142.3 Hydrogen Peroxide BPPC (Extrap) 150.2 Vapour Pressure(25")/Mmhg 1.9 Hydrogen Peroxide Was First Made in 1818 Density (Solid at -4So)/G Cm-3 1.6434 by J

Total Page:16

File Type:pdf, Size:1020Kb

142.3 Hydrogen Peroxide BPPC (Extrap) 150.2 Vapour Pressure(25 Previous Page 814.2.3 Hydrogen peroxide 633 which traces the course of this controversy and Table 14.11 Some physical properties of hydrogen analyses the reasons why it took so long to peroxide(a) resolve.("') Property Value MPPC -0.41 142.3 Hydrogen peroxide BPPC (extrap) 150.2 Vapour pressure(25")/mmHg 1.9 Hydrogen peroxide was first made in 1818 Density (solid at -4So)/g cm-3 1.6434 by J. L. Thenard who acidified barium peroxide Density (liquid at 25")/g~rn-~ 1.#25 (p. 121) and then removed excess H2O by Viscosity(2O")/centipoise 1.245 evaporation under reduced pressure. Later Dielectric constant ~(25") 70.7 Electric condu~tivity(25")/S2~'cm-' 5.1 x lo-* the compound was prepared by hydrolysis AhHikl mol-' -187.6 of peroxodisulfates obtained by electrolytic AG;l/kJ mol-' -118.0 oxidation of acidified sulfate solutions at high current densities: fa)For D202: mp+ 1.5"; d20 1.5348g~rn-~;720 1.358 centipoise. -2e- 2HS04-( aq) --+HO3 SOOS03H( aq) 2H20 ---+ 2HS04- + H202 shown in Fig. 14.16a. This is due to repulsive interaction of the O-H bonds with the lone-pairs Such processes are now no longer used except in of electrons on each 0 atom. Indeed, H202 is the laboratory preparation of D202, e.g.: the smallest molecule known to show hindered K2S208 + 2D20 ---+ 2KDs04 + D202 rotation about a single bond, the rotational barriers being 4.62 and 29.45kJmol-' for the On an industrial scale H202 is now almost trans and cis conformations respectively. The exclusively prepared by the autoxidation of 2- skew form persists in the liquid phase, no doubt alkylanthraquinols (see Panel on next page). modified by H bonding, and in the crystalline state at - 163°C a neutron diffraction study" 12) Physical properties gives the dimensions shown in Fig. 14.16b. The dihedral angle is particularly sensitive to Hydrogen peroxide, when pure, is an almost H bonding, decreasing from 111.5" in the gas colourless (very pale blue) liquid, less volatile phase to 90.2" in crystalline H202; in fact, values than water and somewhat more dense and vis- spanning the complete range from 90" to 180" cous. Its more important physical properties are (Le. trans planar) are known for various solid in Table 14.11 (cf. H20, p. 623). The compound phases containing molecular H202 (Table 14.12). is miscible with water in all proportions and The 0-0 distance in H202 corresponds to the forms a hydrate H202.H20, mp -52". Addition value expected for a single bond (p. 616). of water increases the already high dielectric con- stant of H202 (70.7) to a maximum value of 121 at -35% H202, i.e. substantially higher than the Chemical properties value of water itself (78.4 at 25"). In the gas phase the molecule adopts a skew In H202 the oxidation state of oxygen is -1, configuration with a dihedral angle of 11 1.So as intermediate between the values for 02and HzO, and, as indicated by the reduction potentials 'I' F. PERCIVALand A. H. JOHNSTONE,Polywater -A on p. 628, aqueous solutions of H202 should Library Exercise for Chemistry Degree Students, The Chemi- spontaneously disproportionate. For the pure cal Society, London, 1978, 24 pp. [See also B. F. POWELL,J. Chem. Educ. 48, 663-7 (1971). H. FREIZER,J. Chem. Educ. 49, 445 (1972). F. FRANKS,Polywater, MIT Press, Cam- J.-M. SAVARIAULTand M. S. LEHMANN,J. Am. Chem. Soc. bridge, Mass., 1981, 208 pp.] 102, 1298-303 (1980). 