape the Bacterial and Fungal of AMF on cropping systems, to fully understand the factors that drive their variability, strengthen Communities and Networks in Vineyard Soils.
    [Show full text]
  • Successful Drug Discovery Informed by Actinobacterial Systematics
    Successful Drug Discovery Informed by Actinobacterial Systematics Verrucosispora HPLC-DAD analysis of culture filtrate Structures of Abyssomicins Biological activity T DAD1, 7.382 (196 mAU,Up2) of 002-0101.D V. maris AB-18-032 mAU CH3 CH3 T extract H3C H3C Antibacterial activity (MIC): S. leeuwenhoekii C34 maris AB-18-032 175 mAU DAD1 A, Sig=210,10 150 C DAD1 B, Sig=230,10 O O DAD1 C, Sig=260,20 125 7 7 500 Rt 7.4 min DAD1 D, Sig=280,20 O O O O Growth inhibition of Gram-positive bacteria DAD1 , Sig=310,20 100 Abyssomicins DAD1 F, Sig=360,40 C 75 DAD1 G, Sig=435,40 Staphylococcus aureus (MRSA) 4 µg/ml DAD1 H, Sig=500,40 50 400 O O 25 O O Staphylococcus aureus (iVRSA) 13 µg/ml 0 CH CH3 300 400 500 nm 3 DAD1, 7.446 (300 mAU,Dn1) of 002-0101.D 300 mAU Mode of action: C HO atrop-C HO 250 atrop-C CH3 CH3 CH3 CH3 200 H C H C H C inhibitior of pABA biosynthesis 200 Rt 7.5 min H3C 3 3 3 Proximicin A Proximicin 150 HO O HO O O O O O O O O O A 100 O covalent binding to Cys263 of PabB 100 N 50 O O HO O O Sea of Japan B O O N O O (4-amino-4-deoxychorismate synthase) by 0 CH CH3 CH3 CH3 3 300 400 500 nm HO HO HO HO Michael addition -289 m 0 B D G H 2 4 6 8 10 12 14 16 min Newcastle Michael Goodfellow, School of Biology, University Newcastle University, Newcastle upon Tyne Atacama Desert In This Talk I will Consider: • Actinobacteria as a key group in the search for new therapeutic drugs.
    [Show full text]
  • Microbial Community Composition During Degradation of Organic Matter
    TECHNISCHE UNIVERSITÄT MÜNCHEN Lehrstuhl für Bodenökologie Microbial community composition during degradation of organic matter Stefanie Elisabeth Wallisch Vollständiger Abdruck der von der Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt der Technischen Universität München zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigten Dissertation. Vorsitzender: Univ.-Prof. Dr. A. Göttlein Prüfer der Dissertation: 1. Hon.-Prof. Dr. M. Schloter 2. Univ.-Prof. Dr. S. Scherer Die Dissertation wurde am 14.04.2015 bei der Technischen Universität München eingereicht und durch die Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt am 03.08.2015 angenommen. Table of contents List of figures .................................................................................................................... iv List of tables ..................................................................................................................... vi Abbreviations .................................................................................................................. vii List of publications and contributions .............................................................................. viii Publications in peer-reviewed journals .................................................................................... viii My contributions to the publications ....................................................................................... viii Abstract
    [Show full text]
  • Diversity and Taxonomic Novelty of Actinobacteria Isolated from The
    Diversity and taxonomic novelty of Actinobacteria isolated from the Atacama Desert and their potential to produce antibiotics Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Christian-Albrechts-Universität zu Kiel Vorgelegt von Alvaro S. Villalobos Kiel 2018 Referent: Prof. Dr. Johannes F. Imhoff Korreferent: Prof. Dr. Ute Hentschel Humeida Tag der mündlichen Prüfung: Zum Druck genehmigt: 03.12.2018 gez. Prof. Dr. Frank Kempken, Dekan Table of contents Summary .......................................................................................................................................... 1 Zusammenfassung ............................................................................................................................ 2 Introduction ...................................................................................................................................... 3 Geological and climatic background of Atacama Desert ............................................................. 3 Microbiology of Atacama Desert ................................................................................................. 5 Natural products from Atacama Desert ........................................................................................ 9 References .................................................................................................................................. 12 Aim of the thesis ...........................................................................................................................
