Asphyxia Neonatorum
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Breathing & Buoyancy Control: Stop, Breathe, Think, And
Breathing & Buoyancy control: Stop, Breathe, Think, and then Act For an introduction to this five part series see: House of Cards 'As a child I was fascinated by the way marine creatures just held their position in the water and the one creature that captivated my curiosity and inspired my direction more than any is the Nautilus. Hanging motionless in any depth of water and the inspiration for the design of the submarine with multiple air chambers within its shell to hold perfect buoyancy it is truly a grand master of the art of buoyancy. Buoyancy really is the ultimate Foundation skill in the repertoire of a diver, whether they are a beginner or an explorer. It is the base on which all other skills are laid. With good buoyancy a problem does not become an emergency it remains a problem to be solved calmly under control. The secret to mastery of buoyancy is control of breathing, which also gives many additional advantages to the skill set of a safe diver. Calming one's breathing can dissipate stress, give a sense of well being and control. Once the breathing is calmed, the heart rate will calm too and any situation can be thought through, processed and solved. Always ‘Stop, Breathe, Think and then Act.' Breath control is used in martial arts as a control of the flow of energy, in prenatal training and in child birth. At a simpler more every day level, just pausing to take several slow deep breaths can resolve physical or psychological stress in many scenarios found in daily life. -
Risk Factors Associated with the Development
Biomédica 2017;37(Supl.1):2017;37(Supl.1):51-651-6 Risk factors of perinatal asphyxia doi: http://dx.doi.org/10.7705/biomedica.v37i1.2844 ORIGINAL ARTICLE Risk factors associated with the development of perinatal asphyxia in neonates at the Hospital Universitario del Valle, Cali, Colombia, 2010-2011 Javier Torres-Muñoz, Christian Rojas, Diana Mendoza-Urbano, Darly Marín-Cuero, Sandra Orobio, Carlos Echandía Grupo INSIDE, Departamento de Pediatría, Facultad de Medicina, Universidad del Valle, Cali, Colombia Introduction: Perinatal asphyxia is one of the main causes of perinatal mortality and morbidity worldwide and it generates high costs for health systems; however, it has modifiable risk factors. Objective: To identify the risk factors associated with the development of perinatal asphyxia in newborns at Hospital Universitario del Valle, Cali, Colombia. Materials and methods: Incident cases and concurrent controls were examined. Cases were defined as newborns with moderate to severe perinatal asphyxia who were older than or equal to 36 weeks of gestational age, needed advanced resuscitation and presented one of the following: early neurological disorders, multi-organ commitment or a sentinel event. The controls were newborns without asphyxia who were born one week apart from the case at the most and had a comparable gestational age. Patients with major congenital malformations and syndromes were excluded. Results: Fifty-six cases and 168 controls were examined. Premature placental abruption (OR=41.09; 95%CI: 4.61-366.56), labor with a prolonged expulsive phase (OR=31.76; 95%CI: 8.33-121.19), lack of oxytocin use (OR=2.57; 95% CI: 1.08 - 6.13) and mothers without a partner (OR=2.56; 95% CI: 1.21-5.41) were risk factors for the development of perinatal asphyxia in the study population. -
Quality of Survival After Severe Birth Asphyxia
Arch Dis Child: first published as 10.1136/adc.52.8.620 on 1 August 1977. Downloaded from Archives of Disease in Childhood, 1977, 52, 620-626 Quality of survival after severe birth asphyxia ALISON J. THOMSON, MARGARET SEARLE, AND G. RUSSELL From Aberdeen Maternity Hospital and the Royal Aberdeen Children's Hospital SUMMARY Thirty-one children who survived severe birth asphyxia defined by a 1-minute Apgar score of 0, or a 5-minute Apgar score of <4, have been seen at age 5 to 10 years for neurological and psychological assessment. Their progress has been compared with that of controls matched for sex, birthweight, gestational age, and social class. 29 (93 %) of the 31 asphyxiated group and all the controls had no serious neurological or mental handicap. 