634 oxysen Ch. 14 Preparation and Uses of Hydrogen Peroxide("3) Hydrogen peroxide is a major industrial chemical manufactured on a multikilotonne scale by an ingenious cycle of reactions introduced by I. G. Farbenindustrie about 60 years ago. Since the value of the solvents and organic substrates used are several hundred times that of the H202 produced, the economic viability of the process depends on keeping losses very small indeed. The basic process consists of dissolving 2-ethylanthraquinone in a mixed esterhydrocarbon or alcoholhydrocarbon solvent and reducing it by a Raney nickel or supported palladium catalyst to the corresponding quinol. The catalyst is then separated and the quinol non-catalytically reoxidized in a stream of air: The H202 is extracted by water and concentrated to -30% (by weight) by distillation under reduced pressure. Further low-pressure distillation to concentrations up to 85% are not uncommon. World production expressed as 100% H202 approached 1.9 million tonnes in 1994 of which half was in Europe and one-fifth in the USA. The earliest and still the largest industrial use for H202 is as a bleach for textiles, paper pulp, straw, leather, oils and fats, etc. Domestic use as a hair bleach and a mild disinfectant has diminished somewhat. Hydrogen peroxide is also extensively used to manufacture chemicals, notably sodium perborate (p. 206) and percarbonate, which are major constituents of most domestic detergents at least in the UK and Europe. Normal formulations include 15-25% of such peroxoacid salts, though the practice is much less widespread in the USA, and the concentrations, when included at all, are usually less than 10%. In the organic chemicals industry, H202 is used in the production of epoxides, propylene oxide, and caprolactones for PVC stabilizers and polyurethanes, in the manufacture of organic peroxy compounds for use as polymerization initiators and curing agents, and in the synthesis of fine chemicals such as hydroquinone, pharmaceuticals (e.g. cephalosporin) and food products (e.g. tartaric acid). One of the rapidly growing uses of H202 is in environmental applications such as control of pollution by treatment of domestic and industrial effluents, e.g. oxidation of cyanides and obnoxious malodorous sulfides, and the restoration of aerobic conditions to sewage waters. Its production in the USA for these and related purposes has trebled during the past decade (from 126 kt in 1984 to 360 kt in 1994) and it has substantially replaced chlorine as an industrial bleach because it yields only H20 and 02 on decomposition. An indication of the proportion of H202 production used for various applications in North America (1991) is: pulp and paper treatment 49%, chemicals manufacture 15%, environmental uses 15%, textiles 8%, all other uses 13%. The price per kg for technical grade aqueous H202 in tank-car lots (1994) is $0.54 (30%), $0.75 (50%) and $1.05 (70%), i.e. essentially a constant price of $1.50perkg on a "100% basis." 'I3W. T. HESS, Hydrogen Peroxide in Kirk-Orhnier Encyclopedia of Chemical Technology, 4th Edn., Wiley, New York, Vol. 13, 961-95 (1995). $14.2.3 Hydrogen peroxide 635 (a) Gas phase (b) Solid phase Figure 14.16 Structure of the H202molecule (a) in the gas phase, and (b) in the crystalline state. Table 14.12 Dihedral angle of H202 in some crys- peroxonium salts (H200H)+, hydroperoxides talline phases (0OH)- and peroxides (O&, and (iii) its Compound Dihedral Compound Dihedral reactions to give peroxometal complexes and angle angle peroxoacid anions. H202(~> 90.2" Li2C204.H202 180" The ability of H202 to act both as an oxidizing K&Od.H202 101.6" Na&O4.H2O2 180" and a reducing agent is well known in analytical Rb2C204.Hz02 103.4" NbF.H202'"4' 180" chemistry. Typical examples (not necessarily of H202.2H20 129" analytical utility) are: Oxidizing agent in acid solution: liquid: HzOz(1) -HzO(1) + ;02(g); AH' = 2[Fe(CN)6I4- + Hz02 + 2H' -98.2kJmol-', AGO = -119.2kJmol-'. In 2[Fe(CN)6l3- 2H20 fact, in the absence of catalysts, the compound + decomposes negligibly slowly but the reaction