The Post-Mortem Appearances in Cases of Asphyxia Caused By

Total Page:16

File Type:pdf, Size:1020Kb

The Post-Mortem Appearances in Cases of Asphyxia Caused By a U?UST 1902.1 ASPHYXIA CAUSED BY DROWNING 297 Table I. Shows the occurrence of fluid and mud in the 55 fresh bodies. ?ritfinal Jlrttclcs. Fluid. Mud. Air-passage ... .... 20 2 ? ? and stomach ... ig 6 ? ? stomach and intestine ... 7 1 ? ? and intestine X ??? Stomach ... ??? THE POST-MORTEM APPEARANCES IN Intestine ... ... 1 Stomach and intestine ... ... i CASES OF ASPHYXIA CAUSED BY DROWNING. Total 46 9 = 55 By J. B. GIBBONS, From the above table it will be seen that fluid was in the alone in 20 LIEUT.-COL., I.M.S., present air-passage cases, in the air-passage and stomach in sixteen, Lute Police-Surgeon, Calcutta, Civil Surgeon, Ilowrah. in the air-passage, stomach and intestine in seven, in the air-passage and intestine in one. As used in this table the term includes frothy and non- frothy fluid. Frothy fluid is only to be expected In the period from June 1893 to November when the has been quickly recovered from months which I body 1900, excluding three during the water in which drowning took place and cases on leave, 15/ of was privilege asphyxia examined without delay. In some of my cases were examined me in the due to drowning by it was present in a most typical form; there was For the of this Calcutta Morgue. purpose a bunch of fine lathery froth about the nostrils, all cases of death inhibition paper I exclude by and the respiratory tract down to the bronchi due to submersion and all cases of or syncope was filled with it. received after into death from injuries falling The quantity of fluid in the air-passage varies the water. greatly ; this is explained by varying dura- Of these 157 cases of asphyxia due to drown- tion of the third stage of drowning. The longer were in a efforts the ing in 55 the bodies fresh condition the inspiratory continue, greater the were into the when examined ; 21 slightly decomposed, quantity of fluid aspirated air-passage were also the the that is, signs of beginning putrefaction and lungs, and greater transudation swelling of the body, cloudiness and of serum from the blood-vessels. It is in these present' of softening of the conjunctivae, the blood begin- cases of prolonged third stage drowning that of disco- we full of ning to putrefy, the surface the body get the typical lungs, fluid, soddened 81 was loured ; in the remaining putrefaction and ballooning. far advanced, the bodies enormously swollen, On the other hand, every medical jurist can cuticle peeling off or gone, the eyes protruding call to mind cases of: drowning in which the and putrid, gases bubbling from nostrils and lungs presented an ordinary appearance and the orbits, the brain liquefied, the internal organs air-passage contained only a small quantity of bodies ot putrid. In some of the the abdomen had fluids. These are instances death occurring burst, the stomach was pultaceous, the lungs in the second stage or of a very short third also completely decomposed. stage. It be mentioned that the In the remarks, attention will be may presence of following and are much fluid in the lungs fluid in the directed only to those appearances which frothy to is not confined to cases of of value, especially the occurrence air-passage drowning ; diagnostic in death from other causes of fluid and mud in the air-passage, stomach by asphyxia they are the most familiar in and intestine. also present; instance India is when death occurs " in the opium poisoning, the term following a By air-passage" and there has been long third stage, so to be understood the tract slowly, tables, is respiratory that much fluid has been poured out of the rima ; when a has been below'the glottis corpse vessels into the lungs and bronchi where it is in water for some time, fluid and mud are churned up with air. In some cases of found in the nose and mouth, but, hanging, generally froth and fluid are abundant. From the table are no value. of diagnostic it will be seen that in none of the cases was the cases in As fluid in stomach, fluid found in the stomach alone; the presence regards was which a small quantity present, are not of fluid in the alimentary canal is the result of only the included in the tables unless water presented swallowing in the first and second stages of the oi unless the air- some distinctive character, drowning process. Fluid transudes rapidly also contained fluid. passage or the intestine through the mucous membrane of the stomach ; in the intestine was this accounts for the with which The presence of fluid frequency only a fluid is judged in the same way. small quantity of found in the organ. 