<<

Glutamate mutase glutamate NH2 mutase NH2

HO2C HO2C CO2H CO2H Coenzyme B12 CH3 L-glutamate (2S,3S)-3-methyl-L-aspartate

methylaspartate

Coenzyme B12-Co

adenosyl

His-16

pdb code: 1I9C

241

Nucleic Acids 1869: Miescher- gelatinous material from cell nuceli of white blood cells containing organophosphorous compounds- nuclein (chromatin)- discovery of nucleic acids 1891: Kossel- identified the DNA bases A, T, G and C identified D-ribose in nucleic acids 1889: Altman- purified DNA 1901: Ascoli- identified U in RNA 1910 : DNA and RNA realized to be separate entities. DNA (thymus) RNA (yeast) 1929: Levene & Jacobs- identified 2’-deoxyribose in DNA 1920’s - 1950’s: structures of and - Alexander Todd (Nobel Prize, 1959) 1928: Griffith- first to propose that DNA was genetic material; not widely accepted G 1931: Levine & Bass- first proposed structure. Believed to be part O O O P O C of chromosome physiology, but NOT genetic material O 1944: Avery, MacLeod & McCarty- Strong evidence that DNA O O O P O is genetic material O O O P O 1950: Chargaff- careful analysis of DNA from a wide variety of O O O T O P O organisms. Content of A,T, C & G varied widely according O to the organism, however: A=T and C=G (Chargaff’s Rule) O A 1952: Hershey & Chase: followed the transfer of 32P-labelled DNA from T2 bacteriophage to infected bacterial cytoplasm (1969 Nobel Prize) 1953: Watson & Crick- structure of DNA (Nobel Prize with M. Wilkens, 1962)

242

121 , nucleotides and nucleic acids Blackburn et al. Ch. 2

base base

phosphate sugar sugar

nucleoside

243

Sugar: D-ribose

CHO HO OH H OH HO H O O H H H OH H H H H H OH H OH HO OH OH CH2OH HO β-D-ribofuranose α-D-ribofuranose

HO OH O H H H H HO H

β-D-2-ribofuranose

Stereochemistry: As drawn, the side above the plane of the ring is β the side below the plane of the ring is α 244

122 Nucleosides vs Nucleotides

O HO O B HO P O O B O

HO X HO X

(X=OH) (X=OH) (X=H (X=H

O O O O O HO P O P O O B HO P O P O P O O B O O B O O O O O O P HO X HO X O O OH

nucleotidediphosphate nucleotidetriphosphate 3',5'-cyclic phosphosphate

245

NH O O O N 2 O O N NH2 -O P O P O P O H2O -O P O P O O N N O N N - - O- - - 2- O O N O O N + PO4H HO OH HO OH ATP ADP

+ ~32 KJ/mol (7.3 Kcal/mol)

Hydrolysis of ATP is used to drive many biochemical reactions

Phosphoryl transfer reactions:

NH OH O O O N 2 HO -O P O P O P O O N N HO O - - - O O O N OH OH HO OH

- N NH2 -O O O O 2- OPO3 O P O P O O P O N N HO - - - + ADP HO O O O N HO O HO O HO OH OH OH OH OH 246

123 Bases A. O NH2 O

N N N N HN HN

N N N N H2N N N R R R (R=H) (R=H) (R=H) (R= furanose, A) (R= furanose, G) (R=furanose, I)

B.

NH2 O O NH2

N NH NH N

N O N O N O N O

R R R R (R=H) (R=H) (R=H) 5-Methylcytidine (R=furanose, C) (R=furanose, T) (R=furnaose, U) (R=furnaose)

DNA contains A, C, G, T all with 2'-deoxyribose! RNA contains A, C, G, U all with ribose! ! The stereochemistry of the base is β 247

Numbering System

4 O O6 O O 5' 7 4 7 6 3 HO O Base N 5 5 5 N 5 1 NH 2 N 3 4 NH N 6 1 N 4' 1' 8 8 2 2' 6 1 2 N 6 2 N O O2 N N 9 4 N 2 NH2 N HO 3' OH 9 H 4 3 R 3 1 R Ribonucleoside Guanosine Uridine

248

124 Nucleoside Conformation:

O O O O N N NH NH HN HN N N N NH2 N O H2N N O N HO HO HO HO O O O O

OH OH OH OH Anti conformation Syn conformation 5-member ring conformation: envelope

N O 5.9 Å R RO H O N O O N RO NH O N H H N H NH O H N 7.0 Å NH2 H R NH2

C2' - endo conformation! C3' - endo conformation! found in B-form DNA! found in A-form DNA! 249

Watson & Crick: double helix Initial “like-with-like”, parallel helix: Does not fit with with Chargaff’s Rule: A = T G = C

H H N N N dR dR dR dR N O N N N N O N H N O N N N N H H H O O H H H N N H H H H N N N O N N H N O N N O N N N dR dR dR dR N N N H H purine - purine pyrimidine - pyrimidine

Wrong tautomers !!

Watson, J. D. The Double Helix, 1968 250

125 Complimentary Base- Pairing in Nucleic Acids: antiparallel double helix

Antiparallel C-G Pair Antiparallel T-A Pair H H O H N N N H O N 5' 5' N H N N RO N H N N RO 5' N N O 5' RO N N O O RO O O O H N OR H OR 3' 3' OR OR 3' 3'

H 6 Hydrogen Bond H N Hydrogen Bond 4 Hydrogen Bond Hydrogen Bond 4 Donor N O6 O O H N N Donor N H O N A cceptor Acceptor N1 Hydrogen Bond Hydrogen Bond Hydrogen Bond N N N3 N Hydrogen Bond N3 N H Acceptor Acceptor N H N N1 Donor Donor N N R N N R R O Hydrogen Bond 2 R O H N Hydrogen Bond Acceptor O N2 H Donor

“Molecular Structure of Nucleic Acids” Watson J. D.; Crick, F. H. C. Nature 1953, 171, 737-8

251

B-DNA

Minor Minor groove groove

Major Major groove groove

pdb code: 1bna 252

126 DNA Grooves

major groove

cytidine guanosine

minor groove

major groove

thymidine adenosine

minor groove

253

Writing DNA sequences DNA Sequences are written 5’ to 3’

5’-ATCGCAT-3’

5’-d(ATCGCAT)-3’

A T C G C A T 5' 3' HO P P P P P P OH

254

127 Melting Temperature (Tm): a measure a duplex stability Double Δ Single stranded strand Hybridzed: Unhybridized: highly ordered less ordered, structure random coil

Base stacking causes a deceases in the net UV absorbance when DNA is hybridized (double stranded) versus unhybridized.

Upon thermal denaturation (melting), the UV absorbance increases: hyperchromicity

Blackburn et al. Ch. 2.5.1, 11.1.1 255

DNA melting curve: 5’-d(GCT AGC GAG TCC)-3’! 0.2 3’-d(CGA TCG CTC AGG)-5’ annealing single )

m stranded n melting 0.15 0 6 2 ( 0.1 s b A 0.05 double stranded Tm= 65 °C 0 0 20 40 60 80 100 T (°C)

Tm is often taken as a measure of DNA duplex stability

Tm is a measure of ΔG not ΔH

The Tm is dependent upon the length and sequence of the oligonucleotide (CG/AT ratio) and the ionic strength of the medium 256

128 DNA processing enzymes: Blackburn et al. Ch. 3.6, 5.3, 6.6.4 DNA replication: Helicase: Unwinds double stranded DNA DNA polymerase: replicates DNA using each strand as a template for the newly synthesized strand.