2 were severely disabled and mentally retarded. Detailed studies of psychological function showed no significant differences between the two groups. 2 apparently stillborn infants have made normal progress. It was not possible to identify any perinatal factor which predicted the occurrence of serious handicap with certainty. We considered that the quality of life enjoyed by the large majority of the survivors was such as to justify a positive approach to the resuscitation of very severely asphyxiated neonates. Perinatal asphyxia is a major cause of morbidity and Patients and methods mortality in the first week of life. The survivors have long been recognized to have an increased risk of Cases. In 1964-68 inclusive there were 14 890 single- handicaps such as cerebral palsy, mental retarda- ton live births to mothers living in the city and copyright. -
Meconium Aspiration Syndrome
National Neonatal Perinatal Database 2002-2003 Meconium Aspiration Syndrome Subjects and Methods 145,623 neonates born at 18 centers of National Neonatal-Perinatal Database (NNPD) of India over two year duration (2002-2003) Management of Meconium-stained amniotic fluid Contemporary recommendations of American Academy of Pediatrics and American Heart Association through Neonatal Resuscitation Program and Pediatric Working Group of International Liaison Committee on Resuscitation were expected to be followed. Management of a neonate born through MSAF comprised: 1) Suctioning the mouth, pharynx and nose as soon as head was delivered before delivery of shoulders (intrapartum suctioning) regardless of whether the meconium is thick or thin, and 2) if the infant was non-vigorous, intubating and suctioning the trachea before performing other steps of resuscitation. Meconium aspiration syndrome MAS was defined as presence of two of the following: meconium staining of liquor or staining of nails or umbilical cord or skin, respiratory distress within one hour of birth and radiological evidence of aspiration pneumonitis (atelectasis and/or hyperinflation). Findings Figure 1: Management and outcome of neonates born through meconium stained amniotic fluid Meconium-stained amniotic fluid (MSAF) (n=12,156) 8.4% of live births Among neonates with MSAF (n=12,156) Endotracheal suction in 3468 (28.5%) Need of positive pressure ventilation in During 2504 (20.6%) Resuscitation Resuscitation Need of chest compression in 1021 (8.4%) Among neonates with MSAF (n=12,156) MAS in 1896 (15.6%) Morbidities Morbidities HIE in 846 (7%) Among neonates with MAS (n=1,896) Assisted ventilation in 385 (20.3%) Outcome Death in 332 (17.5%) Mean birth weight of babies born through MSAF was significantly lower (2646552 gm vs. -
Approach to Cyanosis in a Neonate.Pdf
PedsCases Podcast Scripts This podcast can be accessed at www.pedscases.com, Apple Podcasting, Spotify, or your favourite podcasting app. Approach to Cyanosis in a Neonate Developed by Michelle Fric and Dr. Georgeta Apostol for PedsCases.com. June 29, 2020 Introduction Hello, and welcome to this pedscases podcast on an approach to cyanosis in a neonate. My name is Michelle Fric and I am a fourth-year medical student at the University of Alberta. This podcast was made in collaboration with Dr. Georgeta Apostol, a general pediatrician at the Royal Alexandra Hospital Pediatrics Clinic in Edmonton, Alberta. Cyanosis refers to a bluish discoloration of the skin or mucous membranes and is a common finding in newborns. It is a clinical manifestation of the desaturation of arterial or capillary blood and may indicate serious hemodynamic instability. It is important to have an approach to cyanosis, as it can be your only sign of a life-threatening illness. The goal of this podcast is to develop this approach to a cyanotic newborn with a focus on these can’t miss diagnoses. After listening to this podcast, the learner should be able to: 1. Define cyanosis 2. Assess and recognize a cyanotic infant 3. Develop a differential diagnosis 4. Identify immediate investigations and management for a cyanotic infant Background Cyanosis can be further broken down into peripheral and central cyanosis. It is important to distinguish these as it can help you to formulate a differential diagnosis and identify cases that are life-threatening. Peripheral cyanosis affects the distal extremities resulting in blue color of the hands and feet, while the rest of the body remains pinkish and well perfused. -
