How Am I Supposed to Breathe with No Air? Nikki Lewis, CVT, VTS (ECC) 2016 ISVMA Conference Proceedings

Total Page:16

File Type:pdf, Size:1020Kb

How Am I Supposed to Breathe with No Air? Nikki Lewis, CVT, VTS (ECC) 2016 ISVMA Conference Proceedings How am I supposed to breathe with no air? Nikki Lewis, CVT, VTS (ECC) 2016 ISVMA Conference Proceedings When the respiratory center begins to fail, functions such as oxygenation and elimination of carbon dioxide are compromised. This results in hypercapnia and hypoxemia. The major components of gas exchange are the lungs and the respiratory muscles which provide a force or pump to the lungs. If either one of these primary functions are compromised it can result in respiratory failure. Assessment of oxygenation and ventilation To accurately define respiratory failure, you must evaluate arterial blood gasses. A partial pressure of oxygen (PaO2) that’s less than 60mmHg and a partial pressure of carbon dioxide (PaCO2) of greater than 50mmHg define respiratory failure. The term partial pressure refers to the total pressure exerted by a single molecule of this gas. There are several molecules all combined in a cell; however, the partial pressure is the single gas’ pressure. Pulse oximetry is another method of quantifying oxygenation, although not as precise as arterial blood gasses. This is an indirect measurement of PaO2. A pulse oximetry measurement of 91-100% typically reflects a PaO2 of 80-100mmHg, which is a normal value. If the pulse oximetry falls below 91% this results in a rapid drop of the PaO2. Several factors can make the pulse oximetry reading false. These include pigmented tissues, motion and methemoglobinemia. Lastly, the measurement of end-tidal CO2 (ETCO2) will evaluate proper gas exchange. This is done by intubating the patient and using capnography. Capnography measures the expired CO2. Normal ETCO2 range is 35-45mmHg. An increase in ETCO2 is indicative of hypoventilation or increased dead space and a decrease in ETCO2 is indicative of hyperventilation. Hypoxemia or hypoxemic respiratory failure Hypoxemia is defined as a decreased delivery of oxygen to tissues. There are 5 main causes of hypoxemia: 1. V/Q mismatch = ventilation perfusion mismatch occurs when ventilation is not equal to the blood flow to the lungs. Examples of this include pulmonary thromboembolism (PTE), bronchitis and chronic obstructive pulmonary disease (COPD). 2. Decreased fraction of inspired air (FiO2) = percentage of air that is inspired has been decreased or compromised. This is commonly seen in acute respiratory distress syndrome (ARDS) and carbon monoxide poisoning. 3. Shunting = there are three types of shunts that can be characterized. An anatomic shunt occurs when blood enters the left side of the heart without passing through the lungs, therefore decreasing oxygen carrying capacity. A capillary shunt is defined as blood that passes through the lungs, however it does not get oxygenated because it does not respire with the alveolar gas. This is commonly seen in atelectasis. Lastly venous admixture occurs when the alveoli fill with fluid such as cardiogenic/noncardiogenic edema, pneumonia or coagulopathies. The impairment of alveolar function prohibits oxygenation. 4. Hypoventilation = decrease in respiratory rate, therefore a decrease in oxygenation and an increase in levels of carbon dioxide (CO2). 5. Diffusion impairment = this occurs when the blood-gas barrier becomes thickened and oxygen cannot exchange within the red blood cells. Hypercapnic respiratory failure Hypercapnia is defined as an elevation of CO2 in the blood and is an indication of hypoventilation. Ventilation is driven by the respiratory pump. The respiratory pump is comprised of the respiratory muscles, spinal cord, neuromuscular junction and peripheral nerves. Any disorders of this pump will result in hypercapnic failure. Respiratory fatigue will also cause hypercapnia simply because the muscles tire out from excessive work. The energy that is exerted does not equal the energy that is taken in, which causes decreased energy supply to the muscles. This is seen with decreased lung compliance. Examples of decreased lung compliance include pulmonary edema, bronchoconstrictive pneumonia and ARDS. In the aforementioned examples, the lungs are not able to expand to their full capacity, reducing the amount of inspired air and retention of CO2. Treatment of respiratory failure Any patient with respiratory distress, dysfunction or failure should be treated with supplemental oxygen. It is important to first assess the ventilation status to determine the appropriate oxygen delivery method. This assessment may be done by obtaining pulse oximetry (SPO2) and, if it can be done safely, arterial blood