Likewise Fez+ +. Fe3+, SO3'- + SO4'-, is strongly catalysed by metal surfaces (Pt, Ag), NH2OH + HN03 etc. by Mn02 or by traces of alkali (dissolved from glass), and for this reason HzOz is generally Reducing agent in acid solution: stored in wax-coated or plastic vessels with sta- Mn04- + 2$H202+ 3H+ bilizers such as urea; even a speck of dust can - initiate explosive decomposition and all handling Mn2+ + 4H20 + 2i02 of the anhydrous compound or its concentrated solutions must be carried out in dust-free condi- 2Ce4+ + H202 -2Ce3+ + 2H+ + 02 tions and in the absence of metal ions. A useful Oxidizing agent in alkaline solution: "carrier" for H202 in some reactions is the adduct (Ph3P0)2.H202. Mn2+ + Hz02 --+ Mn4+ + 20H- Hydrogen peroxide has a rich and varied Reducing agent in alkaline solution: chemistry which arises from (i) its ability to act either as an oxidizing or a reducing agent in 2[Fe(CN),I3- + H202 + 20H- -+ both acid and alkaline solution, (ii) its ability 2[k(CN)6l4- + 2H20 + 02 to undergo proton acidhase reactions to form 2Fe3+ + H202 + 20H- - * l4 V. A. SARIN, V. YA. DUDAREV,T. A. DOBRYNINAand 2Fe2+ + 2H20 + 02 V. E. ZAVODNIK,Soviet Phys. Crystallogr. 24,472-3 (1979), and references therein. mo4 + H202 mo3 + H20 + 02 636 Oxygen Ch. 14 It will be noted that 02is always evolved when reagent (Fe2+/H202). The most important free H202 acts as a reducing agent, and sometimes radicals are OH and OzH. this gives rise to a red chemiluminescence if the Hydrogen peroxide is a somewhat stronger dioxygen molecule is produced in a singlet state acid than water, and in dilute aqueous solutions (p. 605), e.g.: has pK,(25') = 11.65 f0.02, i.e. comparable Acid solution: with the third dissociation constant of H3P04 (p. 519): HOC1 + H202 ---+ H3O' + C1- + 'Oz* ---+ h~ H202 H20 H30+ OOH-; Alkaline solution: + + + [H3Ot][0OH-] Clz + HzOz + 20H- ---+ 2C1- + 2HzO K, = = 2.24 x lo-" moll-' rH2021 + IO** __f hv Conversely, H202 is a much weaker base than The catalytic decomposition of aqueous solutions H20 (perhaps by a factor of lo6), and the fol- H202 alluded to on p.
Recommended publications
  • Thèse En Co-Tutelle
    UNIVERSITÉ DE REIMS CHAMPAGNE-ARDENNE ÉCOLE DOCTORALE SCIENCES FONDAMENTALES - SANTÉ N619 FACULTÉ DES SCIENCES DE TUNIS (FST) ÉCOLE DOCTORALE MATHÉMATIQUES, INFORMATIQUE, SCIENCES ET TECHNOLOGIES DES MATÉRIAUX THÈSE EN CO-TUTELLE Pour obtenir le grade de Docteur de l’Université de Reims Champagne-Ardenne Discipline : Physique Spécialité : Physique moléculaire ET Docteur de la Faculté des Sciences de Tunis Discipline : Physique Présentée et soutenue publiquement par Olfa FERCHICHI Le 28 Septembre 2020 Étude des propriétés structurales et spectroscopiques de peroxydes aux niveaux DFT et ab initio JURY Manef ABDERRABBA Professeur à l’Université de Carthage Rapporteur Jean Christophe TREMBLAY Professeur à l’Université de Lorraine Rapporteur et Président du Jury Halima MOUHIB Maître de conférences à l’Université Gustave EiUel Examinatrice Hassen GHALILA Professeur à l’Université de Tunis El Manar Examinateur Alexander ALIJAH Professeur à l’Université de Reims Directeur de thèse Najoua DERBEL Professeur à la Faculté des Sciences de Bizerte Directrice de thèse Thibaud COURS Maître de conférences à l’Université de Reims Membre invité Dédicaces Je dédie cette thèse : À mes très chers parents Mohammed et Latifa, Loin de vous, votre soutien et votre encouragement m'ont toujours donné de la force pour persévérer et pour prospérer dans la vie. À mes sœurs et mon frère, Je vous remercie énormément pour tous les efforts que vous avez fait pour moi et les soutiens moraux dont j’ai pu bénéficier. À mon cher mari Johan TARAPEY Merci pour tes encouragements, tu as toujours su trouver les mots qui conviennent pour me remonter la morale dans les moments pénibles, grâce à toi j’ai pu surmonter toutes les difficultés.