298 THE INDIAN MEDICAL GAZETTE. [August 1902. Only in nine of the 55 cases referred to in Table Of the 81 decomposed bodies in 47 signs were I was mud found within the body; in most of found upon which a diagnosi^of death by drown- the cases the drowning took place in clean water, ing could be made with certainty. It will be several were children, who were accidentally observed that no fluid was found in the air- drowned in the cisterns of bathing places. The passage, and in the alimentary canal in three mud was mixed with fluid. cases only, that is, in sufficient quantity to be of In these 55 bodies the appearances of death diagnostic value. Although fluids in the air- by asphyxia were well marked and, as shown in passage and alimentary canal disappear when the table, in all, special signs of drowning were putrefaction is advanced, solid matter, mud, found; hence the diagnosis of the cause of death sand, or other foreign substance remains, and, as was possible without reference to the history of the above table shows, enables the medical jurist the cases. to give a positive opinion of the cause of I have not referred to the presence of cutis death. anserina and retraction of the penis ; these signs In 34 of the decomposed bodies neither fluid are of value, but in my experience they are nor mud was present; in '?these cases the deter- not usually present and, moreover, the}7, are not mination of the cause of death was attended peculiar to drowning. Neither have I mentioned with much difficulty, especially in those in which the soddened condition of the cuticle of hands, the history furnished by the police was scanty, feet, knees and elbows produced after death by or merely recorded the fact that the body had inhibition of water, for this sign only shows been found floating; in water. I extract from in water that the body has been for not less my notes the following which may be taken than one hour. as the type of a large number of cases of drown- sent Table II. ing to the Police Surgeon of Calcutta. The Police report states that the body of an Shows the occurrence of fluid and mud in the European, name unknown, was discovered 21 slightly decomposed bodies. in a tank on the maidan, on the Fluid. Mud. floating of the 5th November 1896. The Air-passage ... 4 morning post- mortem examination was held in the ,, and stomach ..5 2 early 1 afternoon of same The was ? stomach and intestine the day. body ... 1 ? and intestine enormously distended from putrefaction ; the Stomach ... clothing, stretched and in places burst, Intestine ... tightly consisted of a khaki coat and Stomach and intestine 2 trousers, shirt, vest, underdrawers, inside of which were pieces 7 8=15 of brick and stones, shoes and socks. Attached ... Neither fluid nor mud 6 to the belt of a truss there was a pillow case of brick and stones. Total ... 21 containing pieces The features the hair Froth was not found in any of these cases; enormously swollen, the and the fluid in the air-passage was generally of a loosened, eyes putrid protruding, gas from the nose and reddish colour from transuded blood. It will be bubbling orbits, mouth, tongue with The cuticle observed that in six, that is, in almost one-third projecting covered mud. loosened, most of it was detached in of the cases, neither fluid nor mud was found. removing the that of the and toes came oft In these cases the that death was due clothes; fingers opinion in a mass. to drowning was based on the signs of asphyxia, glove-like The were the absence of all other causes for this condi- internal organs putrid, the lungs tion and the history. In many of the cases pultaceous, the brain liquefied. In the pleural were sacs there an the external appearances of assistance in was accumulation of reddish determining the cause of death. watery fluid. The heart cavities were empty, the endocardium of the side was stained a III. right Table dark red colour. Shows the occurrence of fluid and mud in The viscera were sent for chemical analysis: 81 decomposed bodies. no poison was detected. Fluid. Mud. At the I Air-passage ... 19 Coroner's Court gave the opinion that and stomach 8 deceased died due to ? of suffocation drowning, stomach and intestine ... 5 ? and in to the further question that the and intestine 2 reply ? case was one of suicide. There can be no doubt ??? Stomach ... 1 8 case ??? the was one of the Intestine ... 1 1 suicide, circumstances, Stomach and intestine ... 1 1 the absence of signs of violence on the body and of poison as proved by the chemical exa- 44 = 47 miner, more the manner in which the Neither fluid nor mud ..