gases (ABG). todaysveterinarypractice.navc.com A normal SPO2 should be 95% or higher. An SPO2 that is read at approximately 90% is equivalent to a PO2 of 60-70mmHg, which indicates the need to begin oxygen therapy. To define respiratory failure using ABG sampling the PO2 must be <60-80mmHg and the PCO2 must be >50mmHg. There are many ways to deliver oxygen. It is extremely important to ensure that all methods of oxygen delivery are humidified to prevent drying of the mucous membranes, respiratory epithelial damage and decreased mucociliary clearance which put the patient at risk for infection. Beginning with the least, or noninvasive method to the most invasive method of delivery, oxygen can be delivered as follows: 1. Flow-by oxygen = this is done by placing oxygen tubing near or around the nose and mouth. It is not appropriate for patients with significant respiratory dysfunction. A flow rate of 2-3L/min should be used. 2. Face mask = an appropriate size mask must be selected to provide a “seal”. A flow rate of 2- 10L/min should be used. The down side to this method is rebreathing expired CO2, since the fit of the mask doesn’t allow the CO2 to escape completely. 3. Oxygen hood or portable oxygen device (POD) = this is done by using supplies such as a large e-collar and plastic wrap. Roughly 75% of the e-collar is covered and the other 25% is left open to allow the CO2 to escape. A flow rate of 0.5-1L/min is used. The downside to this method is the patient may become hot, being closed inside the device. 4. Oxygen cage = the benefits to using an oxygen cage are temperature, O2 percentage and humidity control. The largest disadvantage most professionals have is the separation between themselves and the patient, resulting in a feeling of helplessness. 5. Nasal cannula = If oxygen is needed for more than 24 hours, or the patient is too large for an oxygen cage, cannulas should be placed. This is achieved by using a red rubber catheter measured to the TMJ joint, fed into the nares and secured using a finger trap method. A flow rate of 50-150ml/kg/min is used. Complications of this method include epistaxis and nasopharyngeal irritation. 6. Endotracheal intubation = this should be done in cases where other methods of delivery fail to provide sufficient O2. The patient must be sedated, unless they are obtunded or unconscious. The down sides to this method of delivery include tracheal irritation, oxygen toxicity and prolonged sedation. While respiratory failure is a serious, sometimes dire situation, there are times where a “hands off” approach is necessary. If a patient is in physiologic distress it can be extremely anxious which can contribute to the respiratory dysfunction. In these cases, the patients can be put in the oxygen cage to help them relax prior to starting any treatment. Medication such as butorphanol may be used to aid in the anxiety and is noted to be “respiratory friendly”. Even if you do not have a confirmed diagnosis, this is almost always an appropriate treatment. Now you can breathe easy when you have a respiratory patient because you know how to safely provide supplemental oxygen. References available on request. .
Recommended publications
  • Breathing & Buoyancy Control: Stop, Breathe, Think, And
    Breathing & Buoyancy control: Stop, Breathe, Think, and then Act For an introduction to this five part series see: House of Cards 'As a child I was fascinated by the way marine creatures just held their position in the water and the one creature that captivated my curiosity and inspired my direction more than any is the Nautilus. Hanging motionless in any depth of water and the inspiration for the design of the submarine with multiple air chambers within its shell to hold perfect buoyancy it is truly a grand master of the art of buoyancy. Buoyancy really is the ultimate Foundation skill in the repertoire of a diver, whether they are a beginner or an explorer. It is the base on which all other skills are laid. With good buoyancy a problem does not become an emergency it remains a problem to be solved calmly under control. The secret to mastery of buoyancy is control of breathing, which also gives many additional advantages to the skill set of a safe diver. Calming one's breathing can dissipate stress, give a sense of well being and control. Once the breathing is calmed, the heart rate will calm too and any situation can be thought through, processed and solved. Always ‘Stop, Breathe, Think and then Act.' Breath control is used in martial arts as a control of the flow of energy, in prenatal training and in child birth. At a simpler more every day level, just pausing to take several slow deep breaths can resolve physical or psychological stress in many scenarios found in daily life.
