Ecology of Marine Viruses

Total Page:16

File Type:pdf, Size:1020Kb

Ecology of Marine Viruses UNIVERSITY OF HAWAI‘I AT HILO ◆ HOHONU 2020 ◆ VOL. 18 role in the health of our oceans. The ecological roles and behaviors of marine viruses drive evolu- Rachel Willard tion, shape populations and ecosystems, and with English 225 advances in technology, can potentially be used in Abstract the near future to increase the health of our oceans Marine viruses have played a critical role in and prevent marine life and habitat loss caused by the development of life on our planet. They are of- climate change. ten seen negatively as disease pathogens, but their About Marine Viruses ecological roles and behaviors have played a ma- Viruses are found virtually everywhere on the jor role in the evolution of all species, they have planet and are abundant around any forms of life. shaped populations and ecosystems, and have many important uses and relationships with their of energy consumption, being capable of growth, hosts. Their vast abundance and diversity have adapting to surroundings, responding to external shaped whole ecosystems and drive population forces, reproducing, and most importantly, be- rates in organisms such as marine microbes to cor- ing composed of at least a single cell (Lloyd 11). als and pilot whales. They have been seen to have a Following these rules, these loose strands of ge- mutualistic symbiotic relationship with corals, sea slugs, and many other marine organisms. Marine but they are the most abundant and diverse bio- viruses reduce the harmful plankton populations logical entities in the ocean (Suttle 2007). In the in algal blooms. They play a very important role 1980s, scientists estimated the amount of marine in the stabilization of ocean ecosystems through viral bodies in one milliliter of seawater to be well biogeochemical and nutrient cycling. over a million using electron microscopy (Suttle 2005). And being biological entities, viruses have Vira. Structure and Reproduction Viruses are very small particles ranging from 20 nanometers to no longer than 200 nanometers. Some of the smallest known viruses contain only three to four genes in their DNA or RNA (Bidle 1). Their true origin is unknown, but it is clear that viruses did not evolve from cells (Suttle 2013). Viruses have a fairly simple structure, being com- posed of a core containing RNA (single-stranded) or DNA (double-stranded) nucleic acids surround- ed by a coat of proteins and sometimes lipids called a capsid (Fuhrman 1). Some viruses may have a membrane layer called an envelope surrounding the capsid. Capsids can occur in an icosahedral, - sids have 20 triangular faces. Filamentous are long, rod- or helical-shaped. Head-tail forms con- (Fuhrman 542) Introduction tail. Their structures have evolved for best surviv- The word virus tends to hold a negative conno- al, dependent on their ability to infect a select host. tation. But like Joan Jett in 1981, viruses probably Viruses have “no intrinsic metabolism, [and func- don’t give a damn about their bad reputation (Jett). tion] only as parasites through cellular machin- We may not know much about marine viruses to- ery of a host organism” (Fuhrman 541). Viruses day, but we do know they play a very important 154 UNIVERSITY OF HAWAI‘I AT HILO ◆ HOHONU 2020 ◆ VOL. 18 host organism: bacteria (bacteriophage), plants, or measure because viruses do not have a universally animals. Microbes are the most common host to conserved gene like the ribosomal DNA genes in a marine virus because of their abundance, espe- cellular organisms, and because most viral hosts cially in the oceans. Viruses are able to reproduce - through a process known as lytic infection where dance and diversity of marine viruses have created they enter a host cell, create a copy of their DNA/ important roles in ocean productivity and biogeo- RNA and the host cell potentially bursts or lyses. chemical cycles. History of Virology Viral abundance is possible partially because “In the human world, viruses will continue to of their evolutionary ability to adapt to harsh, oxy- have a lousy reputation thanks to the traumatic gen and nutrient poor environments. While most impact of a few devastating infections that have viruses will be found closer to the water’s surface, plagued humans throughout recorded history,” some impressive marine viruses have adapted to Christopher Lloyd says in The Story of the World live and even thrive in harsh areas such as deep- in 100 Species (Lloyd 15). We have barely start- sea hydrothermal vents. These deep-sea hydro- ed to scratch the surface of understanding marine thermal vents, typically found along tectonically viruses. The study of viruses, known as virology, active mid-ocean ridges, can reach extreme tem- has shed much light on the behavior and ecologi- peratures up to 400°C, or 752°F (Ortman 1516). cal roles of marine viruses over the past few de- Surprisingly, there are other forms of life in these cades. Virology