    [Show full text]
  • Group 17 (Halogens)
    Sodium, Na Gallium, Ga CHEMISTRY 1000 Topic #2: The Chemical Alphabet Fall 2020 Dr. Susan Findlay See Exercises 11.1 to 11.4 Forms of Carbon The Halogens (Group 17) What is a halogen? Any element in Group 17 (the only group containing Cl2 solids, liquids and gases at room temperature) Exists as diatomic molecules ( , , , ) Melting Boiling 2State2 2 2Density Point Point (at 20 °C) (at 20 °C) Fluorine -220 °C -188 °C Gas 0.0017 g/cm3 Chlorine -101 °C -34 °C Gas 0.0032 g/cm3 Br2 Bromine -7.25 °C 58.8 °C Liquid 3.123 g/cm3 Iodine 114 °C 185 °C Solid 4.93 g/cm3 A nonmetal I2 Volatile (evaporates easily) with corrosive fumes Does not occur in nature as a pure element. Electronegative; , and are strong acids; is one of the stronger weak acids 2 The Halogens (Group 17) What is a halogen? Only forms one monoatomic anion (-1) and no free cations Has seven valence electrons (valence electron configuration . ) and a large electron affinity 2 5 A good oxidizing agent (good at gaining electrons so that other elements can be oxidized) First Ionization Electron Affinity Standard Reduction Energy (kJ/mol) Potential (kJ/mol) (V = J/C) Fluorine 1681 328.0 +2.866 Chlorine 1251 349.0 +1.358 Bromine 1140 324.6 +1.065 Iodine 1008 295.2 +0.535 3 The Halogens (Group 17) Fluorine, chlorine and bromine are strong enough oxidizing agents that they can oxidize the oxygen in water! When fluorine is bubbled through water, hydrogen fluoride and oxygen gas are produced.
    [Show full text]
  • Chemical Names and CAS Numbers Final
    Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number C3H8O 1‐propanol C4H7BrO2 2‐bromobutyric acid 80‐58‐0 GeH3COOH 2‐germaacetic acid C4H10 2‐methylpropane 75‐28‐5 C3H8O 2‐propanol 67‐63‐0 C6H10O3 4‐acetylbutyric acid 448671 C4H7BrO2 4‐bromobutyric acid 2623‐87‐2 CH3CHO acetaldehyde CH3CONH2 acetamide C8H9NO2 acetaminophen 103‐90‐2 − C2H3O2 acetate ion − CH3COO acetate ion C2H4O2 acetic acid 64‐19‐7 CH3COOH acetic acid (CH3)2CO acetone CH3COCl acetyl chloride C2H2 acetylene 74‐86‐2 HCCH acetylene C9H8O4 acetylsalicylic acid 50‐78‐2 H2C(CH)CN acrylonitrile C3H7NO2 Ala C3H7NO2 alanine 56‐41‐7 NaAlSi3O3 albite AlSb aluminium antimonide 25152‐52‐7 AlAs aluminium arsenide 22831‐42‐1 AlBO2 aluminium borate 61279‐70‐7 AlBO aluminium boron oxide 12041‐48‐4 AlBr3 aluminium bromide 7727‐15‐3 AlBr3•6H2O aluminium bromide hexahydrate 2149397 AlCl4Cs aluminium caesium tetrachloride 17992‐03‐9 AlCl3 aluminium chloride (anhydrous) 7446‐70‐0 AlCl3•6H2O aluminium chloride hexahydrate 7784‐13‐6 AlClO aluminium chloride oxide 13596‐11‐7 AlB2 aluminium diboride 12041‐50‐8 AlF2 aluminium difluoride 13569‐23‐8 AlF2O aluminium difluoride oxide 38344‐66‐0 AlB12 aluminium dodecaboride 12041‐54‐2 Al2F6 aluminium fluoride 17949‐86‐9 AlF3 aluminium fluoride 7784‐18‐1 Al(CHO2)3 aluminium formate 7360‐53‐4 1 of 75 Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number Al(OH)3 aluminium hydroxide 21645‐51‐2 Al2I6 aluminium iodide 18898‐35‐6 AlI3 aluminium iodide 7784‐23‐8 AlBr aluminium monobromide 22359‐97‐3 AlCl aluminium monochloride
    [Show full text]
  • Transferring Oxygen Isotopes to 1,2,4