Recommended publications
  • Title: Drowning and Therapeutic Hypothermia: Dead Man Walking
    Title: Drowning and Therapeutic Hypothermia: Dead Man Walking Author(s): Angela Kavenaugh, D.O., Jamie Cohen, D.O., Jennifer Davis MD FAAP, Department of PICU Affiliation(s): Chris Evert Children’s Hospital, Broward Health Medical Center ABSTRACT BODY: Background: Drowning is the second leading cause of death in children and is associated with severe morbidity and mortality, most often due to hypoxic-ischemic encephalopathy. Those that survive are often left with debilitating neurological deficits. Therapeutic Hypothermia after resuscitation from ventricular fibrillation or pulseless ventricular tachycardia induced cardiac arrest is the standard of care in adults and has also been proven to have beneficial effects that persist into early childhood when utilized in neonatal birth asphyxia, but has yet to be accepted into practice for pediatrics. Objective: To present supportive evidence that Therapeutic Hypothermia improves mortality and morbidity specifically for pediatric post drowning patients. Case Report: A five year old male presented to the Emergency Department after pool submersion of unknown duration. He was found to have asphyxial cardiac arrest and received bystander CPR, which was continued by EMS for a total of 10 minutes, including 2 doses of epinephrine. CPR continued into the emergency department. Upon presentation to the ED, he was found to have fixed and dilated pupils, unresponsiveness, with a GCS of 3. Upon initial pulse check was found to have return of spontaneous circulation, with sinus tachycardia. His blood gas revealed 6.86/45/477/8/-25. He was intubated, given 2 normal saline boluses and 2 mEq/kg of Sodium Bicarbonate. The initial head CT was normal.
    [Show full text]
  • Traveler Information
    Traveler Information QUICK LINKS Marine Hazards—TRAVELER INFORMATION • Introduction • Risk • Hazards of the Beach • Animals that Bite or Wound • Animals that Envenomate • Animals that are Poisonous to Eat • General Prevention Strategies Traveler Information MARINE HAZARDS INTRODUCTION Coastal waters around the world can be dangerous. Swimming, diving, snorkeling, wading, fishing, and beachcombing can pose hazards for the unwary marine visitor. The seas contain animals and plants that can bite, wound, or deliver venom or toxin with fangs, barbs, spines, or stinging cells. Injuries from stony coral and sea urchins and stings from jellyfish, fire coral, and sea anemones are common. Drowning can be caused by tides, strong currents, or rip tides; shark attacks; envenomation (e.g., box jellyfish, cone snails, blue-ringed octopus); or overconsumption of alcohol. Eating some types of potentially toxic fish and seafood may increase risk for seafood poisoning. RISK Risk depends on the type and location of activity, as well as the time of year, winds, currents, water temperature, and the prevalence of dangerous marine animals nearby. In general, tropical seas (especially the western Pacific Ocean) are more dangerous than temperate seas for the risk of injury and envenomation, which are common among seaside vacationers, snorkelers, swimmers, and scuba divers. Jellyfish stings are most common in warm oceans during the warmer months. The reef and the sandy sea bottom conceal many creatures with poisonous spines. The highly dangerous blue-ringed octopus and cone shells are found in rocky pools along the shore. Sea anemones and sea urchins are widely dispersed. Sea snakes are highly venomous but rarely bite.
    [Show full text]
  • Asphyxia Neonatorum
    CLINICAL REVIEW Asphyxia Neonatorum Raul C. Banagale, MD, and Steven M. Donn, MD Ann Arbor, Michigan Various biochemical and structural changes affecting the newborn’s well­ being develop as a result of perinatal asphyxia. Central nervous system ab­ normalities are frequent complications with high mortality and morbidity. Cardiac compromise may lead to dysrhythmias and cardiogenic shock. Coagulopathy in the form of disseminated intravascular coagulation or mas­ sive pulmonary hemorrhage are potentially lethal complications. Necrotizing enterocolitis, acute renal failure, and endocrine problems affecting fluid elec­ trolyte balance are likely to occur. Even the adrenal glands and pancreas are vulnerable to perinatal oxygen deprivation. The best form of management appears to be anticipation, early identification, and prevention of potential obstetrical-neonatal problems. Every effort should be made to carry out ef­ fective resuscitation measures on the depressed infant at the time of delivery. erinatal asphyxia produces a wide diversity of in­ molecules brought into the alveoli inadequately com­ Pjury in the newborn. Severe birth asphyxia, evi­ pensate for the uptake by the blood, causing decreases denced by Apgar scores of three or less at one minute, in alveolar oxygen pressure (P02), arterial P02 (Pa02) develops not only in the preterm but also in the term and arterial oxygen saturation. Correspondingly, arte­ and post-term infant. The knowledge encompassing rial carbon dioxide pressure (PaC02) rises because the the causes, detection, diagnosis, and management of insufficient ventilation cannot expel the volume of the clinical entities resulting from perinatal oxygen carbon dioxide that is added to the alveoli by the pul­ deprivation has been further enriched by investigators monary capillary blood.