    [Show full text]
  • Insights Into the Dynamics Between Viruses and Their Hosts in a Hot Spring Microbial Mat
    The ISME Journal (2020) 14:2527–2541 https://doi.org/10.1038/s41396-020-0705-4 ARTICLE Insights into the dynamics between viruses and their hosts in a hot spring microbial mat 1,2,11 1,2 1,2 1,2 1,2 Jessica K. Jarett ● Mária Džunková ● Frederik Schulz ● Simon Roux ● David Paez-Espino ● 1,2 1,2 1,2 3 4 Emiley Eloe-Fadrosh ● Sean P. Jungbluth ● Natalia Ivanova ● John R. Spear ● Stephanie A. Carr ● 5 6 7 8,9 1,2 Christopher B. Trivedi ● Frank A. Corsetti ● Hope A. Johnson ● Eric Becraft ● Nikos Kyrpides ● 9 1,2,10 Ramunas Stepanauskas ● Tanja Woyke Received: 13 January 2020 / Revised: 3 June 2020 / Accepted: 11 June 2020 / Published online: 13 July 2020 © The Author(s) 2020. This article is published with open access Abstract Our current knowledge of host–virus interactions in biofilms is limited to computational predictions based on laboratory experiments with a small number of cultured bacteria. However, natural biofilms are diverse and chiefly composed of uncultured bacteria and archaea with no viral infection patterns and lifestyle predictions described to date. Herein, we predict the first DNA sequence-based host–virus interactions in a natural biofilm. Using single-cell genomics and metagenomics – 1234567890();,: 1234567890();,: applied to a hot spring mat of the Cone Pool in Mono County, California, we provide insights into virus host range, lifestyle and distribution across different mat layers. Thirty-four out of 130 single cells contained at least one viral contig (26%), which, together with the metagenome-assembled genomes, resulted in detection of 59 viruses linked to 34 host species.
    [Show full text]
  • Plant Compartment and Genetic Variation Drive Microbiome Composition in Switchgrass Roots
    Lawrence Berkeley National Laboratory Recent Work Title Plant compartment and genetic variation drive microbiome composition in switchgrass roots. Permalink https://escholarship.org/uc/item/5zp6g130 Journal Environmental microbiology reports, 11(2) ISSN 1758-2229 Authors Singer, Esther Bonnette, Jason Kenaley, Shawn C et al. Publication Date 2019-04-01 DOI 10.1111/1758-2229.12727 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Environmental Microbiology Reports (2019) 11(2), 185–195 doi:10.1111/1758-2229.12727 Plant compartment and genetic variation drive microbiome composition in switchgrass roots Esther Singer, 1* Jason Bonnette,2 3 1 Shawn C. Kenaley, Tanja Woyke and Introduction Thomas E. Juenger2* 1Department of Energy Joint Genome Institute, Walnut Terrestrial plants are colonized by diverse communities of Creek, CA, USA. microorganisms that can differentially affect plant health 2Department of Integrative Biology, University of Texas and growth (Yeoh et al., 2017; Naylor and Coleman-Derr, Austin, Austin, TX, USA. 2018). The result of the interactions between plants and 3School of Integrative Plant Science, Cornell University, their microbiota can be regarded as an extended plant Ithaca, NY, USA. phenotype (Price et al., 2010; Vorholt, 2012; Wagner et al., 2016; Müller et al., 2016). Understanding plant- microbe interactions is motivated by the potential to predict Summary and prevent plant disease, increase crop yield and corre- Switchgrass (Panicum virgatum) is a promising bio- late specific phenotypes to either environmental stimuli, fuel crop native to the United States with genotypes microbial activity, plant physiology or a combination that are adapted to a wide range of distinct ecosys- thereof.
    [Show full text]
  • Social, Ecological, and Developmental Influences on Fruit and Invertebrate Foraging Strategies and Gut Microbial Communities In
    SOCIAL, ECOLOGICAL, AND DEVELOPMENTAL INFLUENCES ON FRUIT AND INVERTEBRATE FORAGING STRATEGIES AND GUT MICROBIAL COMMUNITIES IN WHITE-FACED CAPUCHINS (CEBUS CAPUCINUS) BY ELIZABETH KIRK MALLOTT DISSERTATION Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Anthropology in the Graduate College of the University of Illinois at Urbana-Champaign, 2016 Urbana, Illinois Doctoral Committee: Professor Emeritus Paul A. Garber, Chair Associate Professor Ripan S. Malhi Associate Professor Rebecca M. Stumpf Associate Professor Katherine C. MacKinnon, St. Louis University ABSTRACT Primates are challenged by spatiotemporal variation in resource availability, and a central question in biological anthropology is how primates compensate for seasonal variation in food resources by adjusting their foraging strategies. How primates respond to variation in invertebrate availability has rarely been the focus of studies of primate foraging ecology. This dissertation examines the role of insectivory in shaping foraging strategies, elucidates developmental differences in invertebrate foraging strategies, and investigates the role of the gut microbiome in mediating dietary changes in white-faced capuchins. White-faced capuchins (Cebus capucinus) are an instructive model for examining the influences of changes in both fruit and arthropod availability on foraging strategies, as they devote a mean of 44.4% of feeding and foraging time to fruit, 38.0% to invertebrates, and 1.2% to vertebrates. A group of 20-22 white-faced capuchins was studied from January 2013 through January 2014 at La Suerte Biological Field Station in northeastern Costa Rica. Data was collected from individually recognizable adult and juvenile capuchins on diet (fruit, invertebrates, leaves, seeds, vertebrates, other), activity budget (feeding, foraging, traveling, resting, social, other), affiliative and agonistic interactions, nearest neighbor identity and distance, foraging subgroup size and spread, and geographic location at 2-minute intervals during 1-hour focal follows.