    Tetrahedron 68 (2012) 8942e8944 Contents lists available at SciVerse ScienceDirect Tetrahedron journal homepage: www.elsevier.com/locate/tet Transferring oxygen isotopes to 1,2,4-benzotriazine 1-oxides forming the corresponding 1,4-dioxides by using the HOF$CH3CN complex y Julia Gatenyo a, , Kevin Johnson b, Anuruddha Rajapakse b, Kent S. Gates b, Shlomo Rozen a,* a School of Chemistry, Tel-Aviv University, Tel-Aviv 69978, Israel b Departments of Chemistry and Biochemistry, University of Missouri, Columbia, MO 65211, USA article info abstract Article history: Heterocyclic benzotriazine N-oxides are an interesting class of experimental anticancer and antibacterial Received 11 May 2012 agents. Analogs with 18O incorporated into the N-oxide group may offer useful mechanistic tools. We Received in revised form 20 July 2012 18 describe the use of H2 OF$CH3CN in a fast, readily executed and high-yielding preparation of 1,2,4- Accepted 7 August 2012 benzotriazine 1,4-dioxides containing an 18O-label at the 4-oxide position. Available online 14 August 2012 Ó 2012 Elsevier Ltd. All rights reserved. Keywords: Oxygen transfer 18O isotope Tirapazamine HOF$CH3CN F2/N2 N-oxide 18 H2 O 1. Introduction released in the form of water or hydroxyl radical.6 The 4-N-oxide in 1,2,4-benzotriazine 1,4-dioxides compounds are generally installed Heterocyclic benzotriazine N-oxides are an interesting class of via reaction of the parent heterocyclic with H2O2eacetic acid experimental anticancer1 and antibacterial therapeutic agents.2 One mixtures or peracids, such as m-chloroperbenzoic acid. These re- e of their important features is their ability to capitalize on the low actions can be sluggish and low yielding.1e g,4c,7 Furthermore, in- oxygen (hypoxic) environment found in many solid tumors.
    [Show full text]
  • Hydrogen Bond Versus Halogen Bond in Hxon (X = F, Cl, Br, and I) Complexes with Lewis Bases
    Article Hydrogen Bond versus Halogen Bond in HXOn (X = F, Cl, Br, and I) Complexes with Lewis Bases David Quiñonero * and Antonio Frontera Department of Chemistry, Universitat de les Illes Balears, Crta de Valldemossa km 7.5, 07122 Palma de Mallorca (Baleares), Spain; [email protected] * Correspondence: [email protected]; Tel.: +34-971-173-498 Received: 31 December 2018; Accepted: 15 January 2019; Published: 17 January 2019 Abstract: We have theoretically studied the formation of hydrogen-bonded (HB) and halogen-bonded (XB) complexes of halogen oxoacids (HXOn) with Lewis bases (NH3 and Cl−) at the CCSD(T)/CBS//RIMP2/aug-cc-pVTZ level of theory. Minima structures have been found for all HB and XB systems. Proton transfer is generally observed in complexes with three or four oxygen atoms, namely, HXO4:NH3, HClO3:Cl−, HBrO3:Cl−, and HXO4:Cl−. All XB complexes fall into the category of halogen-shared complexes, except for HClO4:NH3 and HClO4:Cl−, which are traditional ones. The interaction energies generally increase with the number of O atoms. Comparison of the energetics of the complexes indicates that the only XB complexes that are more favored than those of HB are HIO:NH3, HIO:Cl−, HIO2:Cl−, and HIO3:Cl−. The atoms-in-molecules (AIM) theory is used to analyze the complexes and results in good correlations between electron density and its Laplacian values with intermolecular equilibrium distances. The natural bon orbital (NBO) is used to analyze the complexes in terms of charge-transfer energy contributions, which usually increase as the number of O atoms increases.