    [Show full text]
  • Failure of Hypothermia As Treatment for Asphyxiated Newborn Rabbits R
    Arch Dis Child: first published as 10.1136/adc.51.7.512 on 1 July 1976. Downloaded from Archives of Disease in Childhood, 1976, 51, 512. Failure of hypothermia as treatment for asphyxiated newborn rabbits R. K. OATES and DAVID HARVEY From the Institute of Obstetrics and Gynaecology, Queen Charlotte's Maternity Hospital, London Oates, R. K., and Harvey, D. (1976). Archives of Disease in Childhood, 51, 512. Failure of hypothermia as treatment for asphyxiated newborn rabbits. Cooling is known to prolong survival in newborn animals when used before the onset of asphyxia. It has therefore been advocated as a treatment for birth asphyxia in humans. Since it is not possible to cool a human baby before the onset of birth asphyxia, experiments were designed to test the effect of cooling after asphyxia had already started. Newborn rabbits were asphyxiated in 100% nitrogen and were cooled either quickly (drop of 1 °C in 45 s) or slowly (drop of 1°C in 2 min) at varying intervals after asphyxia had started. When compared with controls, there was an increase in survival only when fast cooling was used early in asphyxia. This fast rate of cooling is impossible to obtain in a human baby weighing from 30 to 60 times more than a newborn rabbit. Further litters ofrabbits were asphyxiated in utero. After delivery they were placed in environmental temperatures of either 37 °C, 20 °C, or 0 °C and observed for spon- taneous recovery. The animals who were cooled survived less often than those kept at 37 'C. The results of these experiments suggest that hypothermia has little to offer in the treatment of birth asphyxia in humans.
    [Show full text]
  • Respiratory and Gastrointestinal Involvement in Birth Asphyxia
    Academic Journal of Pediatrics & Neonatology ISSN 2474-7521 Research Article Acad J Ped Neonatol Volume 6 Issue 4 - May 2018 Copyright © All rights are reserved by Dr Rohit Vohra DOI: 10.19080/AJPN.2018.06.555751 Respiratory and Gastrointestinal Involvement in Birth Asphyxia Rohit Vohra1*, Vivek Singh2, Minakshi Bansal3 and Divyank Pathak4 1Senior resident, Sir Ganga Ram Hospital, India 2Junior Resident, Pravara Institute of Medical Sciences, India 3Fellow pediatrichematology, Sir Ganga Ram Hospital, India 4Resident, Pravara Institute of Medical Sciences, India Submission: December 01, 2017; Published: May 14, 2018 *Corresponding author: Dr Rohit Vohra, Senior resident, Sir Ganga Ram Hospital, 22/2A Tilaknagar, New Delhi-110018, India, Tel: 9717995787; Email: Abstract Background: The healthy fetus or newborn is equipped with a range of adaptive, strategies to reduce overall oxygen consumption and protect vital organs such as the heart and brain during asphyxia. Acute injury occurs when the severity of asphyxia exceeds the capacity of the system to maintain cellular metabolism within vulnerable regions. Impairment in oxygen delivery damage all organ system including pulmonary and gastrointestinal tract. The pulmonary effects of asphyxia include increased pulmonary vascular resistance, pulmonary hemorrhage, pulmonary edema secondary to cardiac failure, and possibly failure of surfactant production with secondary hyaline membrane disease (acute respiratory distress syndrome).Gastrointestinal damage might include injury to the bowel wall, which can be mucosal or full thickness and even involve perforation Material and methods: This is a prospective observational hospital based study carried out on 152 asphyxiated neonates admitted in NICU of Rural Medical College of Pravara Institute of Medical Sciences, Loni, Ahmednagar, Maharashtra from September 2013 to August 2015.