exponentially advanced with the vents. The marine viruses are supported by an invention of the transmission electron microscopy abundance of chemosynthetic and heterotrophic (TEM). This gave scientists the ability to distin- prokaryotes that become their hosts. guish viruses from other microbial forms and to Driving Evolution and Shaping Whole see their vast abundance. Before TEMs, “viruses Ecosystems were not regarded as quantitatively important Viruses are able to drive evolution in terms components of marine food webs until they were of their host cells, developing defense strategies shown by direct counts to be highly abundant” against viral lytic infections over millions and mil- (Fuhrman 541). Up until the 1990s, marine viral lions of years. This cycle of host cells and virus- infections were not seen to play such a major role es, both adapting to attack or defend, has led to with oceanic ecosystems and processes. Mathias incredible evolution in host cells (Middelboe 4). Middelboe argues that “the large number of un- The evolution of both host cells and viruses has known viral populations in the marine metage- made viruses capable of infecting life of all sizes. nome emphasizes the need for further isolation, Different classes and species of marine viruses can infect single-celled bacteria all the way up to the viruses” (Middelboe 1). largest marine mammals. Diversity and Abundance Pilot Whales Viruses are incredibly widespread and diverse. Every cellular organism on the planet is suscep- pilot whale showed the success of the virus and its tible to viral infection by at least one type of virus. capability of infecting multiple advanced species. This implies that viruses are the most diverse of The research team was only able to collect a virus all biological entities on the planet (Fuhrman 541). with a partial genome sequence from the diseased Viruses are especially diverse and abundant in the pilot whale, but they were able to distinguish it as an oceans. Curtis Suttle calculated that “if we compare the number of viruses in the oceans to the num- and genus This genus of virus is bers of stars in the universe, there are about 10²³ capable of infecting seagulls, terns, waders, and stars in the universe. In contrast, there are about 10 other marine mammals, like pinnipeds and other million-fold more viruses in the ocean than there - are stars in the universe… [approximately] 1030 rus in the pilot whale was likely spread by contact viruses in the ocean” (Suttle 2013). Although ma- with a seabird while the whale was at the surface rine viruses are so abundant, diversity is “hard to (Groth 183). 155 UNIVERSITY OF HAWAI‘I AT HILO ◆ HOHONU 2020 ◆ VOL. 18 Anthozoans worldwide ecosystems “other than as purveyors of It is well known that “the health of coral reefs disease, and if it were not for viruses, life on the is declining on a global scale” (Weynberg 2015). planet would probably not exist” (Suttle 2013). Different diseases, including white plague coral Viruses are used in many unseen ways in our lives, disease, are a rampant cause of death and bleach- like cheeses and other dairy products being treated ing for reefs worldwide. Cnidarian viruses are “the with certain viruses to prevent bacterial growth and least-studied constituents in the coral holobiont” mold. Some viruses have attained important mutu- (Marhaver 2277), meaning there is much to be re- alistic symbiotic relationships with their host organ- searched and learned. Only recently have scientists ism, including bacteria, insects, plants, fungi, and discovered that a herpes-like virus plays a key role animals (Roossinck 99). in plagued reefs in the Caribbean (Soffer 271), al- Symbiotic Relationships though bacteria are also suspected to play a role. Marine viruses play a notably important and Metagenomic analyses of the coral and its symbi- - otic algae, zooxanthellae, showed that a sequence lobionts. Kristin Marhaver explains this unlikely for the herpes-like virus counted for 4-8% of the mutualistic symbiosis: total microbial sequencing (Marhaver 2277). As Viruses can serve as a stabilizing force for sym- detrimental as viruses can be to corals and reef eco- bioses by establishing addiction systems within a systems, they have been found to play a necessary host. For example, zooxanthellae infected with a role in healthy corals’ lives. latent virus are resistant to lysis by VLP [virus-like Bacteriophages and Eukaryotic Microbe Viruses particles]. Phages may also stabilize symbioses. For Microbes such as bacteria, archaea, and eu- Hamiltonella defensa, karyotic organisms are a huge source of food in a bacterial symbiont of the pea aphid, produces a the oceans and the most popular host for a virus. toxin that appears to protect host aphids from eu- Bacteriophages, or phages, are viruses that have karyotic parasites. The diversity of constituents in adapted to infecting bacterial and archaeal cells for the coral holobiont elevates the potential for these replication.