Traveler Information
Traveler Information QUICK LINKS Marine Hazards—TRAVELER INFORMATION • Introduction • Risk • Hazards of the Beach • Animals that Bite or Wound • Animals that Envenomate • Animals that are Poisonous to Eat • General Prevention Strategies Traveler Information MARINE HAZARDS INTRODUCTION Coastal waters around the world can be dangerous. Swimming, diving, snorkeling, wading, fishing, and beachcombing can pose hazards for the unwary marine visitor. The seas contain animals and plants that can bite, wound, or deliver venom or toxin with fangs, barbs, spines, or stinging cells. Injuries from stony coral and sea urchins and stings from jellyfish, fire coral, and sea anemones are common. Drowning can be caused by tides, strong currents, or rip tides; shark attacks; envenomation (e.g., box jellyfish, cone snails, blue-ringed octopus); or overconsumption of alcohol. Eating some types of potentially toxic fish and seafood may increase risk for seafood poisoning. RISK Risk depends on the type and location of activity, as well as the time of year, winds, currents, water temperature, and the prevalence of dangerous marine animals nearby. In general, tropical seas (especially the western Pacific Ocean) are more dangerous than temperate seas for the risk of injury and envenomation, which are common among seaside vacationers, snorkelers, swimmers, and scuba divers. Jellyfish stings are most common in warm oceans during the warmer months. The reef and the sandy sea bottom conceal many creatures with poisonous spines. The highly dangerous blue-ringed octopus and cone shells are found in rocky pools along the shore. Sea anemones and sea urchins are widely dispersed. Sea snakes are highly venomous but rarely bite. -
Apnea and Control of Breathing Christa Matrone, M.D., M.Ed
APNEA AND CONTROL OF BREATHING CHRISTA MATRONE, M.D., M.ED. DIOMEL DE LA CRUZ, M.D. OBJECTIVES ¢ Define Apnea ¢ Review Causes and Appropriate Evaluation of Apnea in Neonates ¢ Review the Pathophysiology of Breathing Control and Apnea of Prematurity ¢ Review Management Options for Apnea of Prematurity ¢ The Clinical Evidence for Caffeine ¢ The Role of Gastroesophageal Reflux DEFINITION OF APNEA ¢ Cessation of breathing for greater than 15 (or 20) seconds ¢ Or if accompanied by desaturations or bradycardia ¢ Differentiate from periodic breathing ¢ Regular cycles of respirations with intermittent pauses of >3 S ¢ Not associated with other physiologic derangements ¢ Benign and self-limiting TYPES OF APNEA CENTRAL ¢ Total cessation of inspiratory effort ¢ Absence of central respiratory drive OBSTRUCTIVE ¢ Breathing against an obstructed airway ¢ Chest wall motion without nasal airflow MIXED ¢ Obstructed respiratory effort after a central pause ¢ Accounts for majority of apnea in premature infants APNEA IS A SYMPTOM, NOT A DIAGNOSIS Martin RJ et al. Pathogenesis of apnea in preterm infants. J Pediatr. 1986; 109:733. APNEA IN THE NEONATE: DIFFERENTIAL Central Nervous System Respiratory • Intraventricular Hemorrhage • Airway Obstruction • Seizure • Inadequate Ventilation / Fatigue • Cerebral Infarct • Hypoxia Infection Gastrointestinal • Sepsis • Necrotizing Enterocolitis • Meningitis • Gastroesophageal Reflux Hematologic Drug Exposure • Anemia • Perinatal (Ex: Magnesium, Opioids) • Polycythemia • Postnatal (Ex: Sedatives, PGE) Cardiovascular Other • Patent Ductus Arteriosus • Temperature instability • Metabolic derangements APNEA IN THE NEONATE: EVALUATION ¢ Detailed History and Physical Examination ¢ Gestational age, post-natal age, and birth history ¢ Other new signs or symptoms ¢ Careful attention to neurologic, cardiorespiratory, and abdominal exam APNEA IN THE NEONATE: EVALUATION ¢ Laboratory Studies ¢ CBC/diff and CRP ¢ Cultures, consideration of LP ¢ Electrolytes including magnesium ¢ Blood gas and lactate ¢ Radiologic Studies ¢ Head ultrasound vs. -
Pulmonary Microscopic Polyangiitis Presenting As Acute Respiratory Failure from Diffuse Alveolar Hemorrhage