    [Show full text]
  • Respiratory Physiology for the Anesthesiologist
    REVIEW ARTICLE Deborah J. Culley, M.D., Editor ABSTRACT Respiratory function is fundamental in the practice of anesthesia. Knowledge of basic physiologic principles of respiration assists in the proper implemen- tation of daily actions of induction and maintenance of general anesthesia, Respiratory Physiology delivery of mechanical ventilation, discontinuation of mechanical and pharma- cologic support, and return to the preoperative state. The current work pro- Downloaded from http://pubs.asahq.org/anesthesiology/article-pdf/130/6/1064/455191/20190600_0-00035.pdf by guest on 24 September 2021 for the Anesthesiologist vides a review of classic physiology and emphasizes features important to the anesthesiologist. The material is divided in two main sections, gas exchange Luca Bigatello, M.D., Antonio Pesenti, M.D. and respiratory mechanics; each section presents the physiology as the basis ANESTHESIOLOGY 2019; 130:1064–77 of abnormal states. We review the path of oxygen from air to the artery and of carbon dioxide the opposite way, and we have the causes of hypoxemia and of hypercarbia based on these very footpaths. We present the actions nesthesiologists take control of the respiratory func- of pressure, flow, and volume as the normal determinants of ventilation, and Ation of millions of patients throughout the world each we review the resulting abnormalities in terms of changes of resistance and day. We learn to maintain gas exchange and use respiration compliance. to administer anesthetic gases through the completion of (ANESTHESIOLOGY 2019; 130:1064–77) surgery, when we return this vital function to its legitimate owners, ideally with a seamless transition to a healthy post- operative course.
    [Show full text]
  • MECAP News April 2021
    U.S. Consumer Product Safety Commission MECAPnews MEDICAL EXAMINERS AND CORONERS ALERT PROJECT April 2021 MECAP Reports | Page 2 Asphyxia/Suffocation Carbon Monoxide Poisoning Submersion MECAP Reports | Page 3 Fire All-Terrain Vehicles (ATVs) Electrocution Fatalities Involving Other Hazards MECAP Contact | Page 4 The following pages summarize MECAP reports Yolanda Nash received by CPSC selected for follow-up Program Analyst investigation. The entries include a brief Division of Hazard and Injury Data description of the incident to illustrate the type and Systems Directorate for Epidemiology nature of the reported fatalities. This important information helps CPSC carry out its mission to U.S. Consumer Product Safety protect the public from product-related injuries and Commission deaths. 4330 East-West Highway Bethesda, MD We appreciate your support; please continue to 20814 report your product-related cases to us. [email protected] 1-800-638-8095 x7502 or 301-504-7502 *Cases selected for CPSC follow-up investigation Asphyxiation/ down to sleep in a toddler basement stairs. The Suffocation bed with multiple heavy electric power had been blankets. The next morning, shut off, and the generator *A 7-year-old female was the mother found the was used to provide power. discovered by her mother decedent positioned face EMS measured the carbon unresponsive in bed with a down in the soft bedding monoxide level at 500 ppm. balloon pulled over her face. and blankets. Despite The cause of death was The decedent became emergency efforts, the carbon monoxide poisoning. entangled with a helium infant was pronounced dead balloon tied to her bed and at the hospital.
