4 Physiology of Ventilation During Cardiac Arrest
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
2015 Korean Guidelines for Cardiopulmonary Resuscitation
Clin Exp Emerg Med 2016;3(S):S1-S9 http://dx.doi.org/10.15441/ceem.16.133 Supplementary Part 1. The update process and eISSN: 2383-4625 highlights: 2015 Korean Guidelines for Cardiopulmonary Resuscitation Sung Oh Hwang1, Sung Phil Chung2, Keun Jeong Song3, Hyun Kim1, Tae Ho Rho4, Kyu Nam Park5, Young-Min Kim5, June Dong Park6, Ai-Rhan Ellen Kim7, Hyuk Jun Yang8 Received: 16 February 2016 Revised: 19 March 2016 1 Department of Emergency Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea Accepted: 19 March 2016 2Department of Emergency Medicine, Yonsei University College of Medicine, Seoul, Korea 3Department of Emergency Medicine, Sungkyunkwan University College of Medicine, Seoul, Korea Correspondence to: Sung Oh Hwang 4Department of Internal Medicine, The Catholic University of Korea College of Medicine, Seoul, Korea Department of Emergency Medicine, 5Department of Emergency Medicine, The Catholic University of Korea College of Medicine, Seoul, Korea 6Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea Yonsei University Wonju College of 7Department of Pediatrics, University of Ulsan College of Medicine, Seoul, Korea Medicine, 20 Ilsan-ro, Wonju 26426, 8Department of Emergency Medicine, Gachon University College of Medicine, Incheon, Korea Korea E-mail: [email protected] THE BACKGROUND AND UPDATE PROCESS OF THE GUIDELINES FOR CARDIOPULMONARY RESUSCITATION 1. The background of the guidelines for cardiopulmonary resuscitation Cardiac arrest can occur inside medical institutions (in-hospital) -
Respiratory Monitoring System Using Thermistor
International Journal of Pure and Applied Mathematics Volume 119 No. 12 2018, 11567-11575 ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu Special Issue ijpam.eu RESPIRATORY MONITORING SYSTEM USING THERMISTOR 1Gagandeep kour , 2Mohammad Rouman ,Geetha.M3 1,2UG Students, 3Assistant Professor Department of Biomedical Engineering BIHER, BIST, Bharath University Chennai- 6000073. gagandeeplkour. [email protected] Abstract:- respiration is defined as the process of movement of oxygen from the outside air to the cells within tissues and the transport of carbon dioxide in the opposite direction. Respiration can be cellular as well as physiological. In cellular respiration an organism obtains energy in the form of ATP by oxidising nutrients and releasing waste products while as the physiological respiration is necessary to sustain cellular respiration and thus life. Physiological respiration involves ventilation of lungs alveoli with atmospheric air moved into and out of the lungs through inhalation and exhalation, otherwise known as breathing. This project helps to checks the breathing rate of a patient who is suffering from coma, trauma, strokes, seizures at easily accessible levels. The respiratory monitoring system helps to check the breathing rate of a patient with the help of an arduino based system. the main components of this machine are Arduino, thermistor, heart pulse rate sensor, LED, LCD, buzzer alarm, battery. The patient breathes through a mask in which thermistor is placed and then the machine measures the breathing rate. the arduino used here is Arduino UNO(ATmega328 P). Keywords: respiratory device, breathing, Arduino, heart pulse rate sensor, thermistor, alarm. contains 2.5-3.0 litres of air. -
Contents Contents by Condition
Contents Contents by Condition ..................ix Thomas' test .....................54 Foreword ...............................xv Tinel's sign ..........................55 Preface ............................xvi... Trendelenburg's sign ................... 56 Acknowledgements................... XVIII ... True leg length discrepancy (anatomic Authors ...........................xv111 leg length discrepancy) ............... 57 Expert Reviewers ..................... xix Ulnar deviation ...................... 58 Reviewers ..........................xix V-sign ............................. 59 Abbreviations ........................ xx Valgus deformity ..................... 60 Varus deformity ......................63 Chapter 1 Yergason's sign ...................... 65 Musculoskeletal Signs .... Anterior drawer test ...... ........2 Chapter 2 Apley's grind test ......................3 Respiratory Signs ........................71 Apley's scratch test ..................... 4 Apparent leg length inequality (functional Accessory muscle breathing ........................... 73 leg length) ......................... 5 Agonal respiration ......................................... 74 Apprehension test (crank test) .............6 Apneustic breathing (also apneusis) ................ 75 Apprehension-relocation test (Fowler's Apnoea ........................................................ 76 agn) .............................7 Asterixis ........................................................78 Bouchard's and Heberden's nodes ..........8 Asymmetrical chest expansion -
Title: Drowning and Therapeutic Hypothermia: Dead Man Walking
Title: Drowning and Therapeutic Hypothermia: Dead Man Walking Author(s): Angela Kavenaugh, D.O., Jamie Cohen, D.O., Jennifer Davis MD FAAP, Department of PICU Affiliation(s): Chris Evert Children’s Hospital, Broward Health Medical Center ABSTRACT BODY: Background: Drowning is the second leading cause of death in children and is associated with severe morbidity and mortality, most often due to hypoxic-ischemic encephalopathy. Those that survive are often left with debilitating neurological deficits. Therapeutic Hypothermia after resuscitation from ventricular fibrillation or pulseless ventricular tachycardia induced cardiac arrest is the standard of care in adults and has also been proven to have beneficial effects that persist into early childhood when utilized in neonatal birth asphyxia, but has yet to be accepted into practice for pediatrics. Objective: To present supportive evidence that Therapeutic Hypothermia improves mortality and morbidity specifically for pediatric post drowning patients. Case Report: A five year old male presented to the Emergency Department after pool submersion of unknown duration. He was found to have asphyxial cardiac arrest and received bystander CPR, which was continued by EMS for a total of 10 minutes, including 2 doses of epinephrine. CPR continued into the emergency department. Upon presentation to the ED, he was found to have fixed and dilated pupils, unresponsiveness, with a GCS of 3. Upon initial pulse check was found to have return of spontaneous circulation, with sinus tachycardia. His blood gas revealed 6.86/45/477/8/-25. He was intubated, given 2 normal saline boluses and 2 mEq/kg of Sodium Bicarbonate. The initial head CT was normal. -
Cardiac Arrest Recognition and Telephone CPR by Emergency Medical Dispatchers
OriginalgOdRe Article Cardiac arrest recognition and telephone CPR by emergency medical dispatchers Mark Anthony Attard Biancardi, Peter Spiteri, Maria Pia Pace Abstract Results: The mean percentage recognition of Introduction: Emergency Medical Service out of hospital cardiac arrest by the Maltese EMDs (EMS) systems annually encounters about 275 000 was 67%. 28% of EMDs who recognized cardiac out-of-hospital cardiac arrest (OHCA) patients in arrest asked both questions regarding patient’s Europe and approximately 420,000 cases in the responsiveness and breathing whilst only 8% of United States.1 Survival rates have been reported to EMDs who did not recognize cardiac arrest asked be poor with approximately 10% survival to both questions. The mean percentage of telephone hospital discharge.2 The chance of surviving from assisted CPR was 58%. an OHCA is highly associated with Emergency Conclusion: When compared to other Medical Dispatchers’ (EMD) recognition of cardiac European countries, OHCA recognition by Maltese arrest, early bystander cardiopulmonary EMDs needs to improve. However, given that the resuscitation (CPR), and early defibrillation.3-6 local EMDs have no formal guidelines or Method: This study was a simulation based algorithms for their use during 112 calls, results are study. All emergency nurses who were eligible by encouraging to say the least especially in telephone training to answer 112 calls and activate the EMS assisted CPR. With education and simulation training, were included in this study. The simulations were these numbers should improve run by two experienced ED nurses who followed predefined scripts. The two key questions that the Key Words authors were after included ascertaining patient Emergency Medical Services, Emergency responsiveness and breathing status. -