Recommended publications
  • Multiple Origins of Viral Capsid Proteins from Cellular Ancestors
    Multiple origins of viral capsid proteins from PNAS PLUS cellular ancestors Mart Krupovica,1 and Eugene V. Kooninb,1 aInstitut Pasteur, Department of Microbiology, Unité Biologie Moléculaire du Gène chez les Extrêmophiles, 75015 Paris, France; and bNational Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894 Contributed by Eugene V. Koonin, February 3, 2017 (sent for review December 21, 2016; reviewed by C. Martin Lawrence and Kenneth Stedman) Viruses are the most abundant biological entities on earth and show genome replication. Understanding the origin of any virus group is remarkable diversity of genome sequences, replication and expres- possible only if the provenances of both components are elucidated sion strategies, and virion structures. Evolutionary genomics of (11). Given that viral replication proteins often have no closely viruses revealed many unexpected connections but the general related homologs in known cellular organisms (6, 12), it has been scenario(s) for the evolution of the virosphere remains a matter of suggested that many of these proteins evolved in the precellular intense debate among proponents of the cellular regression, escaped world (4, 6) or in primordial, now extinct, cellular lineages (5, 10, genes, and primordial virus world hypotheses. A comprehensive 13). The ability to transfer the genetic information encased within sequence and structure analysis of major virion proteins indicates capsids—the protective proteinaceous shells that comprise the that they evolved on about 20 independent occasions, and in some of cores of virus particles (virions)—is unique to bona fide viruses and these cases likely ancestors are identifiable among the proteins of distinguishes them from other types of selfish genetic elements cellular organisms.
    [Show full text]
  • Diversity and Community Structure of Pelagic Cnidarians in the Celebes and Sulu Seas, Southeast Asian Tropical Marginal Seas
    Deep-Sea Research I 100 (2015) 54–63 Contents lists available at ScienceDirect Deep-Sea Research I journal homepage: www.elsevier.com/locate/dsri Diversity and community structure of pelagic cnidarians in the Celebes and Sulu Seas, southeast Asian tropical marginal seas Mary M. Grossmann a,n, Jun Nishikawa b, Dhugal J. Lindsay c a Okinawa Institute of Science and Technology Graduate University (OIST), Tancha 1919-1, Onna-son, Okinawa 904-0495, Japan b Tokai University, 3-20-1, Orido, Shimizu, Shizuoka 424-8610, Japan c Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka 237-0061, Japan article info abstract Article history: The Sulu Sea is a semi-isolated, marginal basin surrounded by high sills that greatly reduce water inflow Received 13 September 2014 at mesopelagic depths. For this reason, the entire water column below 400 m is stable and homogeneous Received in revised form with respect to salinity (ca. 34.00) and temperature (ca. 10 1C). The neighbouring Celebes Sea is more 19 January 2015 open, and highly influenced by Pacific waters at comparable depths. The abundance, diversity, and Accepted 1 February 2015 community structure of pelagic cnidarians was investigated in both seas in February 2000. Cnidarian Available online 19 February 2015 abundance was similar in both sampling locations, but species diversity was lower in the Sulu Sea, Keywords: especially at mesopelagic depths. At the surface, the cnidarian community was similar in both Tropical marginal seas, but, at depth, community structure was dependent first on sampling location Marginal sea and then on depth within each Sea. Cnidarians showed different patterns of dominance at the two Sill sampling locations, with Sulu Sea communities often dominated by species that are rare elsewhere in Pelagic cnidarians fi Community structure the Indo-Paci c.