    [Show full text]
  • SUPLEMENTARY INFORMATION Canonical and Explicitly-Correlated
    Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2021 SUPLEMENTARY INFORMATION Canonical and explicitly-correlated coupled cluster correlation energies of sub-kJ/mol accuracy via cost-effective hybrid-post-CBS extrapolation A.J.C. Varandas∗,y,z,{ yDepartment of Physics, Qufu Normal University, China zDepartment of Physics, Universidade Federal do Espírito Santo, 29075-910 Vitória, Brazil {Department of Chemistry, and Chemistry Centre, University of Coimbra, 3004-535 Coimbra, Portugal E-mail: [email protected] Table 1: Systems in TS-106 # in TS-106 Formula Name # in A24 + TS-106 1 CFN Cyanogen fluoride 25 2 CFN Isocyanogen fluoride 26 3 CF2 Singlet difluoromethylene 27 4 CF2O Carbonyl fluoride 28 Continued on next page 1 continued from previous page # in TS-106 Formula Name # in A24 + TS-106 5 CF4 Tetrafluoromethane 29 6 CHF Singlet fluoromethylene 30 7 CHFO Formyl fluoride 31 8 CHF3 Trifluoromethane 32 9 CHN Hydrogen cyanide 33 10 CHN Hydrogen isocyanide 34 11 CHNO Cyanic acid 35 12 CHNO Isocyanic acid 36 13 CHNO Formonitrile oxide 37 14 CHNO Isofulminic acid 38 15 CH2 Singlet methylene 39 16 CH2F2 Difluoromethane 40 17 CH2N2 Cyanamide 41 18 CH2N2 3H-Diazirine 42 19 CH2N2 Diazomethane 43 20 CH2O Formaldehyde 44 21 CH2O Hydroxymethylene 45 22 CH2O2 Dioxirane 46 23 CH2O2 Formic acid 47 ∗ 24 CH2O3 Performic acid 48 25 CH3F Fluoromethane 49 26 CH3N Methanimine 50 27 CH3NO Formamide 51 ∗ 28 CH3NO2 Methyl nitrite 52 Continued on next page 2 continued from previous page # in TS-106 Formula
    [Show full text]
  • Suplementary Information
    Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2018 SUPLEMENTARY INFORMATION CBS extrapolation in electronic structure pushed to end: A revival of minimal and sub-minimal basis sets A.J.C. Varandas∗,y,z ySchool of Physics and Physical Engineering, Qufu Normal University, 273165 Qufu, China. zChemistry Centre and Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal E-mail: [email protected] Table 1: TS-106 and TS-106’ of molecular systems # in TS-106 Formula Name # in TS-106’ 1 CFN Cyanogen fluoride 1 2 CFN Isocyanogen fluoride 2 3 CF2 Singlet difluoromethylene 3 4 CF2O Carbonyl fluoride 4 5 CF4 Tetrafluoromethane 5 Continued on next page 1 continued from previous page # in TS-106 Formula Name # in TS-106’ 6 CHF Singlet fluoromethylene 6 7 CHFO Formyl fluoride 7 8 CHF3 Trifluoromethane 8 9 CHN Hydrogen cyanide 9 10 CHN Hydrogen isocyanide 10 11 CHNO Cyanic acid 11 12 CHNO Isocyanic acid 12 13 CHNO Formonitrile oxide 13 14 CHNO Isofulminic acid 14 15 CH2 Singlet methylene 15 16 CH2F2 Difluoromethane 16 17 CH2N2 Cyanamide 17 18 CH2N2 3H-Diazirine 18 19 CH2N2 Diazomethane 19 20 CH2O Formaldehyde 20 21 CH2O Hydroxymethylene 21 22 CH2O2 Dioxirane 22 23 CH2O2 Formic acid 23 ∗ 24 CH2O3 Performic acid 74 25 CH3F Fluoromethane 24 26 CH3N Methanimine 25 27 CH3NO Formamide 26 ∗ 28 CH3NO2 Methyl nitrite 75 ∗ 29 CH3NO2 Nitromethane 76 Continued on next page 2 continued from previous page # in TS-106 Formula Name # in TS-106’ 30 CH4 Methane 27 ∗ 31 CH4N2O Urea 77 32 CH4O
    [Show full text]
  • Nomenclature of Organic Chemistry. IUPAC Recommendations and Preferred Names 2013
    International Union of Pure and Applied Chemistry Division VIII Chemical Nomenclature and Structure Representation Division Nomenclature of Organic Chemistry. IUPAC Recommendations and Preferred Names 2013. Prepared for publication by Henri A. Favre and Warren H. Powell, Royal Society of Chemistry, ISBN 978-0-85404-182-4 Chapter P-6 APPLICATIONS TO SPECIFIC CLASSES OF COMPOUNDS (continued) (P-66 to P-69) (continued from P-60 to P-65) P-60 Introduction P-61 Substitutive nomenclature: prefix mode P-62 Amines and imines P-63 Hydroxy compounds, ethers, peroxols, peroxides and chalcogen analogues P-64 Ketones, pseudoketones and heterones, and chalcogen analogues P-65 Acids and derivatives P-66 Amides, hydrazides, nitriles, aldehydes P-67 Oxoacids used as parents for organic compounds P-68 Nomenclature of other classes of compounds P-69 Organometallic compounds P-66 AMIDES, IMIDES, HYDRAZIDES, NITRILES, AND ALDEHYDES, P-66.0 Introduction P-66.1 Amides P-66.2 Imides P-66.3 Hydrazides P-66.4 Amidines, amidrazones, hydrazidines, and amidoximes (amide oximes) P-66.5 Nitriles P-66.6 Aldehydes P-66.0 INTRODUCTION The classes dealt with in this Section have in common the fact that their retained names are derived from those of acids by changing the ‘ic acid’ ending to a class name, for example ‘amide’, ‘ohydrazide’, ‘nitrile’, or ‘aldehyde’. Their systematic names are formed substitutively by the suffix mode using one of two types of suffix, one that includes the carbon atom, for example, ‘carbonitrile’ for –CN, and one that does not, for example, ‘-nitrile’ for –(C)N. Amidines are named as amides, hydrazidines as hydrazides, and amidrazones as amides or hydrazides.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2008/0135817 A1 Luly Et Al