Dive Medicine Aide-Memoire Lt(N) K Brett Reviewed by Lcol a Grodecki Diving Physics Physics
Dive Medicine Aide-Memoire Lt(N) K Brett Reviewed by LCol A Grodecki Diving Physics Physics • Air ~78% N2, ~21% O2, ~0.03% CO2 Atmospheric pressure Atmospheric Pressure Absolute Pressure Hydrostatic/ gauge Pressure Hydrostatic/ Gauge Pressure Conversions • Hydrostatic/ gauge pressure (P) = • 1 bar = 101 KPa = 0.987 atm = ~1 atm for every 10 msw/33fsw ~14.5 psi • Modification needed if diving at • 10 msw = 1 bar = 0.987 atm altitude • 33.07 fsw = 1 atm = 1.013 bar • Atmospheric P (1 atm at 0msw) • Absolute P (ata)= gauge P +1 atm • Absolute P = gauge P + • °F = (9/5 x °C) +32 atmospheric P • °C= 5/9 (°F – 32) • Water virtually incompressible – density remains ~same regardless • °R (rankine) = °F + 460 **absolute depth/pressure • K (Kelvin) = °C + 273 **absolute • Density salt water 1027 kg/m3 • Density fresh water 1000kg/m3 • Calculate depth from gauge pressure you divide press by 0.1027 (salt water) or 0.10000 (fresh water) Laws & Principles • All calculations require absolute units • Henry’s Law: (K, °R, ATA) • The amount of gas that will dissolve in a liquid is almost directly proportional to • Charles’ Law V1/T1 = V2/T2 the partial press of that gas, & inversely proportional to absolute temp • Guy-Lussac’s Law P1/T1 = P2/T2 • Partial Pressure (pp) – pressure • Boyle’s Law P1V1= P2V2 contributed by a single gas in a mix • General Gas Law (P1V1)/ T1 = (P2V2)/ T2 • To determine the partial pressure of a gas at any depth, we multiply the press (ata) • Archimedes' Principle x %of that gas Henry’s Law • Any object immersed in liquid is buoyed -
The Post-Mortem Appearances in Cases of Asphyxia Caused By
a U?UST 1902.1 ASPHYXIA CAUSED BY DROWNING 297 Table I. Shows the occurrence of fluid and mud in the 55 fresh bodies. ?ritfinal Jlrttclcs. Fluid. Mud. Air-passage ... .... 20 2 ? ? and stomach ... ig 6 ? ? stomach and intestine ... 7 1 ? ? and intestine X ??? Stomach ... ??? THE POST-MORTEM APPEARANCES IN Intestine ... ... 1 Stomach and intestine ... ... i CASES OF ASPHYXIA CAUSED BY DROWNING. Total 46 9 = 55 By J. B. GIBBONS, From the above table it will be seen that fluid was in the alone in 20 LIEUT.-COL., I.M.S., present air-passage cases, in the air-passage and stomach in sixteen, Lute Police-Surgeon, Calcutta, Civil Surgeon, Ilowrah. in the air-passage, stomach and intestine in seven, in the air-passage and intestine in one. As used in this table the term includes frothy and non- frothy fluid. Frothy fluid is only to be expected In the period from June 1893 to November when the has been quickly recovered from months which I body 1900, excluding three during the water in which drowning took place and cases on leave, 15/ of was privilege asphyxia examined without delay. In some of my cases were examined me in the due to drowning by it was present in a most typical form; there was For the of this Calcutta Morgue. purpose a bunch of fine lathery froth about the nostrils, all cases of death inhibition paper I exclude by and the respiratory tract down to the bronchi due to submersion and all cases of or syncope was filled with it. received after into death from injuries falling The quantity of fluid in the air-passage varies the water. -
Respiratory Physiology for the Anesthesiologist