    [Show full text]
  • Coming-Of-Age Characterization of Soil Viruses: a User's Guide To
    Review Coming-of-Age Characterization of Soil Viruses: A User’s Guide to Virus Isolation, Detection within Metagenomes, and Viromics Gareth Trubl 1,* , Paul Hyman 2 , Simon Roux 3 and Stephen T. Abedon 4,* 1 Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA 2 Department of Biology/Toxicology, Ashland University, Ashland, OH 44805, USA; [email protected] 3 DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; [email protected] 4 Department of Microbiology, The Ohio State University, Mansfield, OH 44906, USA * Correspondence: [email protected] (G.T.); [email protected] (S.T.A.) Received: 25 February 2020; Accepted: 17 April 2020; Published: 21 April 2020 Abstract: The study of soil viruses, though not new, has languished relative to the study of marine viruses. This is particularly due to challenges associated with separating virions from harboring soils. Generally, three approaches to analyzing soil viruses have been employed: (1) Isolation, to characterize virus genotypes and phenotypes, the primary method used prior to the start of the 21st century. (2) Metagenomics, which has revealed a vast diversity of viruses while also allowing insights into viral community ecology, although with limitations due to DNA from cellular organisms obscuring viral DNA. (3) Viromics (targeted metagenomics of virus-like-particles), which has provided a more focused development of ‘virus-sequence-to-ecology’ pipelines, a result of separation of presumptive virions from cellular organisms prior to DNA extraction. This separation permits greater sequencing emphasis on virus DNA and thereby more targeted molecular and ecological characterization of viruses.
    [Show full text]
  • THE CASE AGAINST Marine Mammals in Captivity Authors: Naomi A
    s l a m m a y t T i M S N v I i A e G t A n i p E S r a A C a C E H n T M i THE CASE AGAINST Marine Mammals in Captivity The Humane Society of the United State s/ World Society for the Protection of Animals 2009 1 1 1 2 0 A M , n o t s o g B r o . 1 a 0 s 2 u - e a t i p s u S w , t e e r t S h t u o S 9 8 THE CASE AGAINST Marine Mammals in Captivity Authors: Naomi A. Rose, E.C.M. Parsons, and Richard Farinato, 4th edition Editors: Naomi A. Rose and Debra Firmani, 4th edition ©2009 The Humane Society of the United States and the World Society for the Protection of Animals. All rights reserved. ©2008 The HSUS. All rights reserved. Printed on recycled paper, acid free and elemental chlorine free, with soy-based ink. Cover: ©iStockphoto.com/Ying Ying Wong Overview n the debate over marine mammals in captivity, the of the natural environment. The truth is that marine mammals have evolved physically and behaviorally to survive these rigors. public display industry maintains that marine mammal For example, nearly every kind of marine mammal, from sea lion Iexhibits serve a valuable conservation function, people to dolphin, travels large distances daily in a search for food. In learn important information from seeing live animals, and captivity, natural feeding and foraging patterns are completely lost.
    [Show full text]
  • First Description of a Temperate Bacteriophage (Vb Fhim KIRK) of Francisella Hispaniensis Strain 3523
    viruses Article First Description of a Temperate Bacteriophage (vB_FhiM_KIRK) of Francisella hispaniensis Strain 3523 Kristin Köppen 1,†, Grisna I. Prensa 1,†, Kerstin Rydzewski 1, Hana Tlapák 1, Gudrun Holland 2 and Klaus Heuner 1,* 1 Centre for Biological Threats and Special Pathogens, Cellular Interactions of Bacterial Pathogens, ZBS 2, Robert Koch Institute, 13353 Berlin, Germany; [email protected] (K.K.); [email protected] (G.I.P.); [email protected] (K.R.); [email protected] (H.T.) 2 Centre for Biological Threats and Special Pathogens, Advanced Light and Electron Microscopy, ZBS 4, Robert Koch Institute, D-13353 Berlin, Germany; [email protected] * Correspondence: [email protected]; Tel.: +49-30-18754-2226 † Both authors contributed equally to this work. Abstract: Here we present the characterization of a Francisella bacteriophage (vB_FhiM_KIRK) includ- ing the morphology, the genome sequence and the induction of the prophage. The prophage sequence (FhaGI-1) has previously been identified in F. hispaniensis strain 3523. UV radiation induced the prophage to assemble phage particles consisting of an icosahedral head (~52 nm in diameter), a tail of up to 97 nm in length and a mean width of 9 nm. The double stranded genome of vB_FhiM_KIRK contains 51 open reading frames and is 34,259 bp in length. The genotypic and phylogenetic analysis indicated that this phage seems to belong to the Myoviridae family of bacteriophages. Under the Citation: Köppen, K.; Prensa, G.I.; conditions tested here, host cell (Francisella hispaniensis 3523) lysis activity of KIRK was very low, and Rydzewski, K.; Tlapák, H.; Holland, the phage particles seem to be defective for infecting new bacterial cells.