“It has not escaped our attention that the specific pairing we have postulated immediately suggests a possible copying mechanism for the genetic material.” 257 Watson & Crick

DNA Polymerase: the new strand is replicated from 5’ to 3’ DNA polymerase are Mg2+ ion dependent Details regarding the mechanism of recognition of dNTP incorporation for the growing DNA strand are not fully understood

258

129 DNA Ligase: ATP-dependent enzyme that will join (ligate) two DNA segment by catalyzing the formation of the phosphodiester bond of a terminal 5’-phosphate of one oligonucleotide and the 3’-hydroxyl group of another oligonucleotide.

5' 3' 5' 3' 2- 2- O3PO OH O3PO OH

2- OH OPO3 3' 5'

5' 3' 5' 3' 2- 2- O3PO OH O3PO OH 5' 3' 2- O3PO OH

OHOPO 2- DNA Ligase 3 Phosphodiester 3' 5' bonds

DNA Ligase

259

Restriction Enzymes (endonucleases): enzymes that will cleave double stranded DNA at specific, known sequences.

5’-d(G-A-A-T-T-C)-3’! EcoR I 3’-d(C-T-T-A-A-G)-5’! ! ! 5’-d(G-G-A-T-C-C)-3’! 3’-d(C-C-T-A-G-G)-5’! BAM HI

5' 3'

3' 5'

restriction enzyme

2- OH O3PO 5' 3' “sticky ends”

3' 5' 2- O3PO OH

Werner Arber, Daniel Nathans and Hamilton Smith 260 1978 Nobel Prize in Medicine & Physiology

130 Type I: cleaves at a site very distant from the recognition sequence; Mg2+, SAM and ATP dependent. Type II: cleaves DNA at or near the recognition sequence; Mg2+ dependent. i.e., EcoR I, BamHI, Bbs I

BbsI: GAAGACNNNNNNN! !CTTCTGNNNNNNN Recognition sequence Cleavage: blunt end

5' 3'

3' 5'

Type 2 restriction enzyme

2- OH O3PO 5' 3'

3' 5' 261 2- O3PO OH

Polymerase Chain Reaction (PCR): method of amplifying DNA using DNA polymerase and cycling temperature

Heat stable DNA Polymerases: Taq: thermophilic bacteria (hot springs)- no proof reading Pfu: geothermic vent bacteria- proof reading

Mg 2+ two Primer DNA strands (synthetic, large excess) one sense primer and one antisense primer one Template DNA strand O O O -O P O P O P O O B dNTP’s O- O- O-

HO

KARY B. MULLIS, 1993 Nobel Prize in Chemistry for his invention of the polymerase chain reaction (PCR) method.

Blackburn et al. Ch. 5.2.3, 5.4.2 262

131 A typical PCR temperature cycle

Denaturation: 94 °C 0.5 - 1 min

Annealing: 55-68 °C 0.5 - 1 min 5 °C below the

Tm of the primer

Extension: 72 °C 1 min + 1 min per Kb of DNA

# of cycles 25 - 35

Final extension 72 °C 10 min

263

Polymerase Chain Reaction 5' 3'

5' 3' 95 °C

denaturation 3' 5'

3' 5'

5' 3' 72 °C 55 - 68 °C Taq, Mg 2+, dNTPs 3' anneal 3' extension (+) and (-) primers 3' 5'

5' 3'

5' 3'

3' 5' 95 °C 3' 5' 5' 3' denaturation 5' 3' 2nd cycle 3' 5'

2 copies of DNA 3' 5'

amplification of DNA

264 For a PCR animation go to: http://www.blc.arizona.edu/INTERACTIVE/recombinant3.dna/pcr.html

132 $$ The Power of Compounded Interest $$

1 x 2 = 2 x 2 = 4 x 2 = 8 x 2 = 16 x 2 = 32 x 2 = 64 x 2 = 128 x 2 = 256 x 2 = 512 x 2 = 1,024 x 2 = 2,048 x 2 = 4,096 x 2 = 8,192 x 2 = 16,384 x 2 = 32,768 x 2 = 65,536 x 2 = 131,072 x 2 = 262,144 x 2 = 524,288 x 2 = 1,048,576

In principle, over one million copies per original, can be obtained after just twenty cycles 265

Oligonucleotide-Based Site-directed mutagenesis

DNA mRNA protein

Blackburn et al. Ch. 5.6 266

133 3’-GAG ATG ACA CCC AAA-5’! 5’-CTC TAC TGT GGG TTT-3’! ! -Leu Tyr Cys Gly Phe-! ! ! ! 3’-GAG ATG CGA CCC AAA-5’! 5’-CTC TAC GCT GGG TTT-3’! ! -Leu Tyr Ala Gly Phe-!

267

Restriction Map

23 BspD I 23 Cla I EcoR I 4361 29 HinD III Aat II 4286 185 EcoR V Ssp I 4170 229 Nhe I 375 BamH I

Sca I 3846 562 Sph I 622 EcoN I Pvu I 3735 651 Sal I Pst I 3609 Ase I 3539

Bsa I 3435 939 Eag I pBR322 972 Nru I Eam1105 I 3363 1063 BspM I

4363 base pairs Unique Sites

1353 Bsm I 1369 Sty I AlwN I 2886 1425 Ava I 1444 Bal I 1444 Msc I 1650 Bsg I 1664 BspE I 1664 BspM II Afl III 2475 1668 BsaB I Nde I 2297 2066 Pvu II Xca I 2246 2124 Esp3 I Bst1107 I 2246 Bsa I 2227 Tth111 I 2219

268

134 EcoR I EcoR I EcoR I Cys Ala BamH I

Cys Ala EcoR 1 BamH1 BamH I BamH I

insert

envelope

BAM H1 Cys plasmid (template) 3'-GAT CCC NNN CTC TAC ACA GGG TTT NNN------5' (−) antisense 5'-CTA GGG NNN GAG ATG GCT CCC AAA NNN-3' (+) sense Ala PCR primer with mutation

PCR amplifies a new insert with the mutation

Cut the PCR fragments with EcoR1 and BamH1

Ligate the new insert (with the desired mutation) back into the envelope

MICHAEL SMITH, 1993 Nobel Prize in chemistry for his fundamental contributions to the establishment of oligonucleotide-based, site-directed mutagenesis and its development for protein studies. 269

Amplification of the mutant sequence by PCR ACA Codes for Cys TGT

Denature and anneal primers (-) Primer contains the mutation ACA for Ala GCT TGT (+) primer

extend

ACA ACA GCT TGT

Denature and anneal primers

ACA ACA GCT GCT

GCT TGT

extend

ACA ACA GCT GCT

CGA ACA GCT TGT 270

135 ACA ACA GCT GCT

CGA ACA GCT TGT

Denature and anneal primers

ACA ACA GCT GCT

GCT GCT

CGA ACA GCT GCT

GCT TGT

Extend

CGA ACA GCT GCT CGA CGA GCT GCT

CGA ACA GCT GCT

CGA ACA GCT TGT DNA strands with the desired mutation are being amplified much faster than strands without the mutation; after ~25 rounds of PCR, the amount of DNA that does not have the desire mutation become 271 negligible (<< 1 in a million)

Nucleoside Synthesis: Blackburn et al. Ch. 3.1 important class of chemotherapeutic agents (anticancer and antivirals) important reagents for biotechnology Anti-Cancer Nucleosides

F O F3C O NH2

NH NH N N N HO N HO O HO O O O O O F HO HO HO F

Anti-Viral Nucleosides

O NH NH2 2 H2N O N NH N N N NH HO N N HO N HO N N OH O HO O O O O O O N O O S

N3 AZT ddC ddI d4C (-)-3TC

272

136 Chemical Synthesis of via Vorbrüggen Glycosylation

SiMe3 O Cl - OTMS N N + AcO N OTMS AcO O O OAc N OTMS AcO O O O SnCl4, CH3CN AcO OAc AcO O + AcO O