    US 20080135817A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2008/0135817 A1 Luly et al. (43) Pub. Date: Jun. 12, 2008 (54) GASEOUS DIELECTRICS WITH LOW (22) Filed: Dec. 12, 2006 GLOBAL WARMING POTENTIALS Publication Classification (75) Inventors: Matthew H. Luly, Hamburg, NY (51) Int. Cl. (US); Robert G. Richard, HOIB 3/20 (2006.01) Hamburg, NY (US) (52) U.S. Cl. ........................................................ 252/571 Correspondence Address: (57) ABSTRACT Honeywell International Inc. A dielectric gaseous compound which exhibits the following Patent Services Department properties: a boiling point in the range between about -20° 101 Columbia Road C. to about -273°C.; non-ozone depleting; a GWP less than Morristown, NJ 07962 about 22,200; chemical stability, as measured by a negative standard enthalpy of formation (dElf<0); a toxicity level such (73) Assignee: Honeywell International Inc. that when the dielectric gas leaks, the effective diluted con centration does not exceed its PEL; and a dielectric strength (21) Appl. No.: 11/637,657 greater than air. US 2008/O 135817 A1 Jun. 12, 2008 GASEOUS DELECTRICS WITH LOW –63.8°C., which allows pressures of 400 kPa to 600 kPa (4 GLOBAL WARMING POTENTIALS to 6 atmospheres) to be employed in SF-insulated equip ment. It is easily liquefied underpressure at room temperature 1. FIELD allowing for compact storage in gas cylinders. It presents no handling problems, is readily available, and reasonably inex 0001. The present disclosure relates generally to a class of pensive. gaseous dielectric compounds having low global warming 0006 SF replaced air as a dielectric in gas insulated potentials (GWP).
    [Show full text]
  • Preparation of Unsymmetrically Labeled Oxygen Molecules and Their Use to Elucidate Oxygen Metabolism
    -- 97?// PREPARATION OF UNSYMMETRICALLY LABELED OXYGEN MOLECULES AND THEIR USE TO ELUCIDATE OXYGEN METABOLISM Evan H. Appelman Chemistry Division, Argonne National Laboratory Takashi Ogura and Teizo Kitagawa Institute for Molecular Science, Okazaki, Japan Constantinos Varotis, Yong Zhang and Gerald T. Babcock Department of Chemistry, Michigan State University, East Lansing A novel technique has been developed to synthesize in large quantities an O2 molecoie that is unsymmetrically labeled with the oxygen isotopes oxygen-16 and oxygen-18. This unusual molecule, 16Q18O, has been synthesized by Dr. Evan H. Appelman at Argonne National Laboratory in work sup- ported by the DOE Division of Chemical Sciences and has been utilized as a unique spectroscopic probe of the mechanism of metabolism in living organisms. Preparation of this molecule requires prior synthesis o* the exotic precursor hypofluorous acid, HOF, and Dr. Appelman has recently developed an improved method for synthesizing this precursor that permits the preparation of essentially unlim- ited quantities of the labeled oxygen. This, in turn, has made it practical to use this oxygen in Raman- spectroscopic studies of the mechanism by which O2 is reduced by the enzyme cytochrome oxidase, a key step in the metabolic utilization of oxygen by living organisms. These studies have involved Dr. Appelman in collaboration with two different research groups: that of Professor Teizo Kitagawa at the Institute for Molecular Science, Okazaki, Japan, and that of Professor Gerald T. Babcock at Michigan State University. The results indicate that the interaction of O2 with the iron of the enzyme may be represented: 2+ 2+ 3+ 4 3+ Fe + O2 - Fe -O2 - Fe -OOH" - Fe * = O - Fe -OhT The results of the collaboration with the Michigan State group have been accepted for publication in the Proceedings of the National Academy of Sciences.