    [Show full text]
  • Marine Microplankton Ecology Reading
    Marine Microplankton Ecology Reading Microbes dominate our planet, especially the Earth’s oceans. The distinguishing feature of microorganisms is their small size, usually defined as less than 200 micrometers (µm); they are all invisible to the naked eye. As a group, sea microbes are extremely diverse, and extremely versatile with respect to their abilities to make and eat food. All marine microbes are too small to swim against the current and are therefore classified as plankton. First we will discuss several ways to classify marine microbes. 1. Size Planktonic marine organisms can be divided into the following size categories: Category Size femtoplankton <0.2 µm picoplankton 0.2-2 µm nanoplankton 2-20 µm microplankton 20-200 µm mesoplankton 200-2000 µm In this laboratory we are concerned with the microscopic portion of the plankton, less than 200 µm. These organisms are not visible to the naked eye (Figure 1). Figure 1. Size classes of marine plankton 2. Type A. Viruses Viruses are the smallest and simplest microplankton. They range from 0.01 to 0.3 um in diameter. Externally, viruses have a capsid, or protein coat. Viruses can also have simple or complex external morphologies with tail fibers and structures that are used to inject DNA or RNA into their host. Viruses have little internal morphology. They do not have a nucleus or organelles. They do not have chlorophyll. Inside a virus there is only nucleic acid, either DNA or RNA. Viruses do not grow and have no metabolism. Marine viruses are highly abundant. There are up to 10 billion in one liter of seawater! B.
    [Show full text]
  • DEEP SEA LEBANON RESULTS of the 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project
    DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project March 2018 DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project Citation: Aguilar, R., García, S., Perry, A.L., Alvarez, H., Blanco, J., Bitar, G. 2018. 2016 Deep-sea Lebanon Expedition: Exploring Submarine Canyons. Oceana, Madrid. 94 p. DOI: 10.31230/osf.io/34cb9 Based on an official request from Lebanon’s Ministry of Environment back in 2013, Oceana has planned and carried out an expedition to survey Lebanese deep-sea canyons and escarpments. Cover: Cerianthus membranaceus © OCEANA All photos are © OCEANA Index 06 Introduction 11 Methods 16 Results 44 Areas 12 Rov surveys 16 Habitat types 44 Tarablus/Batroun 14 Infaunal surveys 16 Coralligenous habitat 44 Jounieh 14 Oceanographic and rhodolith/maërl 45 St. George beds measurements 46 Beirut 19 Sandy bottoms 15 Data analyses 46 Sayniq 15 Collaborations 20 Sandy-muddy bottoms 20 Rocky bottoms 22 Canyon heads 22 Bathyal muds 24 Species 27 Fishes 29 Crustaceans 30 Echinoderms 31 Cnidarians 36 Sponges 38 Molluscs 40 Bryozoans 40 Brachiopods 42 Tunicates 42 Annelids 42 Foraminifera 42 Algae | Deep sea Lebanon OCEANA 47 Human 50 Discussion and 68 Annex 1 85 Annex 2 impacts conclusions 68 Table A1. List of 85 Methodology for 47 Marine litter 51 Main expedition species identified assesing relative 49 Fisheries findings 84 Table A2. List conservation interest of 49 Other observations 52 Key community of threatened types and their species identified survey areas ecological importanc 84 Figure A1.