O O

NH NH HO N AcO O N NH3, MeOH O O O

AcO OAc HO OH β-Ribonucleoside

273

The stereochemistry of the C2-ester group of the furanose-tetraester controls the stereochemistry of the glycosylation reaction

O OTMS N NH AcO O AcO N OAc N OTMS O O

SnCl4, CH3CN AcO OAc AcO OAc

ribose-tetraacetate β-1'-stereochemistry

O OTMS N NH AcO O AcO N OAc N OTMS O O

SnCl4, CH3CN AcO OAc AcO OAc

arabinose-tetraacetate α-1'-stereochemistry

274

137 Exocyclic amino groups of C, A and G require protecting for the Vorbrüggen Glycosylation reaction

O OTMS R R HN N

O N R= H, CH TMSO N H 3

O OTMS

HN R N R

N N

O N TMSO N H R= CH3, CH(CH3)2

O OTMS HN Ph N Ph N N N N N N H N N (H3C)3Si

OTMS O N N N OTMS NH O N N N R N N N R H H (H3C)3Si R= CH3, Ph 275

Chemical Conversion of Ribonucleoside to 2’-Deoxyribonucleoside: Free radical deoxygenation of the 2’-hydroxyl group

O O

NH (iPr2SiCl)2O, NH PhOC(S)Cl, HO N pyridine O iPr O N pyridine O O Si iPr O O HO OH Si O OH β-Ribonucleoside iPr iPr

O O

NH NH 1) nBu3SnH, AIBN iPr O N O PhCH3, reflux HO O N Si O O iPr + - O 2) nBu4N F , THF Si O O OPh HO iPr iPr S β−2'-Deoxyribonucleoside

276

138 Solid-Phase Oligonucleotide Synthesis!

S S S OH O O O O I I I L L L OH O Si (CH2)3 NH2 O Si (CH2)3 N C (CH2)2 C OH I I I H C OH C O C O A A A

DMTrO B1 O DMTrO B1

O HO B O N (iPr)2 S 1 P O O I O O L Cl3CCOOH O Si (CH2)3 N C (CH2)2 C O CN I H (detritylation) C O O O N NH 1H-tetrazole A (coupling) N N

HO DMTrO B2 B1 DMTrO B2 O O O

1) Ac2O (capping) Cl CCOOH O O O O 2) I2, H2O (P oxidation) O O 3 CN P CN CN P O P O Repeat Cycle O O B1 B O B1 O O O

O O O

HO B2 O NH , H O Cl3CCOOH 3 2 O O deprotection P O - -and- O cleave from B1 solid support O 277

Blackburn et al. Ch. 4 HO

The Protecting Groups for Solid Phase DNA Synthesis: 5’- hydroxyl group

R1 Trityl R1= R2= R3 = H Tr-OR (p-Methoxyphenyl)diphenylmethyl ether R1= R2= H, R3 = OCH3 4'-methoxytrityl MMTr-OR R2 C O R Di-(p-methoxyphenyl)phenylmethyl ether R1= H, R2=R3 = OCH3 4',4'-dimethoxytrity DMTr-OR

Tri-(p-methoxyphenyl)methyl ether R1= R2= R3 = OCH3 R3 4',4',4'-trimethoxytrityl TMTr-OR

Relative rate of hydrolysis: O O

HN HN 80% AcOH R O O N (aq) HO O N O 20°C O

HO OH HO OH R = Tr 48 hr. R= MMTr 2 hr. R= DMTr 15 min.! R= TMTr 1 min. (too labile to be useful) 278

139 Protecting groups for the exocyclic amino groups

O O

HN HN Ph O O N N N N N NH O NH N O N N N N N N N N N H dR dR dR dR

O O OPh HN HN O N N N N NH O OPh O N N N N N N H dR dR dR

All are removed with NH3/H2O at 80° C

279

Phosphoramidite reagents: the monomeric building blocks for solid-phase DNA synthesis

N O HO B DMTrO B P CN DMTrO B O DMTr-Cl O O Cl pyridine [(CH3)2CH]2NH HO HO O NC P Base is protected O N[CH(CH3)2]

for solid-phase RNA synthesis

HO B DMTrO B Si Cl DMTrO O B DMTrO O B O DMTr-Cl O + pyridine Ag+ HO OH HO OH HO O Si Si O OH

Base is protected 70 : 30

N O [(CH3)2CH]2NH P CN Cl

DMTrO O B silyl group removed with fluoride ion (F-)

O O Si NC P O N[CH(CH3)2] 280

140 DNA Sequencing: Maxam-Gilbert Sequencing Blackburn et al. Ch. 5.1 sequence selective chemical cleavage Detection: 5'-32P-labeling

A: Cleavage at the 3'-side of guanosines with a) dimethylsulfate b) Δ, c) piperidine.

32 O 32 O 32 P P H3C P N NH N NH O + O O N N NH H CO S OCH O O N N NH O 2 3 3 2 O OH O H2O, Δ

O O O O O O H3C O - P - P N P O O O O lose NH -O O N N NH2

32 P 32P 32P

O OH H O OH H O OH H O N + N +

O O H H H O O O- O P - P H -O O O O N P -O O

281 Maxam, A. M.; Gilbert, W. Methods Enzymol. 1980, 65, 499-558

Maxam-Gilbert Sequencing

B. Cleavage at the 3'-side of and guanosines with a) dimethyl sulfate

b) HCO2H, c) piperidine.

32 NH2 NH2 P 32P 32P N N N N O + O N N H CO S O N N O O 3 OCH3 O O OH HCO2H, H2O O CH3

NH2 O O O O O O P N N P - - P - O O O O lose + O O N H N

CH3

32P 32P 32P

O OH H O OH H O OH H O N + N +

O H H O O H O - P P H O - -O O N O O O P -O O

282

141 Maxam-Gilbert Sequencing

C. Cleavage at the 3'-side of and with a) hydrazine, b) Δ, c) piperidine.

+ 32P 32P H O 32P O NH HN 2 H HN O N O CH3 NH O CH O N 3 O N O H2N NH2 O O O N O HN NH2 O H2O O O O O P O P -O O P -O O -O O

32P 32P

O O OH NH O 2 O OH NH2 N N

O H H H O O- P H O -O O N P -O O

283

Maxam-Gilbert Sequencing

D. Cleavage at the 3'-side of cytidines with a) hydrazine, 1.5 M NaCl, b) Δ, c) piperidine.

32 NH P + 2 32 H+ H P NH2 HN 32P NH NH 2 N O N O O O N NH O O N H N NH O O O N 2 2 HN NH2 O 1.5 M NaCl O O P O O - O P O O P -O O -O O

32P 32P 32P NH O O 2 H O O OH NH O OH NH N NH 2 2 O O N N N

NH2 + O H H O H O- O P H O O -O O N P P -O O -O O

284

142 Maxam-Gilbert Sequencing Separation and detection of 32P-labeled DNA fragments by polyacrylamide gel electrophosesis (PAGE). DNA fragments separated based upon charge, which is proportional to the length of the DNA fragment.