Case report SARCOIDOSIS VASCULITIS AND DIFFUSE LUNG DISEASES 2015; 32; 372-377 © Mattioli 1885 Pulmonary microscopic polyangiitis presenting as acute respiratory failure from diffuse alveolar hemorrhage Katharine K. Roberts1, Michael M. Chamberlin2, Allen R. Holmes3, Jonathan L. Henderson4, Robert L. Hutton3, William N. Hannah1, Michael J. Morris4 1 Internal Medicine Residency, Department of Medicine, San Antonio Military Medical Center; 2 Internal Medicine, United States Army Health Clinic, Vilseck, Germany; 3 Pathology Residency, Department of Pathology, San Antonio Military Medical Center; 4 Pulmonary/ Critical Care Service, Department of Medicine, San Antonio Military Medical Center Abstract. MicrMicroscopicoscopic polyangiitis and granulomatosis with polyangiitis are rare anti-neutrophilic cytoplas-cytoplas- mic antibody-associated systemic vasculitides that predominantly affect small to medium sized vessels of the lungs and kidneys. These syndromes are largely confined to older adults and often present sub-acutely follow- ing weeks to months of nonspecific prodromal symptoms. While both diseases often manifest within multiple organ systems concurrently, the disease spectrum of microscopic polyangiitis almost always includes the kidneys, while granulomatosis with polyangiitis is most commonly associated with pulmonary disease. We present two cases of rapid onset respiratory failure secondary to diffuse alveolar hemorrhage in young active duty military personnel. After serological testing and surgical lung biopsy, both patients were -
Hyperventilation Syndrome
Hyperventilation Syndrome INTRODUCTION ● hyperventilation in the presence of the following should immediately confirm an alternative Hyperventilation syndrome is defined as “a rate of diagnosis: ventilation exceeding metabolic needs and higher than that required to maintain a normal level of plasma CO2”. – cyanosis Physiological hyperventilation can occur in a number of – reduced level of consciousness situations, including life-threatening conditions such as: – reduction in SpO2. ● pulmonary embolism ● diabetic ketoacidosis MANAGEMENT 1,2 ● asthma If ABCD need correction then treat as per medical ● hypovolaemia. guidelines as it is unlikely to be due to hyperventilation syndrome but is more likely to be physiological As a rule, hyperventilation due to emotional stress is hyperventilation secondary to an underlying rare in children, and physical causes are much more pathological process. likely to be responsible for hyperventilation. Maintain a calm approach at all times. Specific presenting features can include: Reassure the patient and try to remove the source of ● acute anxiety the patient’s anxiety, this is particularly important in ● tetany due to calcium imbalance children. ● numbness and tingling of the mouth and lips Coach the patient’s respirations whilst maintaining a calm environment. ● carpopedal spasm ● aching of the muscles of the chest ADDITIONAL INFORMATION ● feeling of light headedness or dizziness. The cause of hyperventilation cannot always be determined with sufficient accuracy (especially in the HISTORY early stages) in the pre hospital environment. Refer to dyspnoea guide Always presume hyperventilation is secondary to hypoxia or other underlying respiratory disorder until proven otherwise. 1,2 ASSESSMENT The resulting hypocapnia will result in respiratory Assess ABCD’s: alkalosis bringing about a decreased level of serum ionised calcium. -
Prolonged Post-Hyperventilation Apnea in Two Young Adults With
Munemoto et al. BioPsychoSocial Medicine 2013, 7:9 http://www.bpsmedicine.com/content/7/1/9 CASE REPORT Open Access Prolonged post-hyperventilation apnea in two young adults with hyperventilation syndrome Takao Munemoto1,4*, Akinori Masuda2, Nobuatsu Nagai3, Muneki Tanaka4 and Soejima Yuji5 Abstract Background: The prognosis of hyperventilation syndrome (HVS) is generally good. However, it is important to proceed with care when treating HVS because cases of death following hyperventilation have been reported. This paper was done to demonstrate the clinical risk of post-hyperventilation apnea (PHA) in patients with HVS. Case presentation: We treated two patients with HVS who suffered from PHA. The first, a 21-year-old woman, had a maximum duration of PHA of about 3.5 minutes and an oxygen saturation (SpO2) level of 60%. The second patient, a 22-year-old woman, had a maximum duration of PHA of about 3 minutes and an SpO2 level of 66%. Both patients had loss of consciousness and cyanosis. Because there is no widely accepted regimen for treating patients with prolonged PHA related to HVS, we administered artificial ventilation to both patients using