    [Show full text]
  • The Diversity of Bacterial Lifestyles Hampers Bacteriophage Tenacity
    viruses Review The Diversity of Bacterial Lifestyles Hampers Bacteriophage Tenacity Marta Lourenço 1,2, Luisa De Sordi 1 and Laurent Debarbieux 1,* ID 1 Department of Microbiology, Institut Pasteur, F-75015 Paris, France; [email protected] (M.L.); [email protected] (L.D.S.) 2 Collège Doctoral, Sorbonne Université, F-75005 Paris, France * Correspondence: [email protected] Received: 18 May 2018; Accepted: 11 June 2018; Published: 15 June 2018 Abstract: Phage therapy is based on a simple concept: the use of a virus (bacteriophage) that is capable of killing specific pathogenic bacteria to treat bacterial infections. Since the pioneering work of Félix d’Herelle, bacteriophages (phages) isolated in vitro have been shown to be of therapeutic value. Over decades of study, a large number of rather complex mechanisms that are used by phages to hijack bacterial resources and to produce their progeny have been deciphered. While these mechanisms have been identified and have been studied under optimal conditions in vitro, much less is known about the requirements for successful viral infections in relevant natural conditions. This is particularly true in the context of phage therapy. Here, we highlight the parameters affecting phage replication in both in vitro and in vivo environments, focusing, in particular, on the mammalian digestive tract. We propose avenues for increasing the knowledge-guided implementation of phages as therapeutic tools. Keywords: virus–host interactions; bacteriophage efficacy; gastrointestinal tract; phage therapy 1. Introduction With the alarming worldwide increase in the prevalence of multidrug-resistant bacteria, phage therapy—the use of phages to target pathogenic bacteria [1]—has recently returned to the spotlight in the USA and Europe, although it had never fallen out of favour in countries such as Georgia [2].
    [Show full text]
  • How Influenza Virus Uses Host Cell Pathways During Uncoating
    cells Review How Influenza Virus Uses Host Cell Pathways during Uncoating Etori Aguiar Moreira 1 , Yohei Yamauchi 2 and Patrick Matthias 1,3,* 1 Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland; [email protected] 2 Faculty of Life Sciences, School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK; [email protected] 3 Faculty of Sciences, University of Basel, 4031 Basel, Switzerland * Correspondence: [email protected] Abstract: Influenza is a zoonotic respiratory disease of major public health interest due to its pan- demic potential, and a threat to animals and the human population. The influenza A virus genome consists of eight single-stranded RNA segments sequestered within a protein capsid and a lipid bilayer envelope. During host cell entry, cellular cues contribute to viral conformational changes that promote critical events such as fusion with late endosomes, capsid uncoating and viral genome release into the cytosol. In this focused review, we concisely describe the virus infection cycle and highlight the recent findings of host cell pathways and cytosolic proteins that assist influenza uncoating during host cell entry. Keywords: influenza; capsid uncoating; HDAC6; ubiquitin; EPS8; TNPO1; pandemic; M1; virus– host interaction Citation: Moreira, E.A.; Yamauchi, Y.; Matthias, P. How Influenza Virus Uses Host Cell Pathways during 1. Introduction Uncoating. Cells 2021, 10, 1722. Viruses are microscopic parasites that, unable to self-replicate, subvert a host cell https://doi.org/10.3390/ for their replication and propagation. Despite their apparent simplicity, they can cause cells10071722 severe diseases and even pose pandemic threats [1–3].
    [Show full text]
  • Marine Microbiology at Scripps
    81832_Ocean 8/28/03 7:18 PM Page 67 Special Issue—Scripps Centennial Marine Microbiology at Scripps A. Aristides Yayanos Scripps Institution of Oceanography, University of California, • San Diego, California USA Marine microbiology is the study of the smallest isolated marine bioluminescent bacteria, isolated and organisms found in the oceans—bacteria and archaea, characterized sulfate-reducing bacteria, and showed many eukaryotes (among the protozoa, fungi, and denitrifying bacteria could both produce and consume plants), and viruses. Most microorganisms can be seen nitrous oxide, now known to be an important green- only with a microscope. Microbes pervade the oceans, house gas. Beijerinck also founded the field of virology its sediments, and some hydrothermal fluids and through his work on plant viruses (van Iterson et al., exhibit solitary life styles as well as complex relation- 1983). Mills (1989) describes the significance of the ships with animals, other microorganisms, and each work of Beijerink and Winogradsky to plankton other. The skeletal remains of microorganisms form the research and marine chemistry. largest component of sedimentary fossils whose study Around 1903, bacteriology in California was reveals Earth’s history. The enormous morphological, emerging in the areas of medicine and public health physiological, and taxonomic diversity of marine and accordingly was developing into an academic dis- microorganisms remains far from adequately cipline in medical schools (McClung and Meyer, 1974). described and studied. Because the sea receives terres- Whereas the branch of microbiology dealing with bac- trial microorganisms from rivers, sewage outfalls, and teria and viruses was just beginning, the branch con- other sources, marine microbiology also includes the cerning protozoa and algae was a relatively more estab- study of alien microorganisms.