REVIEW ARTICLE Deborah J. Culley, M.D., Editor ABSTRACT Respiratory function is fundamental in the practice of anesthesia. Knowledge of basic physiologic principles of respiration assists in the proper implemen- tation of daily actions of induction and maintenance of general anesthesia, Respiratory Physiology delivery of mechanical ventilation, discontinuation of mechanical and pharma- cologic support, and return to the preoperative state. The current work pro- Downloaded from http://pubs.asahq.org/anesthesiology/article-pdf/130/6/1064/455191/20190600_0-00035.pdf by guest on 24 September 2021 for the Anesthesiologist vides a review of classic physiology and emphasizes features important to the anesthesiologist. The material is divided in two main sections, gas exchange Luca Bigatello, M.D., Antonio Pesenti, M.D. and respiratory mechanics; each section presents the physiology as the basis ANESTHESIOLOGY 2019; 130:1064–77 of abnormal states. We review the path of oxygen from air to the artery and of carbon dioxide the opposite way, and we have the causes of hypoxemia and of hypercarbia based on these very footpaths. We present the actions nesthesiologists take control of the respiratory func- of pressure, flow, and volume as the normal determinants of ventilation, and Ation of millions of patients throughout the world each we review the resulting abnormalities in terms of changes of resistance and day. We learn to maintain gas exchange and use respiration compliance. to administer anesthetic gases through the completion of (ANESTHESIOLOGY 2019; 130:1064–77) surgery, when we return this vital function to its legitimate owners, ideally with a seamless transition to a healthy post- operative course. -
MECAP News April 2021
U.S. Consumer Product Safety Commission MECAPnews MEDICAL EXAMINERS AND CORONERS ALERT PROJECT April 2021 MECAP Reports | Page 2 Asphyxia/Suffocation Carbon Monoxide Poisoning Submersion MECAP Reports | Page 3 Fire All-Terrain Vehicles (ATVs) Electrocution Fatalities Involving Other Hazards MECAP Contact | Page 4 The following pages summarize MECAP reports Yolanda Nash received by CPSC selected for follow-up Program Analyst investigation. The entries include a brief Division of Hazard and Injury Data description of the incident to illustrate the type and Systems Directorate for Epidemiology nature of the reported fatalities. This important information helps CPSC carry out its mission to U.S. Consumer Product Safety protect the public from product-related injuries and Commission deaths. 4330 East-West Highway Bethesda, MD We appreciate your support; please continue to 20814 report your product-related cases to us. [email protected] 1-800-638-8095 x7502 or 301-504-7502 *Cases selected for CPSC follow-up investigation Asphyxiation/ down to sleep in a toddler basement stairs. The Suffocation bed with multiple heavy electric power had been blankets. The next morning, shut off, and the generator *A 7-year-old female was the mother found the was used to provide power. discovered by her mother decedent positioned face EMS measured the carbon unresponsive in bed with a down in the soft bedding monoxide level at 500 ppm. balloon pulled over her face. and blankets. Despite The cause of death was The decedent became emergency efforts, the carbon monoxide poisoning. entangled with a helium infant was pronounced dead balloon tied to her bed and at the hospital. -
Influence of a Six-Week Swimming Training with Added Respiratory
International Journal of Environmental Research and Public Health Article Influence of a Six-Week Swimming Training with Added Respiratory Dead Space on Respiratory Muscle Strength and Pulmonary Function in Recreational Swimmers Stefan Szczepan 1,* , Natalia Danek 2 , Kamil Michalik 2 , Zofia Wróblewska 3 and Krystyna Zato ´n 1 1 Department of Swimming, Faculty of Physical Education, University School of Physical Education in Wroclaw, Ignacego Jana Paderewskiego 35, Swimming Pool, 51-612 Wroclaw, Poland; [email protected] 2 Department of Physiology and Biochemistry, Faculty of Physical Education, University School of Physical Education in Wroclaw, Ignacego Jana Paderewskiego 35, P-3 Building, 51-612 Wroclaw, Poland; [email protected] (N.D.); [email protected] (K.M.) 3 Faculty of Pure and Applied Mathematics, Wroclaw University of Science and Technology, Zygmunta Janiszewskiego 14a, C-11 Building, 50-372 Wroclaw, Poland; zofi[email protected] * Correspondence: [email protected]; Tel.: +48-713-473-404 Received: 5 July 2020; Accepted: 