a bag mask and both recovered without any after effects. Conclusion: These cases show that some patients with HVS develop prolonged PHA or severe hypoxia, which has been shown to lead to death in some cases. Proper treatment must be given to patients with HVS who develop PHA to protect against this possibility. If prolonged PHA or severe hypoxemia arises, respiratory assistance using a bag mask must be done immediately. Keywords: Post-hyperventilation apnea, PHA, Hyperventilation syndrome, HVS, Hypocapnia, Hypoxemia Background incidence of death, severe hypoxia, or myocardial infarc- Hyperventilation syndrome (HVS) is characterized by tion in association with the paper-bag method [2]. -
Sleep Apnea Sleep Apnea
Health and Safety Guidelines 1 Sleep Apnea Sleep Apnea Normally while sleeping, air is moved at a regular rhythm through the throat and in and out the lungs. When someone has sleep apnea, air movement becomes decreased or stops altogether. Sleep apnea can affect long term health. Types of sleep apnea: 1. Obstructive sleep apnea (narrowing or closure of the throat during sleep) which is seen most commonly, and, 2. Central sleep apnea (the brain is causing a change in breathing control and rhythm) Obstructive sleep apnea (OSA) About 25% of all adults are at risk for sleep apnea of some degree. Men are more commonly affected than women. Other risk factors include: 1. Middle and older age 2. Being overweight 3. Having a small mouth and throat Down syndrome Because of soft tissue and skeletal alterations that lead to upper airway obstruction, people with Down syndrome have an increased risk of obstructive sleep apnea. Statistics show that obstructive sleep apnea occurs in at least 30 to 75% of people with Down syndrome, including those who are not obese. In over half of person’s with Down syndrome whose parents reported no sleep problems, sleep studies showed abnormal results. Sleep apnea causing lowered oxygen levels often contributes to mental impairment. How does obstructive sleep apnea occur? The throat is surrounded by muscles that are active controlling the airway during talking, swallowing and breathing. During sleep, these muscles are much less active. They can fall back into the throat, causing narrowing. In most people this doesn’t affect breathing. However in some the narrowing can cause snoring. -
Postnatal Complications of Intrauterine Growth Restriction
Neonat f al l o B Sharma et al., J Neonatal Biol 2016, 5:4 a io n l r o u g y DOI: 10.4172/2167-0897.1000232 o J Journal of Neonatal Biology ISSN: 2167-0897 Mini Review Open Access Postnatal Complications of Intrauterine Growth Restriction Deepak Sharma1*, Pradeep Sharma2 and Sweta Shastri3 1Neoclinic, Opposite Krishna Heart Hospital, Nirman Nagar, Jaipur, Rajasthan, India 2Department of Medicine, Mahatma Gandhi Medical College, Jaipur, Rajasthan, India 3Department of Pathology, N.K.P Salve Medical College, Nagpur, Maharashtra, India Abstract Intrauterine growth restriction (IUGR) is defined as a velocity of fetal growth less than the normal fetus growth potential because of maternal, placental, fetal or genetic cause. This is an important cause of fetal and neonatal morbidity and mortality. Small for gestational age (SGA) is defined when birth weight is less than two standard deviations below the mean or less than 10th percentile for a specific population and gestational age. Usually IUGR and SGA are used interchangeably, but there exists subtle difference between the two terms. IUGR infants have both acute and long term complications and need regular follow up. This review will cover various postnatal aspects of IUGR. Keywords: Intrauterine growth restriction; Small for gestational age; Postnatal Diagnosis of IUGR Placental genes; Maternal genes; Fetal genes; Developmental origin of health and disease; Barker hypothesis The diagnosis of IUGR infant postnatally can be done by clinical examination (Figure 2), anthropometry [13-15], Ponderal Index Introduction (PI=[weight (in gram) × 100] ÷ [length (in cm) 3]) [2,16], Clinical assessment of nutrition (CAN) score [17], Cephalization index [18], Intrauterine growth restriction (IUGR) is defined as a velocity of mid-arm circumference and mid-arm/head circumference ratios fetal growth less than the normal fetus growth potential for a specific (Kanawati and McLaren’s Index) [19].