    [Show full text]
  • Perinatal Asphyxia Neonatal Therapeutic Hypothermia
    PERINATAL ASPHYXIA NEONATAL THERAPEUTIC HYPOTHERMIA Sergio G. Golombek, MD, MPH, FAAP Professor of Pediatrics & Clinical Public Health – NYMC Attending Neonatologist Maria Fareri Children’s Hospital - WMC Valhalla, New York President - SIBEN ASPHYXIA From Greek [ἀσφυξία]: “A stopping of the pulse” “Loss of consciousness as a result of too little oxygen and too much CO2 in the blood: suffocation causes asphyxia” (Webster’s New World Dictionary) On the influence of abnormal parturition, difficult labours, premature birth, and asphyxia neonatorum, on the mental and physical condition of the child, especially in relation to deformities. By W. J. Little, MD (Transactions of the Obstetrical Society of London 1861;3:243-344) General spastic contraction of the lower Contracture of adductors and flexors of lower extremities. Premature birth. Asphyxia extremities. Left hand weak. Both hands awkward. neonatorum of 36 hr duration. Hands More paralytic than spastic. Born with navel-string unaffected. (Case XLVII) around neck. Asphyxia neonatorum 1 hour. (Case XLIII) Perinatal hypoxic-ischemic encephalopathy (HIE) Associated with high neonatal mortality and severe long-term neurologic morbidity Hypothermia is rapidly becoming standard therapy for full-term neonates with moderate-to-severe HIE Occurs at a rate of about 3/1000 live-born infants in developed countries, but the rate is estimated to be higher in the developing world Intrapartum-related neonatal deaths (previously called ‘‘birth asphyxia’’) are the fifth most common cause of deaths among children under 5 years of age, accounting for an estimated 814,000 deaths each year, and also associated with significant morbidity, resulting in a burden of 42 million disability adjusted life years (DALYs).
    [Show full text]
  • Near Drowning
    Near Drowning McHenry Western Lake County EMS Definition • Near drowning means the person almost died from not being able to breathe under water. Near Drownings • Defined as: Survival of Victim for more than 24* following submission in a fluid medium. • Leading cause of death in children 1-4 years of age. • Second leading cause of death in children 1-14 years of age. • 85 % are caused from falls into pools or natural bodies of water. • Male/Female ratio is 4-1 Near Drowning • Submersion injury occurs when a person is submerged in water, attempts to breathe, and either aspirates water (wet) or has laryngospasm (dry). Response • If a person has been rescued from a near drowning situation, quick first aid and medical attention are extremely important. Statistics • 6,000 to 8,000 people drown each year. Most of them are within a short distance of shore. • A person who is drowning can not shout for help. • Watch for uneven swimming motions that indicate swimmer is getting tired Statistics • Children can drown in only a few inches of water. • Suspect an accident if you see someone fully clothed • If the person is a cold water drowning, you may be able to revive them. Near Drowning Risk Factor by Age 600 500 400 300 Male Female 200 100 0 0-4 yr 5-9 yr 10-14 yr 15-19 Ref: Paul A. Checchia, MD - Loma Linda University Children’s Hospital Near Drowning • “Tragically 90% of all fatal submersion incidents occur within ten yards of safety.” Robinson, Ped Emer Care; 1987 Causes • Leaving small children unattended around bath tubs and pools • Drinking
    [Show full text]
  • Perinatal Asphyxia in the Term Newborn
    www.jpnim.com Open Access eISSN: 2281-0692 Journal of Pediatric and Neonatal Individualized Medicine 2014;3(2):e030269 doi: 10.7363/030269 Received: 2014 Oct 01; accepted: 2014 Oct 14; published online: 2014 Oct 21 Review Perinatal asphyxia in the term newborn Roberto Antonucci1, Annalisa Porcella1, Maria Dolores Pilloni2 1Division of Neonatology and Pediatrics, “Nostra Signora di Bonaria” Hospital, San Gavino Monreale, Italy 2Family Planning Clinic, San Gavino Monreale, ASL 6 Sanluri (VS), Italy Proceedings Proceedings of the International Course on Perinatal Pathology (part of the 10th International Workshop on Neonatology · October 22nd-25th, 2014) Cagliari (Italy) · October 25th, 2014 The role of the clinical pathological dialogue in problem solving Guest Editors: Gavino Faa, Vassilios Fanos, Peter Van Eyken Abstract Despite the important advances in perinatal care in the past decades, asphyxia remains a severe condition leading to significant mortality and morbidity. Perinatal asphyxia has an incidence of 1 to 6 per 1,000 live full-term births, and represents the third most common cause of neonatal death (23%) after preterm birth (28%) and severe infections (26%). Many preconceptional, antepartum and intrapartum risk factors have been shown to be associated with perinatal asphyxia. The standard for defining an intrapartum hypoxic-ischemic event as sufficient to produce moderate to severe neonatal encephalopathy which subsequently leads to cerebral palsy has been established in 3 Consensus statements. The cornerstone of all three statements is the presence of severe metabolic acidosis (pH < 7 and base deficit ≥ 12 mmol/L) at birth in a newborn exhibiting early signs of moderate or severe encephalopathy. Perinatal asphyxia may affect virtually any organ, but hypoxic-ischemic encephalopathy (HIE) is the most studied clinical condition and that is burdened with the most severe sequelae.