G A & G C C & T Larger 3’ fragments G T A A C G T A A T C A C Smaller A fragments G 5’-32P

285

Sanger Sequencing Enzymatic replication of the DNA fragment to be sequnced with DNA polymerase, Mg+2, ddNTP's and 32P-labeled primers.

ddNTP’s

NH2 O

N N NH O O O O O O N N N O -O P O P O P O -O P O P O P O O O O- O- O- O- O- O-

ddATP ddTTP

O NH2

N NH N

O O O N O O O N O N NH2 -O P O P O P O O -O P O P O P O O O- O- O- O- O- O-

ddGTP ddCTP

286

143 Sanger Sequencing ddA ddG ddC ddT 5' Larger C G fragments A T T A T A G C C G A T T A T A A T G C T A G C Smaller T A fragments C G 3'

5' 3' 32P 32P-5' 3' primer template

287

Sanger sequencing with flourescent ddNTP's

H H O N O NH2 N O

HN H C N H C 3 N 3 N O N O N -3 O -3 O H O P O H3O9P3O 3 9 3 (CH2)2 (CH2)2 O O H3C CH3

- O O O - O O O CH CH3 CH3 CH3 3 ddT ddC

O O O O N N CH 3 HN CH3 HN

H C CH 3 3 NH2 O

- N NH O O O O O O - N N N N NH -3 H O P O -3 2 3 9 3 H3O9P3O O O

ddA ddG

Excitation: ~ 490 nM, Emission: ddT= 526 nm. ddC= 519 nm, ddA= 512 nm, ddG= 505 nm

288

144 Sanger sequencing using flourescent ddNTP's terminated DNA strands are separated by capillary electrophoresis

289

Pyrosequencing 5'-ACCTTGATACCATCTAGGA------3' AGATCCT------5'

dNTPs are added dTTP, Mg2+, sequentially one at a time DNA polymerase

5'-ACCTTGATACCATCTAGGA------3'- TAGATCCT------5' + Three enzyme system where the O O O incorporation of a complimentary O P O P O O S O P O 3 O A O O O Adenosine- nucleotide opposite a template DNA 5’-phosphosulfate strand results in the emission of a HO OH (APS) photon. ATP-Sulfurylase

O O S 2- O P O P O P O ATP + SO4 O A O O O

HO OH Luciferase, O2 is used in place of ATP - not a substrate for ATP-sulfurylase oxyluciferase + P O 2- + AMP + photon & luciferase 2 7

Ronaghi, M., Genome Res. 2001, 11, 3-11 290

145 5'-ACCTTGATACCATCTAGGA------3' TAGATCCT------5'

dNTPs are added dGTP, Mg2+, sequentially one at a time DNA polymerase

5'-ACCTTGATACCATCTAGGA------3'- GGTAGATCCT------5' +

O O O 2 O P O P O O S O P O 3 O A O O O

HO OH ATP-Sulfurylase

2- 2 ATP + SO4

Luciferase, O2

2- oxyluciferase + P2O7 + AMP + 2 photon

291

pyrogram

5’-----TCCCCACCGAAACCCCAACGTCAAC------3’ AGGGGTGGCTTTGGGGTTGCAGTTG------5’

292

146 Apyrase is a fourth enzyme that is added that will hydrolyze the dNTP and ATP to the corresponding dNMP and PPi between dNTP additions. The rate of hydrolysis of apyrase is slower that than the other three enzymes.

Alternatively, a biotinated template is used which is bound to streptavidin coated beads. The immobilized template DNA is washed between dNTP addition

streptavidin•biotin--–––-5’-ACCTTGATACCATCTAGGA------3’ -15 K D= 10 AGATCCT------5'

O O

HN NH HN NH H O-DMTr H H H H N i S CO2H S N Pr2 O P CN Biotin O O

293

Sequencing by Reversible Chain Termination N3 Dye – O2C PPPO O B linker O CO – P 2 O N 3 – CO2 tris(2-carboxyethyl)phosphine (TCEP): 3’-O-blocked fluorescently Reduces azides to an amino groups labeled dNTP read fluorscence = a specific base

N read fluorscence 3 = a specific base Dye linker O linker OH linker OH N3 DNA polymerase 3' O TCEP N 3' OH linker O 3 DNA polymerase 3'-O-blocked- O Dye fluorescent dNTPs 3' Etc. 3'-O-blocked- N fluorescent dNTPs 3

chain elongation is blocked

chain elongation is blocked

C T C T G C A G A G C C C C C C

147 Reversible Chain-Terminating, Fluorescent dNTPs

N N O N O B 3 H F O O O N F N O N N O N H H HN O

– O N CO2 O N3 O NH H O 2 O O N N N O N H H O PPPO O N N 3 N dTTP (blue) O PPPO O N3 H H N O N Et + Et dATP (yellow)

CO – O N O 2 3 H NH O O N 2 N O N H H – N O SO3 O N

O N PPPO O N3 O N O 3 H O O O N HN N O N H H O – H2N SO3 dCTP (green) N N N

O

PPPO O N3 dGTP (red)

Light-Directed, Spatially Addressable Parallel Synthesis

OP OP P P P P P P P P P P A A P P P P OH OH O O O O O O O O O O Coupling O O O O O O

A-OP

OP OP OP OP OP OP Coupling A A P P P P A A B B P P O O O O O O O O O O O O B-OP

OP OP D D OP OP OP OP OP OP P P P P O O P P P P Coupling A A B B C C A A B B C C A A B B C C O O O O O O O O O O O O O O O O O O D-OP

296

148 Photoremovable protecting group: o-nitrobenzyl ether derivatives

O

O O O B Mechanism: hν (λ ~ 350 nm) NO2 O NC O R P O R O N[CH(CH3)2] O hν H O H O O N O O N O O

O R O R O R O O H O O + O O N O N + O H O N O O + OH H-OH2

O R O O O O ROH + O N O N O H O

H2O 297

Spatially addressable: 8-mer chip: 65, 536 different sequences 12-mer chip: 1,677,216 different sequences DNA fragment DNA–fluorophore Place DNA on the chip, then wash away non-specific hybridization after 1-10 hrs. Raise temperature and “melt” away partially hybridized sequences.

3’-ACGGTGCG! CGGTGCGA ! !GGTGCGAG! GTGCGAGA! TGCGAGAA! GCGAGAAT etc! ! 3’-ACGGTGCGAGAAT---5’ (from the chip)! 5’-TGCCACGCTCTTA---3’! 298

149 Nucleotide Biosynthesis

CHO ATP AMP H OH PO PO O OH O H OH OPP H OH HO OH HO OH CH3OP 5-Phosphoribosyl- D-ribose-5-phosphate 1- pyrophosphate (PRPP)

Blackburn et al. Ch. 3.4, 3.5 299

Purine Biosynthesis " O " H N glutamine glutamate 2 H X PO O NH2 glycine PO HN 10-formyl- + ATP O PRPP O tetrahydrofolate amidophospho- glycinamide GAR ribosyl transferase HO OH ribonucleotide (GAR) synthase HO OH transformylase O O glutamine glutamate + N NH + ATP ADP+ Pi NH ATP H H ATP PO N PO HN - H2O O NH2 O PO O HN O NH formylglycinamidine 2 Aminoimidazole + ribonucleotide (FGAM) synthase (AIR) synthase HO OH HO OH HO OH - O CO2 - - N CO2 CO2 - aspartate, N HCO3 , ATP ATP N H -fumaric acid No biotin PO O N NH -ADP, -Pi 2 aminoimidazole PO O N NH AIR succinylocarboxamide 2 carboxylase ribonucleotide lyase HO OH (SAICAR) synthase HO OH

O O O N NH 2 N N 10-formyl- NH2 NH - H2O PO N tetrahydrofolate O NH CHO PO N 2 PO O N N IMP O N aminoimidazole H cyclohydrolase carboxamide HO OH ribonucleotide (AICAR) transformylase HO OH HO OH Inosine monophosphate (IMP) 300

150 Folate derivatives – one-carbon donors

- O CO2 - O CO - O CO2 N 2 H O N HN N - O CH3 N H CO2 H H N N N - HN N CO - HN N CO2 2 N H H N N N H2N N N H O H2N N O 2 H H H 10-formyl-tetrahydrofolate 5,10-methylene-tetrahydrofolate 5-methyl-tetrahydrofolate