    [Show full text]
  • Gas Exchange
    Gas exchange Gas exchange occurs as a result of respiration, when carbon dioxide is excreted and oxygen taken up, and photosynthesis, when oxygen is excreted and carbon dioxide is taken up. The rate of gas exchange is affected by: • the area available for diffusion • the distance over which diffusion occurs • the concentration gradient across the gas exchange surface • the speed with which molecules diffuse through membranes. Efficient gas exchange systems must: • have a large surface area to volume ratio • be thin • have mechanisms for maintaining steep concentration gradients across themselves • be permeable to gases. Single-celled organisms are aquatic and their cell surface membrane has a sufficiently large surface area to volume ratio to act as an efficient gas exchange surface. In larger organisms, permeable, thin, flat structures have all the properties of efficient gas exchange surfaces but need water to prevent their dehydration and give them mechanical support. Since the solubility of oxygen in water is low, organisms that obtain their oxygen from water can maintain only a low metabolic rate. In small and thin organisms, the distance from gas exchange surface to the inside of the organism is short enough for diffusion of gases to be efficient. Diffusion gradients are maintained because gases are continually used up or produced. In larger organisms, simple diffusion is not an efficient way of transporting gases between cells in the body and the gas exchange surface. In many animals a blood circulatory system carries gases to and from the gas exchange surface. The gas-carrying capacity of the blood is increased by respiratory pigments, such as haemoglobin.
    [Show full text]
  • Mechanisms of Pulmonary Gas Exchange Abnormalities During Experimental Group B Streptococcal Infusion
    003 I -3998/85/1909-0922$02.00/0 PEDIATRIC RESEARCH Vol. 19, No. 9, I985 Copyright 0 1985 International Pediatric Research Foundation, Inc. Printed in (I.S. A. Mechanisms of Pulmonary Gas Exchange Abnormalities during Experimental Group B Streptococcal Infusion GREGORY K. SORENSEN, GREGORY J. REDDING, AND WILLIAM E. TRUOG ABSTRACT. Group B streptococcal sepsis in newborns obtained from GBS (5, 6). Arterial Poz fell by 9 torr in association produces pulmonary arterial hypertension and hypoxemia. with the increase in pulmonary arterial pressure (4). In contrast, The purpose of this study was to investigate the mecha- the neonatal piglet infused with GBS demonstrated both pul- nisms by which hypoxemia occurs. Ten anesthetized, ven- monary arterial hypertension and profound arterial hypoxemia tilated piglets were infused with 2 x lo9 colony forming (7). These results suggest that the neonatal pulmonary vascula- unitstkg of Group B streptococci over a 30-min period. ture may respond to bacteremia differently from that of adults. Pulmonary arterial pressure rose from 14 ? 2.8 to 38 ? The relationship between Ppa and the matching of alveolar 6.7 torr after 20 min of the bacterial infusion (p< 0.01). ventilation and pulmonary perfusion, a major determinant of During the same period, cardiac output fell from 295 to arterial oxygenation during room air breathing (8), has not been 184 ml/kg/min (p< 0.02). Arterial Po2 declined from 97 studied in newborns. The predictable rise in Ppa with an infusion 2 7 to 56 2 11 torr (p< 0.02) and mixed venous Po2 fell of group B streptococcus offers an opportunity to delineate the from 39.6 2 5 to 28 2 8 torr (p< 0.05).