6 August 2020; Published: 8 August 2020 Abstract: The avoidance of respiratory muscle fatigue and its repercussions may play an important role in swimmers’ health and physical performance. Thus, the aim of this study was to investigate whether a six-week moderate-intensity swimming intervention with added respiratory dead space (ARDS) resulted in any differences in respiratory muscle variables and pulmonary function in recreational swimmers. A sample of 22 individuals (recreational swimmers) were divided into an experimental (E) and a control (C) group, observed for maximal oxygen uptake (VO2max). The intervention involved 50 min of front crawl swimming performed at 60% VO2max twice weekly for six weeks. -
Calculation of Dead Space - Relevance in Critical Care
CALCULATION OF DEAD SPACE - RELEVANCE IN CRITICAL CARE Kodati Rakesh Dead space • Dead space calculation • CO2 measurement • Effect of mechanical ventilation • ARDS • Recruitment & proning • Pulmonary embolism • Weaning DEAD SPACE CALCULATION Dead space • Volume of the airways and lungs that does not participate in gas exchange • Anatomical dead space – Volume of conducting airways – Upper airways, larynx, trachea, bronchi and bronchioles – Does not include respiratory bronchioles and alveoli • Physiologic dead space (VDphys) – Total volume of the lungs that does not participate in gas exchange – Includes anatomic dead space plus a functional dead space in the alveoli Dead space Dead space Difference b/w expected & actual composition of the effluent media Basis for calculating dead space and shunt Dead space Rileys 3 compartment model Alveoli groups according to V/Q ratios A – normal perfusion, no ventilation (shunt V/Q of 0) B – normal perfusion & ventilation (shunt V/Q of 1) C – normal ventilation, no perfusion (shunt V/Q of infinity) Physiological dead space (VD phys) Airway dead space (VD aw) Alveolar dead space (VD alv) Riley RL et al, J App Physiol 1949 Dead space Bohrs dead space • Danish physiologist Christian Bohr in 1891 • Mass balance calculation dilution of the expired gas by the inspiratory gas filling the conductive airways FACO2 - mean alveolar CO2 concentration sample of gas collected late in exhalation FECO2 fractional CO2 concentration in the total mixed exhaled breath H. Thomas Robertson, Eur Respir J 2015; 45 Tusman G et al, Anesth Analg 2012 Bohrs dead space • Fractions or partial pressures of CO2 are used interchangeably • FACO2 is the mean value of CO2 within the alveolar compartment • FE CO2 is calculated using formula VCO2/VT x (Pb – PH2O) H. -
Near Drowning
Near Drowning McHenry Western Lake County EMS Definition • Near drowning means the person almost died from not being able to breathe under water. Near Drownings • Defined as: Survival of Victim for more than 24* following submission in a fluid medium. • Leading cause of death in children 1-4 years of age. • Second leading cause of death in children 1-14 years of age. • 85 % are caused from falls into pools or natural bodies of water. • Male/Female ratio is 4-1 Near Drowning • Submersion injury occurs when a person is submerged in water, attempts to breathe, and either aspirates water (wet) or has laryngospasm (dry). Response • If a person has been rescued from a near drowning situation, quick first aid and medical attention are extremely important. Statistics • 6,000 to 8,000 people drown each year. Most of them are within a short distance of shore. • A person who is drowning can not shout for help. • Watch for uneven swimming motions that indicate swimmer is getting tired Statistics • Children can drown in only a few inches of water. • Suspect an accident if you see someone fully clothed • If the person is a cold water drowning, you may be able to revive them. Near Drowning Risk Factor by Age 600 500 400 300 Male Female 200 100 0 0-4 yr 5-9 yr 10-14 yr 15-19 Ref: Paul A. Checchia, MD - Loma Linda University Children’s Hospital Near Drowning • “Tragically 90% of all fatal submersion incidents occur within ten yards of safety.” Robinson, Ped Emer Care; 1987 Causes • Leaving small children unattended around bath tubs and pools • Drinking