" O " O = = " -or- " " " X CH2OH = X CH3 H X H H

- O CO - O CO2 2 dihydrofolate O N O N reductase H H N N - HN N CO - HN N CO2 NADH 2 H H H N N N H2N N N 2 H Folic Acid Dihydrofolate - O CO2 - O CO2 NH2 N H dihydrofolate N O N - reductase H H N N CO2 N HN N CO - R NADH 2 H N N N H 2 R= CH3, methotrexate H2N N N R= H, aminopterin H Tetrahydrofolate Dihydrofolate reductase inhibitors 301

5,10-methene-THF to 5-formyl-THF - O CO2 O CO - 2 5,10-methylene-THF 5,10-methenyl-THF N cyclohydrolase N dehydrogenase H H H O NADP HN N CO - 2 HN N - 2 CO2 N N N + N

H2N N O H2N N O H H - O CO - O CO2 2 N O N H H H N HN - HN N CO - N CO2 2 N N H2N N N H O OH H H2N N O H 10-formyl-tetrahydrofolate

5,10-methene-THF to 5-methyl-THF - O - O CO2 CO2 N N H H+ H HN N - HN N CO - CO2 H 2 N N N N CH2

H2N N O H2N N O H H

- 5,10-methylene-THF O CO2 reductase NADPH, FAD O CH3 N H N - HN N CO2 H H2N N N H 302 5-methyl-tetrahydrofolate

151 Purine Biosynthesis (con’t)

O NH2 aspartate, fumaric acid N GTP + GDP + Pi N NH N

PO N N PO N O O N

adenylosuccinate synthase, HO OH adenylosuccinate lyase HO OH

Inosine monophosphate (IMP) (AMP)

NAD+ + H O IMP 2 dehydrogenase NADH + H+ glutamine glutamate O + ATP + ADP+Pi O

N N NH NH

PO N PO N O N O O N NH2 H GMP synthase

HO OH HO OH monophosphate (XMP) (GMP)

303

IMP Dehydrogenase

O O N CONH N 2- 2 2- O3PO N O3PO N O NH + H2O O NH + NADH + H+ N N HN R O HO OH HO OH NAD+ XMP IMP Cys-S Cys-S

304

152 Pyrimidine Biosynthesis

CO2H Zn2+, O O - - H2O HCO3 + ATP Aspartic acid - - + glutamine O PO NH H2N N CO2 carbamoyl 3 2 aspartate H dihydroorotase phosphate carbamoyl synthase carbamoyl transferase phosphate

O O O HN O + HN NAD / FAD HN PRPP PO O N - - Dihydroorotate orotate CO2 O N CO2 O N CO - H dehydrogenase 2 phosphoribosyl H transferase dihydroorotate orotate HO OH Orotate monophosphate (OMP)

305

O O O HN HN HN 1) 2 ATP O O O PPPO N PO N - CO 2 PO N O O O - CO2 OMP decarboxylase HO OH HO OH HO OH

Orotate monophosphate (OMP) (UMP) (UTP)

ATP + GTP glutamine

Ribonucleotide CTP reductase synthase

NH2

O O N HN O HN methylene- O PPPO N O CH3 tetrahydrofolate O PO N PO N O O

thymidylate HO OH synthase HO HO (CTP) dUMP (TMP) 306

153 Ribonucleotide Reductase

PO B Ribonucleotide PO O B O Reductase

HO OH HO

Class I O H2O H2O O O O Glu Class IV Asp C Fe Fe O Class II O O O O Glu Coenzyme B12 Mn Mn µ-oxo-bridged diferric clusier

Cys S Tyr O Tyr O

Cys S Class III protein CO2 HN H3N O S Fe protein Fe S ET protein HN Fe S S A O A O O S Fe H3C

protein HO OH HO OH glycine radical 307

Mechanism of Ribonucleoside Reductase

Radical Radical-H

PnO B B P O B PnO B PnO n O O O O -H O H H H H 2

O O H HO OH O OH OH H ribonucleoside-5P H B: S Cys S Cys

B PnO B PnO PnO B O O O ET H H+ O H O H H O H S Cys S Cys S Cys S Cys S Cys

Radical-H Radical

B PnO PnO B O O H H H

HO H HO H

2'-deoxyribonucleoside-5P 308

154 Mechanism and Inhibition of Thymidylate Synthase

H H2N N N O O HN + N HN H H2N N N HN O CH3 O CH2 NHR O X 2- N O3PO O + HN NHR 2- N N O3PO O O -S Cys HO dTMP Dihydrofolate HO Glu-CO - -S Cys dUMP (X= H) 2 Glu-CO2-

309

Ternary complex of thymidylate synthase with 5’-fluoro-dUMP and 5,10-dihydrotetrahydrofolate

9,10-CH2-THF

FdUMP Tyr-108

Cys-161

pdb code: 1B02 310

155 DNA Methylation: 5-methyl-2’-

NH CH3 N NH2 N 2 NH2 NH2 O C S O2C S N 2 N N N O N O N O O CH3 NH N NH3 N 3 N O O N + O O + HO OH HO OH S Cys S Cys O O

311

5-Methyl-C (Epigenetic) sequencing

NH NH2 2 O O NaHSO basic pH 3 N N NH NH sodium H2O N O O3S N O bisulfite O3S N O N O DNA DNA DNA DNA

NH2 NH2 H C NaHSO H3C 3 N 3 N sodium N O O3S N O bisulfite DNA DNA

Sodium bisulfite converst C’s to U’s, but has no effect on 5-methyl-C

312

156 Antiviral nucleosides: 2,3-dideoxynucleosides as reverse transcriptase inhibitors

Protein Biosynthesis transcription translation DNA mRNA Protein

Retrovirus (hepatitis B, HIV, HPV) ssRNA + proteins (reverse transcriptase, integrase, protease)

reverse insertion into RNA transcription ds DNA host cell genome poly-protein reverse intgrase transcriptase protease proteins

H. Temin & D. Baltimore Blackburn et al. Ch. 3.7 1975 Nobel Prize in Medicine or Physiology 313

Mechanism of action of 2,3-dideoxynucleosides: recall Sanger sequencing- termination of a growing DNA chain by enzymatic incorporation of a 2,3-dideoxynucleosides

Incorporation of a ddNTP

RT RT Termination of elongation

Truncated DNA also inhibits RT

314

157 Nucleoside-based reverse transcriptase inhibitors

O NH NH2 2 H2N O N NH N N N NH HO N N HO N HO N N OH O HO O O O O O O N O O S

N3 AZT ddC ddI d4C (-)-3TC

2,3-dideoxynucleoside is enzymatically phosphorylated at the 5-hydroxyl to the ddNTP, which is the active RT inhibitor

2- 2- O3PO3PO B B O3PO B O HO O O

ddNMP ddNDP

2- O3PO3PO3PO B O Pro-drug: administered in an inactive

ddNTP formed but is transformed in vivo into the active drug

315

DNA as a target for therapeutic agents:

Intercalation: • planar aromatic molecules “slide” between stacked bases • intercalators span the minor and major grooves of DNA • driven by hydrophobic interactions • intercalators stabilize DNA structure • causes an “unwinding” and elongation of DNA in the area of the intercalation

NH O OH O 2 O N R H3C N - Br OH N + N O H2N OCH3 O OH O N CH3 H OH O O H3C R=H, daunomycin Ellipticine NH2 Campthothecin Ethidium Bromide OH R=OH, adriamycin

316

158 Topological relationship of DNA: supercoiling, tangling, knotting for replication (transcription), the supercoiling of DNA must first be “relaxed”

Topoisomerase (mammalian) DNA gyrase (bacteria)

O Mechanism of the O B O B DNA cleavage step O HO O H+ ATP _ O P O O O B O Tyr O P O _ O _ O O B O

colvalent O Tyr enzyme-substrate intermediate Topo II inhibitors stabilize the covalent DNA•Topo II complex (protein bound double strand cleaved DNA), which causes chromosomal abnormalities and leads to apoptosis