    [Show full text]
  • Asphyxia Neonatorum
    CLINICAL REVIEW Asphyxia Neonatorum Raul C. Banagale, MD, and Steven M. Donn, MD Ann Arbor, Michigan Various biochemical and structural changes affecting the newborn’s well­ being develop as a result of perinatal asphyxia. Central nervous system ab­ normalities are frequent complications with high mortality and morbidity. Cardiac compromise may lead to dysrhythmias and cardiogenic shock. Coagulopathy in the form of disseminated intravascular coagulation or mas­ sive pulmonary hemorrhage are potentially lethal complications. Necrotizing enterocolitis, acute renal failure, and endocrine problems affecting fluid elec­ trolyte balance are likely to occur. Even the adrenal glands and pancreas are vulnerable to perinatal oxygen deprivation. The best form of management appears to be anticipation, early identification, and prevention of potential obstetrical-neonatal problems. Every effort should be made to carry out ef­ fective resuscitation measures on the depressed infant at the time of delivery. erinatal asphyxia produces a wide diversity of in­ molecules brought into the alveoli inadequately com­ Pjury in the newborn. Severe birth asphyxia, evi­ pensate for the uptake by the blood, causing decreases denced by Apgar scores of three or less at one minute, in alveolar oxygen pressure (P02), arterial P02 (Pa02) develops not only in the preterm but also in the term and arterial oxygen saturation. Correspondingly, arte­ and post-term infant. The knowledge encompassing rial carbon dioxide pressure (PaC02) rises because the the causes, detection, diagnosis, and management of insufficient ventilation cannot expel the volume of the clinical entities resulting from perinatal oxygen carbon dioxide that is added to the alveoli by the pul­ deprivation has been further enriched by investigators monary capillary blood.
    [Show full text]
  • Den170044 Summary
    DE NOVO CLASSIFICATION REQUEST FOR CLEARMATE REGULATORY INFORMATION FDA identifies this generic type of device as: Isocapnic ventilation device. An isocapnic ventilation device is a prescription device used to administer a blend of carbon dioxide and oxygen gases to a patient to induce hyperventilation. This device may be labeled for use with breathing circuits made of reservoir bags (21 CFR 868.5320), oxygen cannulas (21 CFR 868.5340), masks (21 CFR 868.5550), valves (21 CFR 868.5870), resuscitation bags (21 CFR 868.5915), and/or tubing (21 CFR 868.5925). NEW REGULATION NUMBER: 21 CFR 868.5480 CLASSIFICATION: Class II PRODUCT CODE: QFB BACKGROUND DEVICE NAME: ClearMateTM SUBMISSION NUMBER: DEN170044 DATE OF DE NOVO: August 23, 2017 CONTACT: Thornhill Research, Inc. 5369 W. Wallace Ave Scottsdale, AZ 85254 INDICATIONS FOR USE ClearMateTM is intended to be used by emergency department medical professionals as an adjunctive treatment for patients suffering from carbon monoxide poisoning. The use of ClearMateTM enables accelerated elimination of carbon monoxide from the body by allowing isocapnic hyperventilation through simulated partial rebreathing. LIMITATIONS Intended Patient Population is adults aged greater than 16 years old and a minimum of 40 kg (80.8 lbs) ClearMateTM is intended to be used by emergency department medical professionals. This device should always be used as adjunctive therapy; not intended to replace existing protocol for treating carbon monoxide poisoning. When providing treatment to a non-spontaneously breathing patient using the ClearMate™ non-spontaneous breathing patient circuit, CO2 monitoring equipment for the measurement of expiratory carbon dioxide concentration must be used. PLEASE REFER TO THE LABELING FOR A MORE COMPLETE LIST OF WARNINGS AND CAUTIONS.