    [Show full text]
  • Geographic Differences in Sexual Reassortment in Rna Phage
    ORIGINAL ARTICLE doi:10.1111/j.1558-5646.2010.01040.x GEOGRAPHIC DIFFERENCES IN SEXUAL REASSORTMENT IN RNA PHAGE Kara J. O’Keefe,1,2 Olin K. Silander,3 Helen McCreery,4 Daniel M. Weinreich,5 Kevin M. Wright,6 Lin Chao,7 Scott V. Edwards,2 Susanna K. Remold,8 and Paul E. Turner1,9 1Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut 06520-8106 2Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138 3Core Program Computational and Systems Biology, Biozentrum, University of Basel, Basel, Switzerland 4Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 5Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island 02912 6Department of Biology, Duke University, Durham, North Carolina 27708 7Section of Ecology, Evolution and Behavior, University of California, San Diego, La Jolla, California 92093 8Department of Biology, University of Louisville, Louisville, Kentucky 40292 9E-mail: [email protected] Received November 5, 2008 Accepted April 20, 2010 The genetic structure of natural bacteriophage populations is poorly understood. Recent metagenomic studies suggest that phage biogeography is characterized by frequent migration. Using virus samples mostly isolated in Southern California, we recently showed that very little population structure exists in segmented RNA phage of the Cystoviridae family due to frequent segment reassortment (sexual genetic mixis) between unrelated virus individuals. Here we use a larger genetic dataset to examine the structure of Cystoviridae phage isolated from three geographic locations in Southern New England. We document extensive natural variation in the physical sizes of RNA genome segments for these viruses.
    [Show full text]
  • Article Is Available Ral Lysis of Bacteria in the Photic Zone
    Biogeosciences, 15, 809–819, 2018 https://doi.org/10.5194/bg-15-809-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. Virus-mediated transfer of nitrogen from heterotrophic bacteria to phytoplankton Emma J. Shelford1 and Curtis A. Suttle1,2,3,4 1Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, Canada 2Department of Botany, University of British Columbia, Vancouver, Canada 3Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada 4Institute of Oceans and Fisheries, University of British Columbia, Vancouver, Canada Correspondence: Curtis A. Suttle ([email protected]) Received: 29 June 2017 – Discussion started: 18 July 2017 Revised: 27 November 2017 – Accepted: 8 January 2018 – Published: 9 February 2018 Abstract. Lytic infection of bacteria by viruses releases nu- rich in free and combined amino acids (Middelboe and Jør- trients during cell lysis and stimulates the growth of primary gensen, 2006) that are taken up and metabolised by bacte- producers, but the path by which these nutrients flow from ria (Middelboe et al., 1996, 2003). When the C V N of DOM lysates to primary producers has not been traced. This study is low relative to bacterial nutritional requirements, bacte- examines the remineralisation of nitrogen (N) from Vibrio ria deaminate DOM and release ammonium (Hollibaugh, lysates by heterotrophic bacterioplankton and its transfer 1978; Goldman et al., 1987) to acquire carbon for energy to primary producers. In laboratory trials, Vibrio sp. strain and growth (e.g. Brussaard et al., 1996; Fouilland et al., PWH3a was infected with a lytic virus (PWH3a-P1) and 2014); the release of ammonium can support phytoplank- the resulting 36.0 µmol L−1 of dissolved organic N (DON) ton growth (Haaber and Middelboe, 2009; Weinbauer et al., in the lysate was added to cultures containing cyanobacte- 2011; Shelford et al., 2012).
    [Show full text]