    [Show full text]
  • Mapping the Bacterial Ecology on the Phyllosphere Of
    bioRxiv preprint doi: https://doi.org/10.1101/494799; this version posted December 12, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Mapping the bacterial ecology on the phyllosphere of grass hay and the 2 potential hazards of soaking fodder for horse gut health 3 Meriel JS Moore-Colyer1, Annette Longland2, Patricia Harris3, Susan Crosthwaite4 4 1 Royal Agricultural University, Cirencester Gloucestershire, UK GL7 6JS. 5 2Equine and Livestock Nutrition Services, Pantafallen Fach, Tregaron, Ceredigion, Wales. SY25 6NF 6 3Mars Horsecare UK LTD; Equine Studies Group, Waltham Centre for Pet Nutrition, Waltham-on-the Wolds, 7 Leicestershire, UK. LE14 4RT 8 4 Faculty of Biology, Medicine and Health, University of Manchester, UK M13 9PT. 9 10 Corresponding author: *[email protected] ORCID 0000-0002-9172-9862 11 12 Short title: The bacterial ecology on the phyllosphere of dry and post-soaked grass hay for 13 horses 14 bioRxiv preprint doi: https://doi.org/10.1101/494799; this version posted December 12, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 15 Abstract 16 Globally hay is the preferred forage for stabled horses. Variable nutritional and hygienic quality stimulates pre- 17 feeding soaking to reduce dust and nutrients to reduce respiratory and metabolic disorders in horses.
    [Show full text]
  • Activated Sludge Microbial Community and Treatment Performance of Wastewater Treatment Plants in Industrial and Municipal Zones
    International Journal of Environmental Research and Public Health Article Activated Sludge Microbial Community and Treatment Performance of Wastewater Treatment Plants in Industrial and Municipal Zones Yongkui Yang 1,2 , Longfei Wang 1, Feng Xiang 1, Lin Zhao 1,2 and Zhi Qiao 1,2,* 1 School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China; [email protected] (Y.Y.); [email protected] (L.W.); [email protected] (F.X.); [email protected] (L.Z.) 2 China-Singapore Joint Center for Sustainable Water Management, Tianjin University, Tianjin 300350, China * Correspondence: [email protected]; Tel.: +86-22-87402072 Received: 14 November 2019; Accepted: 7 January 2020; Published: 9 January 2020 Abstract: Controlling wastewater pollution from centralized industrial zones is important for reducing overall water pollution. Microbial community structure and diversity can adversely affect wastewater treatment plant (WWTP) performance and stability. Therefore, we studied microbial structure, diversity, and metabolic functions in WWTPs that treat industrial or municipal wastewater. Sludge microbial community diversity and richness were the lowest for the industrial WWTPs, indicating that industrial influents inhibited bacterial growth. The sludge of industrial WWTP had low Nitrospira populations, indicating that influent composition affected nitrification and denitrification. The sludge of industrial WWTPs had high metabolic functions associated with xenobiotic and amino acid metabolism. Furthermore, bacterial richness was positively correlated with conventional pollutants (e.g., carbon, nitrogen, and phosphorus), but negatively correlated with total dissolved solids. This study was expected to provide a more comprehensive understanding of activated sludge microbial communities in full-scale industrial and municipal WWTPs. Keywords: activated sludge; industrial zone; metabolic function; microbial community; wastewater treatment 1.
    [Show full text]
  • Inter-Domain Horizontal Gene Transfer of Nickel-Binding Superoxide Dismutase 2 Kevin M
    bioRxiv preprint doi: https://doi.org/10.1101/2021.01.12.426412; this version posted January 13, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Inter-domain Horizontal Gene Transfer of Nickel-binding Superoxide Dismutase 2 Kevin M. Sutherland1,*, Lewis M. Ward1, Chloé-Rose Colombero1, David T. Johnston1 3 4 1Department of Earth and Planetary Science, Harvard University, Cambridge, MA 02138 5 *Correspondence to KMS: [email protected] 6 7 Abstract 8 The ability of aerobic microorganisms to regulate internal and external concentrations of the 9 reactive oxygen species (ROS) superoxide directly influences the health and viability of cells. 10 Superoxide dismutases (SODs) are the primary regulatory enzymes that are used by 11 microorganisms to degrade superoxide. SOD is not one, but three separate, non-homologous 12 enzymes that perform the same function. Thus, the evolutionary history of genes encoding for 13 different SOD enzymes is one of convergent evolution, which reflects environmental selection 14 brought about by an oxygenated atmosphere, changes in metal availability, and opportunistic 15 horizontal gene transfer (HGT). In this study we examine the phylogenetic history of the protein 16 sequence encoding for the nickel-binding metalloform of the SOD enzyme (SodN). A comparison 17 of organismal and SodN protein phylogenetic trees reveals several instances of HGT, including 18 multiple inter-domain transfers of the sodN gene from the bacterial domain to the archaeal domain.
    [Show full text]