    [Show full text]
  • BTS Guideline for Oxygen Use in Adults in Healthcare and Emergency
    BTS guideline BTS guideline for oxygen use in adults in healthcare Thorax: first published as 10.1136/thoraxjnl-2016-209729 on 15 May 2017. Downloaded from and emergency settings BRO’Driscoll,1,2 L S Howard,3 J Earis,4 V Mak,5 on behalf of the British Thoracic Society Emergency Oxygen Guideline Group ▸ Additional material is EXECUTIVE SUMMARY OF THE GUIDELINE appropriate oxygen therapy can be started in the published online only. To view Philosophy of the guideline event of unexpected clinical deterioration with please visit the journal online ▸ (http://dx.doi.org/10.1136/ Oxygen is a treatment for hypoxaemia, not hypoxaemia and also to ensure that the oxim- thoraxjnl-2016-209729). breathlessness. Oxygen has not been proven to etry section of the early warning score (EWS) 1 have any consistent effect on the sensation of can be scored appropriately. Respiratory Medicine, Salford ▸ Royal Foundation NHS Trust, breathlessness in non-hypoxaemic patients. The target saturation should be written (or Salford, UK ▸ The essence of this guideline can be summarised ringed) on the drug chart or entered in an elec- 2Manchester Academic Health simply as a requirement for oxygen to be prescribed tronic prescribing system (guidance on figure 1 Sciences Centre (MAHSC), according to a target saturation range and for those (chart 1)). Manchester, UK 3Hammersmith Hospital, who administer oxygen therapy to monitor the Imperial College Healthcare patient and keep within the target saturation range. 3 Oxygen administration NHS Trust, London, UK ▸ The guideline recommends aiming to achieve ▸ Oxygen should be administered by staff who are 4 University of Liverpool, normal or near-normal oxygen saturation for all trained in oxygen administration.
    [Show full text]
  • Gas-Liquid Hollow Fiber Membrane Contactors for Different Applications
    Review Gas-Liquid Hollow Fiber Membrane Contactors for Different Applications Stepan D. Bazhenov 1,*, Alexandr V. Bildyukevich 2 and Alexey V. Volkov 1 1 A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow 119991, Russia; [email protected] 2 Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus, Minsk 220072, Belarus; [email protected] * Correspondence: [email protected]; Tel.: +7-495-647-5927 (ext. 202) Received: 14 September 2018; Accepted: 2 October 2018; Published: 10 October 2018 Abstract: Gas-liquid membrane contactors that were based on hollow fiber membranes are the example of highly effective hybrid separation processes in the field of membrane technology. Membranes provide a fixed and well-determined interface for gas/liquid mass transfer without dispensing one phase into another while their structure (hollow fiber) offers very large surface area per apparatus volume resulted in the compactness and modularity of separation equipment. In many cases, stated benefits are complemented with high separation selectivity typical for absorption technology. Since hollow fiber membrane contactors are agreed to be one of the most perspective methods for CO2 capture technologies, the major reviews are devoted to research activities within this field. This review is focused on the research works carried out so far on the applications of membrane contactors for other gas-liquid separation tasks, such as water deoxygenation/ozonation, air humidity control, ethylene/ethane separation, etc. A wide range of materials, membranes, and liquid solvents for membrane contactor processes are considered. Special attention is given to current studies on the capture of acid gases (H2S, SO2) from different mixtures.
    [Show full text]
  • The Effect of Hypercapnia on Estimated Hepatic Blood
    THE EFFECT OF HYPERCAPNIA ON ESTIMATED HEPATIC BLOOD FLOW, CIRCULATING SPLANCHNIC BLOOD VOLUME, AND HEPATIC SULFOBROMOPHTHALEIN CLEARANCE DURING GENERAL ANESTHESIA IN MAN Robert M. Epstein, … , Emanuel M. Papper, Stanley E. Bradley J Clin Invest. 1961;40(3):592-598. https://doi.org/10.1172/JCI104288. Research Article Find the latest version: https://jci.me/104288/pdf THE EFFECT OF HYPERCAPNIA ON ESTIMATED HEPATIC BLOOD FLOW, CIRCULATING SPLANCHNIC BLOOD VOL- UME, AND HEPATIC SULFOBROMOPHTHALEIN CLEARANCE DURING GENERAL ANES- THESIA IN MAN * By ROBERT M. EPSTEIN,t HENRY 0. WHEELER,4 M. JACK FRUMIN, DAVID V. HABIF, EMANUEL M. PAPPER AND STANLEY E. BRADLEY (From the Departments of Anesthesiology, Medicine and Surgery, Presbyterian Hospital, and Columbia University College of Physicians and Surgeons, New York, N. Y.) (Submitted for publication August 9, 1960; accepted November 21, 1960) Splanchnic circulatory adjustments during gen- sure that might otherwise arise from excessive eral anesthesia in man are difficult to assess in and unpredictable movements of the diaphragm the absence of precise information regarding the are eliminated. Data of value in elucidating the depth of anesthesia and the regulation of gas vascular response to hypercapnia and anesthesia exchange. The vasoconstriction responsible for may therefore be obtained from measurements of the fall in hepatic blood flow that has been reported splanchnic blood volume as well as blood flow by several investigators (1, 2) may be attributable (7). In the study reported in this paper, me- to the anesthetic agents themselves, to changes in chanically controlled light anesthesia (thiopental- venous return following reduction in activity and nitrous oxide) alone appeared to have no effect tone of skeletal muscles (3), to hypoxia or to upon the splanchnic bed, suggesting that extrane- hypercapnia.