Corbett, A.H.; Osheroff, N. Chem. Res. Toxicol. 1993, 6, 585-597 317 Topo II movies: http://berger.berkeley.edu/Pages/Teaching.html

Intercalation

major groove

major groove

minor groove

O OH O

OH

OCH3 O OH O daunomycin

O H3C

NH2 pdb code: 110D OH 318

159 Ribosomal Protein Biosynthesis:

transcription translation DNA RNA Protein (genome) (transcriptome) (proteome)

Transcription: only one of the DNA strands is copied (coding or antisense strand). Its sequence is converted to the complementary sequence in mRNA (template or sense strand), which codes for the amino acid sequence of a protein (or peptide)

RNA polymerase “splicing” DNA pre-mRNA mRNA rNTPs

319

Transcription: Intron Intron 5'-UTR Exon Exon Exon 3'-UTR Pre-mRNA:

splicing

mRNA: 5'-UTR Exon Exon Exon 3'-UTR Translation: mRNAs are transported from the nucleus to the cytoplasm, where they acts as the template for protein biosynthesis (ribosomes). A three base segment of mRNA (codon) codes for an amino acid.

320

160 Transfer RNA (tRNA): The “anticodon” region of tRNA is complementary to the mRNA codon sequence. The t-RNA carries an amino acid on the 3’-terminal hydroxyl (A) (aminoacyl t-RNA) and the ribosome catalyzes amide bond formation. Although single-stranded, there are complementary sequences within tRNA that give it a defined conformation

variable loop

TψC loop

D loop

aminoacyl t-RNA 321

There are many non-standard bases found in tRNAs

O O O CH3 O O NH2 HN N N N NH NH NH NH NH CH HO HO HO HO HO N N 3 O O N O N O N O HO O N O O O N N N NH2 HO OH HO OH HO HO OH HO OH HO OH (ψ) dihydrouridine (D) thymidine (T) inosine (I) 7-methylguanosine 1-methyladenosine

. . . and alternative base-pairing H O H N O H N N O H N N N O H N N N N H N N N R N H N N N H O R N N R R N N R O R N I C I-A Wobble pair I-U wobble pair O O N H O O H N N H N N H O R N R N N N N N N H N N H O R N R N H N R N N O H N N H H N H R H G-C reverse pairing G-U Wobble pair A-U Hoogsteen pair

322

161 . . . and triple helix formation R N N R N N O N N O H N H H N H O H H Hoogsteen pairing H O N Hoogsteen pairing N N H N N N N N R N H N R N O N R N W-C pairing R O W-C pairing U • A-U A • A-U R N N N H N N H O H H Hoogsteen pairing N O H N

N N H N R N N N H O R H W-C pairing 323 G • G-C

tRNA Synthetase: catalyzes the biosynthesis of specific 3’-aminoacyl tRNAs from tRNAs, amino acids, and ATP

H2N O

R O

O O O N NH2 H2N O O P O P O P O N NH O N N O 2 O O O N R O P O O N N O HO OH N HO OH

O N NH2 tRNA O P O O N N O N O OH H B:

O N NH2 tRNA O P O O N N O N O OH H N ’ 2 O Class I: 2 -aminoacyl tRNAs R Class II: 3’-aminoacyl tRNAs ’ 3 -aminoacyl tRNAs 324

162 Ribosomal protein synthesis

SCH3 SCH3 OH H N H OHC N H N A site: OHC 2 O O Aminoacyl tRNA O O O O

P site:

U A C Peptidyl t-RNA U A C A U A A U G U A U G C U C U U A U G U A U G C U C U U 5' 3' 5' 3'

SCH3

OOJHC HN CH S 3 O CH3S HN OH OH OHC O OH OHC O OH N O N H H N CH OH H HN H2N CH3 HN

O OH O O OH O O

A U A

U A C

C A A U A C G A U C U G A A U A A U G U A U G C U C U U A U G U A U G C U C U U 55''' 3'' 5' 3''

E site 325

Oligonucleotide-Base Therapies: Inhibition of Protein Biosynthesis via the Antisense-Antigene (Triplex) Strategies

Taken from: “The New Genetic Medicines,” J. S. Cohen, M. E. Hogan Scientific American 1994 (Dec.), pp 75-82.

• Potentially highly selective (magic bullet) approach to therapy

• ~15 bases sequence is unique in the human genome 326

163 transcription translation protein

DNA mRNA

X X Inhibition of Inhibition of transcription translation

Hoogsteen Watson-Crick base-pairing base-pairing

327 Triple Helix mRNA•DNA

Triple Helix Motifs: third strand binds in the major groove

Pyrimidine•Purine-Pyrimidine: third strand runs parallel to the homo-purine strand H dR N N + dR T•A-T + C •G-C N N H O O H N H O Hoogsteen pairing H H H O N O H N Hoogsteen pairing N N N N H N N H N dR N N N N dR dR N O N H O dR W-C pairing H W-C pairing Purine•Purine-Pyrimidine: third strand runs antiparallel to the homo-purine strand

dR dR N N N N N A•A-T N H G•G-C N N N H H N O H H H H Hoogsteen pairing H O H N Hoogsteen pairing N N O N N N N H N N H N dR N dR N N N O dR N H O dR W-C pairing H 328 W-C pairing

164 DNA Triple Helix!

T• A- T

Major groove

C+• G- C

Minor groove

pdb code: 1BWG 329

Antisense Inhibition: inhibits mRNA function

Exon Exon mRNA Intron

splicing

Exon Exon 5'-cap AUG UAA initiating stop sequence sequence

Antisense targeting: Interon-exon splice junction: interferes with slicing 5’-cap (UTR) region: interferes with binding to the ribosome Initiation and promoter sequences: protein synthesis is not initiated Coding sequence: interferes with elongation of the protein

330

165 When an antisense oligonucleotide binds to mRNA, ribonuclease H is up-regulated. The mRNA of the mRNA•DNA hybrid is digested.

Problems with oligonucleotide-based therapies Transport: DNA does not cross cellular membranes very easily Degradation: DNA is subject to enzymatic digestion by cellular nuclease

Synthetic Oligonucleotides: must maintain affinity and selectivity and impart nuclease resistance • backbone replacements • modified bases 331

Triple Helix Oligonucleotides

HO B HO T HO O B HO O B O O

O O O HN - - + O P O S P O Me P O H2N C O B O O B O O B O HN O T

HO HO HO HO Phosphodiester Phosphorothioate Methyl Phosphonate Deoxyribonucleic Guanidines

Antisense Nucleosides Peptide Nucleic Acids (PNAs)

H3C H3C H2N n O O NH2 X NH Base N NH N N O HO N HO O N O HO O N m O O O OH

HO HO HO X=O Peptide backbone forms a helical X=S structure. Base will hybridized with ss or ds DNA or RNA with high affinity 332

166 microRNA (miRNA): genetically encoded (transcribed) but non-translated RNAs (do not code for a protein or peptide) 5'-(7-methyl-G)-

pri-miRNA

3'-(A)n- Drosha

5' ~ 70 nt 3' pre-miRNA transport to cytoplasm then Dicer

5' 3' ds RNA (21-25 nt) 3' 5'

RISC (RNAi silencing complex)

5' 3' miRNA 333

Ribonucleases (RNase): enzymes that catalyze the hydrolysis of the phosphodiester bonds of RNA

single strand specific: RNase A double strand specific: RNase III specific for DNA/RNA hybrids: RNase H

endonucleases: RNase A, RNase III exonucleoase: RNase II

334

167 A mechanism for ribonuclease A

His B B B O His O O O H N NH O His O N NH neutralization of N NH O O O O H charge makes the H N Lys O O H Lys NH3 O P - 3 phosphate more P B H O O triester like O B B P O O O O O H O O His N O H His N OH O His N OH N OH O N H O N H H