    [Show full text]
  • Mild Hypothermia After Near Drowning in Twin Toddlers Ortrud Vargas Hein1, Andreas Triltsch2, Christoph Von Buch3, Wolfgang J Kox1 and Claudia Spies1
    Available online http://ccforum.com/content/8/5/R353 ResearchOctober 2004 Vol 8 No 5 Open Access Mild hypothermia after near drowning in twin toddlers Ortrud Vargas Hein1, Andreas Triltsch2, Christoph von Buch3, Wolfgang J Kox1 and Claudia Spies1 1Department of Anesthesiology and Intensive Care Medicine, Charité, Campus Mitte, Humboldt University, Berlin, Germany 2Department of Anesthesiology and Intensive Care Medicine, Benjamin Franklin Medical Center, Free University, Berlin, Germany 3University Department of Pediatrics, University of Heidelberg, Mannheim, Germany Corresponding author: Ortrud Vargas Hein, [email protected] Received: 28 January 2004 Critical Care 2004, 8:R353-R357 (DOI 10.1186/cc2926) Revisions requested: 13 April 2004 This article is online at: http://ccforum.com/content/8/5/R353 Revisions received: 14 May 2004 © 2004 Vargas Hein et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Accepted: 24 July 2004 Creative Commons Attribution License (http://creativecommons.org/ Published: 2 September 2004 licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Introduction We report a case of twin toddlers who both suffered near drowning but with different post-trauma treatment and course, and different neurological outcomes. Methods and results Two twin toddlers (a boy and girl, aged 2 years and 3 months) suffered hypothermic near drowning with protracted cardiac arrest and aspiration. The girl was treated with mild hypothermia for 72 hours and developed acute respiratory dysfunction syndrome and sepsis. She recovered without neurological deficit. The boy's treatment was conducted under normothermia without further complications.
    [Show full text]
  • Carbon Monoxide Poisoning in the Home Cyril John Polson
    Journal of Criminal Law and Criminology Volume 44 | Issue 4 Article 15 1954 Carbon Monoxide Poisoning in the Home Cyril John Polson Follow this and additional works at: https://scholarlycommons.law.northwestern.edu/jclc Part of the Criminal Law Commons, Criminology Commons, and the Criminology and Criminal Justice Commons Recommended Citation Cyril John Polson, Carbon Monoxide Poisoning in the Home, 44 J. Crim. L. Criminology & Police Sci. 531 (1953-1954) This Criminology is brought to you for free and open access by Northwestern University School of Law Scholarly Commons. It has been accepted for inclusion in Journal of Criminal Law and Criminology by an authorized editor of Northwestern University School of Law Scholarly Commons. CARBON MONOXIDE POISONING IN THE HOME* Cyril John Poison Cyril John Polson, M.D., F.R.C.P., is a Barrister-at-Law and Professor of Legal Medicine, University of Leeds, England. This article, the second of his to be published in this Journal, is based upon a public lecture delivered in the Uni- versity of Leeds, October 24, 1952.-EDIToR. Carbon monoxide poisoning in the home has for long been a common- place. It is clear, however, that so long as accidental poisoning con- tinues to occur there is room for recurrent reminders of the dangers of carbon monoxide. The present account is based on a detailed examination of the records of over 700 fatalities which have occurred during the past twenty five years in the City of Leeds. THE DANGERS PECULIAR TO CARBON MONOXIDE It requires no reflection to appreciate that any poison which is gaseous, and at the same time colourless, non-irritant and, may be, odourless, has grave potential dangers.
    [Show full text]