    [Show full text]
  • Gas Exchange in the Prone Posture
    RESPIRATORY CARE Paper in Press. Published on May 30, 2017 as DOI: 10.4187/respcare.05512 Gas Exchange in the Prone Posture Nicholas J Johnson MD, Andrew M Luks MD, and Robb W Glenny MD Introduction Overview of Gas Exchange Lung Structure Normal Exchange of Oxygen and Carbon Dioxide Abnormal Exchange of Oxygen and Carbon Dioxide Gas Exchange in the Prone Posture Under Normal Conditions Spatial Distribution of Ventilation Spatial Distribution of Perfusion Ventilation and Perfusion Matching Mechanisms by Which the Prone Posture Improves Gas Exchange in Animal Models of ARDS Additional Physiologic Effects of the Prone Posture Clinical Trials Summary The prone posture is known to have numerous effects on gas exchange, both under normal condi- tions and in patients with ARDS. Clinical studies have consistently demonstrated improvements in oxygenation, and a multi-center randomized trial found that, when implemented within 48 h of moderate-to-severe ARDS, placing subjects in the prone posture decreased mortality. Improve- ments in gas exchange occur via several mechanisms: alterations in the distribution of alveolar ventilation, redistribution of blood flow, improved matching of local ventilation and perfusion, and reduction in regions of low ventilation/perfusion ratios. Ventilation heterogeneity is reduced in the prone posture due to more uniform alveolar size secondary to a more uniform vertical pleural pressure gradient. The prone posture results in more uniform pulmonary blood flow when com- pared with the supine posture, due to an anatomical bias for greater blood flow to dorsal lung regions. Because both ventilation and perfusion heterogeneity decrease in the prone posture, gas exchange improves.
    [Show full text]
  • Gas Exchange and Gas Transfer
    Gas exchange and gas transfer •Red: important •Black: in male / female slides •Pink: in female slides only Editing file •Blue: in male slides only •Yellow: notes •Gray: extra information Twitter account •Textbook: Guyton + Linda Objectives 1. Define partial pressure of a gas 2. Understand that the pressure exerted by each gas in a mixture of gases is independent of the pressure exerted by the other gases (Dalton's Law) 3. Understand that gases in a liquid diffuse from higher partial pressure to lower partial pressure (Henry’s Law) 4. Describe the factors that determine the concentration of a gas in a liquid. 5. Describe the components of the alveolar-capillary membrane (i.e., what does a molecule of gas pass through). 6. Knew the various factors determining gas transfer: - Surface area, thickness, partial pressure difference, and diffusion coefficient of gas 7. State the partial pressures of oxygen and carbon dioxide in the atmosphere, alveolar gas, at the end of the pulmonary capillary, in systemic capillaries, and at the beginning of a pulmonary capillary. Gas exchange through the respiratory membrane After the alveoli are ventilated with fresh air, the next step in the respiratory process is diffusion of oxygen from the alveoli into the pulmonary blood and diffusion of carbon dioxide in the opposite direction, out of the blood. Female’s slides only Composition of alveolar air and its relation to atmospheric air: The dry atmospheric air Alveolar air is partially O2 is constantly CO2 constantly diffuses enters the respiratory replaced by atmospheric absorbed from the from the pulmonary passage is humidified air with each breath.