His B B B His His O O N NH O O O O H N NH H N NH O O OH O O O P O O- O H N Lys H O P - P - 3 O -O O H -O B B B His N H HO O O HO O O His N H N His N H OH OH OH N O O O H N H

335

Interference RNA (RNAi) miRNAs (or siRNAs) are important in post-trancriptional regulation of gene expression

RISC (RNAi silencing complex)- multi-protein complex with helicase and ribonuclease activity

guide strand 21-25 nt 5' 3' 5' ATP 3'

3' 5'

Ago2 5' 3' 3' 5' 3' 5' target mRNA is cleaved by RISC target mRNA

mRNA fragements degraded by RNAses; protein expression is silenced

Andrew Fire & Craig Mello, 2006 Nobel Prize in Medicine & Physiology 336 Animation: http://www.nature.com/focus/rnai/animations/index.html

168 Cellular Response to DNA Damage:

DNA Damage

Cell Cycle DNA Apoptosis Replication Arrest Repair Errors

Mutations

Cell Death Cancer

337

DNA Alkylating Agent

O NH2

N N NH NH

N N N N NH2

Cl + HN N HN N R R O Cl O Cl aziridinium ion Nitrogen Mustard active alylating agent

Nitrogen mustards will alkylate adjacent DNA bases causing DNA-DNA cross-links, which is a severe form of DNA damage and can trigger apoptosis or cause

mutations (and cancer) 338

169 Other simple DNA alkylating agents:

Alkyl halides (or reactive equvalents): dimethylsulfate methylene chloride, dichloroethane, SAM (endogenous)

Enals: acrolein (industrial chemical, cigarette smoke), 4-hydroxynon-2-enal, malondialdehyde (endogenous)

Epoxides: Butadiene diepoxide (metabolism of butadiene), chlorooxirane (metabolism of vinyl chloride), benzo[a]- pyrene diol epoxide (metabolism of benzo[a]pyrene)

339

Free-radical mediated oxidative damage to DNA Reactive oxygen species (ROS)

O O molecular oxygen

O O super oxide

H O hydroxyl radical

O O N O peroxynitrite

Causes oxidative cleavage of DNA in an O2 dependent manner The oxygen paradox: oxygen is necessary for cellular metabolism; however, oxygen is transformed into highly reactive species that can damage biomolecules. 340

170 Oxygen metabolism

pKa ~ 4.8 O2 + e O O HO O superoxide

+ 2 H 5 7 -1 -1 2 O O H2O2 + O2 k= 10 - 10 M • sec

Superoxide dismutase (SOD): Zn-Cu or Mn-Fe + 2 H 9 -1 -1 2 O O H2O2 + O2 kcat= ~ 2 x 10 M • sec

(II) (I) Enz•Cu + O2 Enz•Cu + O2 (I) (II) Enz•Cu + O2 Enz•Cu + H2O2

Catalase (heme)

2 H2O2 O2 + 2 H2O 341

Fenton reaction O (III) (II) 2 + Fe O2 + Fe

(II) (III) Redox cycling H2O2 + Fe HO + HO + Fe Very little free Fe(III) in cells Haber-Weiss reaction

O2 + H2O2 HO + HO + O2 slow

O + O O N O O O N superoxide nitric peroxynitrate oxide

pKa ~ 7.0 O + ONO2 + H HO O N HO + NO2 peroxynitrate peroxynitrous acid

342

171 Bleomycin!

Binds Fe and activates O2 giving C4 hydrogen atom abstraction mechanism of hydrogen atom abstraction may involve a Fe-O•, reminiscent of P450

+ H2N

NH N 2 H

NH2 NH H O H2N N NH2

Fe Binding O O N DNA Binding Domain N N O S Domain H O HO N H2N O NH N HN O HO S

O HO NH O N O HO O OH OH O OH

O NH2 343

Bleomycin•Co(III)OOH - DNA complex

Conformation of the DNA bound Bleomycin•Co(III)OOH complex

pdb code: 1MXK

Solution structure of the Bleomycin•Co(III) complex pdb code: 1DEY 344

172 Abstraction of the 4’-hydrogen:

5'-DNA-O3P 5'-DNA-O3P 5'-DNA-O3P O O O O B O B O2 O B RSH HO H O O O O O _ O P O _ O P O _ O P O O O O

PO3-DNA-3' PO3-DNA-3' PO3-DNA-3'

5'-DNA-O3P 5'-DNA-O P 5'-DNA-O3P 3 O O O O O B O O O H O H B: O :B O H _ _ O P O O P O _ O O O _ PO -DNA-3' O P O PO -DNA-3' 3 3 O

PO3-DNA-3'

345

Abstraction of the 5’-hydrogen

O 5'-DNA-O3P H OH 5'-DNA-O3P 5'-DNA-O P 3 O H O O O O B O B O2 O B RSH

O O O _ O P O _ O P O _ O P O O O O

PO3-DNA-3' PO3-DNA-3' PO3-DNA-3' :B H 5'-DNA-O3P O 5'-DNA-O3P O OH O B O O B O _ O P O O O _ O P O PO -DNA-3' 3 O

PO3-DNA-3'

346

173 Abstraction of the 1’-hydrogen

5'-DNA-O P 3 5'-DNA-O3P 5'-DNA-O3P O O O O B O B B O2 O RSH OH H O O O O O _ O P O _ O P O _ O P O O O O 3'-DNA-O P 3 3'-DNA-O3P 3'-DNA-O3P

5'-DNA-O P 5'-DNA-O3P 3 5'-DNA-O3P O O O O O O B O O H O H :B O _ O H O _ O P O _ _ O P O :B O P O O O O 3'-DNA-O3P 3'-DNA-O3P 3'-DNA-O3P

347

Formation of 8-Oxo-2’- and Formamidinopyrimidine Lesions by the reaction of deoxyguanosine with ROS’s

O O H O [O] N N NH H N NH NH -H+ O N O HO N NH2 N N N NH H N NH2 2 dR dR dR 8-oxo-dG [H] +H+

H H O N NH O

HN N NH2 dR

formamidopyrimidine (FAPY)

348

174 Alternative base-pairing of 8-oxo-dG during replication with pol T7

H H H H H N O H N N N O H N H O N N N H N - OR N N O OPO2PO2PO3 N H N N O N N OR N - OPO2PO2PO3 N H O O O O OH OR H OR mutagenic non-mutagenic OH

dC dA 8-oxo-dG 8-oxo-dG

349 pdb code: 1TK8 pdb code: 1TKD

DNA as a target for carcinogen: Bioactivation of pro-carcinogens:

P450 H2O

O benzo[a]pyrene

O P450

HO HO OH OH

O O O O O H O O P450 H O O H O OCH3 H O OCH3

aflatoxin B 1 350

175 O O O O O O H O O O HO H N H O HN OCH3 OCH3 O N O H2N N O HN N H t1/2 in H2O ~ 1 sec + N H2N N

O O O O O O O O O H H O O acetone H O OCH H O 3 OCH3

T. M. Harris et al. J. Am. Chem. Soc. 1988, 110, 7929

OH HO

NH2 O HO N N NH HO N N N OH N N N

351

Adducted Phosphoramidite Approach: Benzo[a]pyrene

O O N N NH NH O N N NH2 N N NH dR dR HO HO OH HO OH

N O

DMTrO O N NH solid-phase O oligonucleotide OH N synthesis N NH NH O OH AcO N N N NC P H OH O N(iPr)2 AcO C G G A C A G A A G OAc