    [Show full text]
  • George C. Pimentel, Chairman
    NATIONAL ACADEMY OF SCIENCES GEOR G E CLAUDE PIMENTEL 1 9 2 2 – 1 9 8 9 A Biographical Memoir by C . B R A D L E Y M OORE Any opinions expressed in this memoir are those of the author and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoir COPYRIGHT 2007 NATIONAL ACADEMY OF SCIENCES WASHINGTON, D.C. GEORGE CLAUDE PIMENTEL May 2, 1922–June 18, 1989 BY C. BRADLEY MOORE EORGE PIMENTEL WAS AN INTENSE man with a contagious Genthusiasm for science, teaching, sports, and all things new and challenging. He was a master of empirical physical models. Pimentel was always looking for the biggest challenges and for truly new phenomena. He was not easily discouraged. When a small spot on his retina kept him from becoming one of the first scientist astronauts, he built a new kind of infrared spectrometer to go look at Mars. In every aspect of his professional life he attacked the big problems head on, and yet at the personal level he always made time to bring along a student or help a friend. He was an enthusiastic and competitive sportsman. His level of exertion and com- mitment was at least the maximum possible in everything that he did. George Pimentel’s research has had a profound effect on chemistry.1 The common thread of his research was a desire to understand unusual chemical bonding situations and their consequences for structure and chemical reactiv- ity. The information he obtained on marginal species, on chemical reactions, and on photochemical processes is a key part of the base upon which our understanding of chemical reactions and molecular structure is founded.
    [Show full text]
  • Y ORGANO-FLUORINE COMPOUNDS
    VOLUME E 10 a y ORGANO-FLUORINE COMPOUNDS Editors B. Baasner H. Hagemann J. C. Tatlow BAYER AG, Leverkusen / Germany BAYER AG, Leverkusen / Germany Birmingham / Great Britain Authors J.L. Adcock R.E. Banks A. Bulan J. Burdon Knoxville, TN / USA Manchester / Great Britain Leverkusen / Germany Birmingham / Great Britain K.O. Christe W. Dmowski G.G. Furin U.Groß Edwards AFB, CA / USA Warsaw / Poland Novosibirsk / Russia Berlin / Germany D. Hage G.B. Hammond M.M. Kremlev R.J. Lagow Catoosa, OK / USA North Dartmouth, MA / USA Kiev / Ukraine Austin, TX / USA B. Langlois D. Meshri R. Miethchen R. Perry Lyon / France Catoosa, OK / USA Rostock / Germany Manchester / Great Britain D. Peters K. Pohmer R.L. Powell M.H. Rock Rostock / Germany Leverkusen /Germany Runcorn / Great Britain Copenhagen / Denmark S. Rozen St. Rüdiger G. Siegemund J. Stölting Tel Aviv / Israel Rangsdorf / Germany Hofheim, Taunus / Germany Leverkusen / Germany L. R. Subramanian J. C. Tatlow T Tojo K. Ulm Tübingen / Germany Birmingham / Great Britain Kagawa-Ken / Japan Burghausen / Germany N. Watanabe L.M. Yagupolskii Yu.L. Yagupolskii M. Zupan Kyoto / Japan Kiev / Ukraine Kiev / Ukraine Ljubljana / Slovenia GEORG THIEME VERLAG STUTTGART • NEW YORK Contents to all Volumes Volume E 10a Introduction A. Fluorinating Agents Volume El Ob B. Synthesis of Fluorinated Compounds C. Transformations of Fluorinated Compounds Bibliography Table of Contents Volume E10 a Introduction 1 1. History 1 (J.C. TATLOW) 1.1. Introduction 1 1.2. The First Organic Fluoride - 1835 1 1.3. 1836 to 1885 - The Subject Develops Slowly 2 1.4. 1886 to 1919 3 1.4.1.
    [Show full text]