    [Show full text]
  • Influence of a Six-Week Swimming Training with Added Respiratory
    International Journal of Environmental Research and Public Health Article Influence of a Six-Week Swimming Training with Added Respiratory Dead Space on Respiratory Muscle Strength and Pulmonary Function in Recreational Swimmers Stefan Szczepan 1,* , Natalia Danek 2 , Kamil Michalik 2 , Zofia Wróblewska 3 and Krystyna Zato ´n 1 1 Department of Swimming, Faculty of Physical Education, University School of Physical Education in Wroclaw, Ignacego Jana Paderewskiego 35, Swimming Pool, 51-612 Wroclaw, Poland; [email protected] 2 Department of Physiology and Biochemistry, Faculty of Physical Education, University School of Physical Education in Wroclaw, Ignacego Jana Paderewskiego 35, P-3 Building, 51-612 Wroclaw, Poland; [email protected] (N.D.); [email protected] (K.M.) 3 Faculty of Pure and Applied Mathematics, Wroclaw University of Science and Technology, Zygmunta Janiszewskiego 14a, C-11 Building, 50-372 Wroclaw, Poland; zofi[email protected] * Correspondence: [email protected]; Tel.: +48-713-473-404 Received: 5 July 2020; Accepted: 6 August 2020; Published: 8 August 2020 Abstract: The avoidance of respiratory muscle fatigue and its repercussions may play an important role in swimmers’ health and physical performance. Thus, the aim of this study was to investigate whether a six-week moderate-intensity swimming intervention with added respiratory dead space (ARDS) resulted in any differences in respiratory muscle variables and pulmonary function in recreational swimmers. A sample of 22 individuals (recreational swimmers) were divided into an experimental (E) and a control (C) group, observed for maximal oxygen uptake (VO2max). The intervention involved 50 min of front crawl swimming performed at 60% VO2max twice weekly for six weeks.
    [Show full text]
  • Calculation of Dead Space - Relevance in Critical Care
    CALCULATION OF DEAD SPACE - RELEVANCE IN CRITICAL CARE Kodati Rakesh Dead space • Dead space calculation • CO2 measurement • Effect of mechanical ventilation • ARDS • Recruitment & proning • Pulmonary embolism • Weaning DEAD SPACE CALCULATION Dead space • Volume of the airways and lungs that does not participate in gas exchange • Anatomical dead space – Volume of conducting airways – Upper airways, larynx, trachea, bronchi and bronchioles – Does not include respiratory bronchioles and alveoli • Physiologic dead space (VDphys) – Total volume of the lungs that does not participate in gas exchange – Includes anatomic dead space plus a functional dead space in the alveoli Dead space Dead space Difference b/w expected & actual composition of the effluent media Basis for calculating dead space and shunt Dead space Rileys 3 compartment model Alveoli groups according to V/Q ratios A – normal perfusion, no ventilation (shunt V/Q of 0) B – normal perfusion & ventilation (shunt V/Q of 1) C – normal ventilation, no perfusion (shunt V/Q of infinity) Physiological dead space (VD phys) Airway dead space (VD aw) Alveolar dead space (VD alv) Riley RL et al, J App Physiol 1949 Dead space Bohrs dead space • Danish physiologist Christian Bohr in 1891 • Mass balance calculation dilution of the expired gas by the inspiratory gas filling the conductive airways FACO2 - mean alveolar CO2 concentration sample of gas collected late in exhalation FECO2 fractional CO2 concentration in the total mixed exhaled breath H. Thomas Robertson, Eur Respir J 2015; 45 Tusman G et al, Anesth Analg 2012 Bohrs dead space • Fractions or partial pressures of CO2 are used interchangeably • FACO2 is the mean value of CO2 within the alveolar compartment • FE CO2 is calculated using formula VCO2/VT x (Pb – PH2O) H.
    [Show full text]