352

176 Post-Synthetic Modification Strategy for N2-2'-Deoxyguanosine Adducts

Si(CH3)3 (H3C)3Si N O O solid-phase N DMTrO oligonucleotide N O N N synthesis N N N X X X= -F, -OTf O C G G A C A G A A G NC P O N(iPr)2

NH2 HO O OH N 1) NH HO OH OH N N N H OH C G G A C A G A A G 2) Deprotection

Kim, S. J.; Stone, M. P.; Harris, C. M.; Harris, T. M. J. Am. Chem. Soc. 1992, 114, 5480 353

Post-Oligomerization Strategy for N6-2'- Adducts

N X X

DMTrO N solid-phase N N O N oligonucleotide N synthesis N N

O X= -F, -Cl C G G A C A G A A G NC P O N(iPr)2 OH HO

NH2 HO HO NH

1) N N HO OH N N

C G G A C A G A A G 2) Deprotection

354

177 DNA-Carcinogen Adducts! DNA-PAH Adducts: benzo[c]phenanthrene!

O N NH

N N NH dR HO

HO OH

O N NH

N N NH dR HO

HO OH

pdb code: 1HWV pdb code: 1HX4 355

DNA-Carcinogen Adducts! DNA-PAH Adducts: benzo[a]pyrene! benzo[a]pyrene benzo[c]phenanthrene

pdb code: 1Y9H 356

178 DNA-Carcinogen Adducts! MeO DNA-Aflatoxin Adduct! O O H O O H O O HO + N NH

N N NH2 dR

pdb code: 1MKL 357

DNA Repair:

1. Direct repair

2. Base excision repair (BER): repair of deglycosylation (lose of the base from the deoxyribose unit) sites, oxidation of the base, or modification by a “small” alkylating agent.

3. Nucleotide excision repair (NER): repair of “bulky” lesions

4. Mismatch Repair: repair of mis-paired DNA bases

5. Recombination: repair of double strand breaks of DNA

“Chemistry and Biology of DNA Repair” Scharer, O. D. Angew. Chem. Int. Ed. Engl. 2003, 42, 2946-2974

358

179 Direct Repair: O6-alkylguanine transferase (AGT): direct reversal by transferring the O6-alkyl group to an active site cysteine

of AGT via an SN2 reaction.

S Cys AGT H3C S Cys AGT

CH3 O O

+ N H N N NH

N N N NH2 N NH2 DNA DNA

DNA Photolyase (bacterial): direct reversal of pyrimidine- pyrimidine photodimers (UV light induced lesion)

O O O O

HN HN hν HN NH

O N O N O N N O

DNA Photolyase: FAD dependent

light dependent repair 359

O6-Alkylguanine transferase (AGT):

Cys H C Cys145 145 S 3 O S O H CH3 N N N N H H O N H H N N N H2N N O 2 H dR dR His146 His146 H N H N H O O N N H H Tyr Tyr114 114 - - Glu172 CO2 Glu172 CO2 X-ray analysis of the C145S mutant

Ser145 Tyr114

H2O

Glu172 His146 O6-Me-G

pdb code: 1T38 360

180 O6-Alkylguanine transferase (AGT): O Cys145 O covalent S S N Cys145 N protein-DNA H N N N H O N complex H N O O N O H dR dR H H His His H 146 H 146 N N O O N N Tyr114 H Tyr114 H

- - Glu172 CO2 Glu172 CO2

Tyr114

Cys145

Glu172 His146 361

Direct Oxidative Dealkylation of DNA Bases by Fe(II)-2-ketoglutarate Dependent Dioxygenases

H N 2 AlkB, Fe(II), O , H2N H2N + 2 N CH3 2-ketoglutarate + O N N N OH N N + C N – CO2, – succinate H H N N N N N DNA DNA DNA

His His His His OH O O O Asp 2 2-oxoglutarate Asp O O2 Asp O Asp O (II) Fe Fe(II) Fe(III) Fe(IV) CO (–H O) CO2 CO2 OH2 2 2 O O His His O His His OH2 OH O O 2 O O

His His His Asp Asp O Asp O O (III) Fe(III) -CO2 Fe(IV) Fe CO CO "rebound" CO 2 O 2 O 2 His O His His OH O O H2N H H N H + C 2 H N N H + C N N H N N N N DNA DNA His His Asp O Asp OH2 O (II) (II) Fe CO Fe + CO2 O 2 O His His OH2 OH2 H2N H2N + O N N OH N N + + C H H N N N N 362 DNA DNA Bugg, pg. 140-1

181 Base-Excision Repair:

O O O NH2 O O H3C H H H3C N N N N HO NH NH NH N NH NH O OHC N HN N N N NH2 N NH2 N NH2 N HO N O N O DNA DNA DNA DNA CH3 DNA DNA OGG1 Fpg AAG AAG Nth UDG

Mechanism of deglycosylation:

DNA DNA glycosylase: DNA O X O O O OH H O O O DNA H DNA O O Abasic (apurinic) site Enzyme AP lyase: leads to DNA strand scission ala Maxim-Gilbert Chemistry

DNA DNA O O X DNA DNA O H O H O OH H H O N Lys OH N H N Lys Lys N NaBH4 O Lys H DNA O O (chemical trap) O DNA O O DNA DNA

Enzyme 363

Base-excision repair: from DNA glycosylase from AP lyase

OH N Lys APE1

HO OP HO O OH CHO PO

Pol β APE1

OH OP Pol β Pol β O OH PO

HO OP

DNA Ligase

364

182 Nucleotide Excision Repair (NER): (shamefully pirated from the Scharer review)

a) A DNA lesion that causes helical distortion (red star) is initially recognized by XPC/hHR23B.

b) XPC/hHR23B recruits TFIIH to the lesion and the two helicase subunits of TFIIH, XPB, and XPD cause partial opening of the DNA around the lesion.

c) TFIIH attracts XPG and XPA/RPA to the lesion, further DNA opening takes places, and a bubble of about 25 base pairs is formed. XPC is probably no longer part of the complex at this point.

d) XPA and RPA verify the damage and ensure the proper positioning of the two endonucleases, XPG and ERCC1/XPF. XPG makes the incision 3’ to, ERCC1/XPF 5’ to the damage and an oligonucleotide of about 25–32 nucleotides in length is released.

e) The replication machinery fills in the gap and DNA ligase I seals the nick. 365

DNA Polymerases: Classified by Structural Homology A (pol I) E. coli pol I repair human pol γ mitochondrial DNA replication human pol θ repair B (α-like) human pol α priming human pol δ replication human pol ζ lesion bypass E. coli pol II repair T4 DNA polymerase phage replication C E. coli pol III replication D DNA pol D replication X human DNA pol β repair human pol λ repair Y (Umc/DinB/Rev1p/rad30 superfamily) E. coli pol IV (Din B) lesion bypass E. coli pol V (UmuDC) SOS induced lesion bypass human pol η lesion bypass human pol κ lesion bypass human pol ι lesion bypass human Rev1 lesion bypass Dpo4 archaeobacteria lesion by-pass 366

183 DNA Replication: replicative, high-fidelity DNA polymerases

Replicative DNA Polymerase

high-fidelity

Replicative DNA Polymerase

high-fidelity

DNA lesion DNA replication is blocked

367

Trans-lesion Synthesis: error prone (low fidelity), bypass polymerases (Y family)

Replicative DNA Polymerase

high-fidelity

DNA lesion DNA replication is blocked

By-pass DNA Polymerase Replicative DNA Polymerase low-fidelity high-fidelity

368

184 Xeroderma pigmentosum (XP): • genetic predisposition to sunlight induced skin cancer, as well as other abnormalities. • Inefficient repair of sunlight induced DNA lesions (XP-A-F) • DNA polymerase η is not expressed (XP-V)

O O O O

HN HN hν HN NH

O N O N O N N O

pol η T T T T A A

369

185