SUPLEMENTARY INFORMATION Canonical and Explicitly-Correlated
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Thèse En Co-Tutelle
UNIVERSITÉ DE REIMS CHAMPAGNE-ARDENNE ÉCOLE DOCTORALE SCIENCES FONDAMENTALES - SANTÉ N619 FACULTÉ DES SCIENCES DE TUNIS (FST) ÉCOLE DOCTORALE MATHÉMATIQUES, INFORMATIQUE, SCIENCES ET TECHNOLOGIES DES MATÉRIAUX THÈSE EN CO-TUTELLE Pour obtenir le grade de Docteur de l’Université de Reims Champagne-Ardenne Discipline : Physique Spécialité : Physique moléculaire ET Docteur de la Faculté des Sciences de Tunis Discipline : Physique Présentée et soutenue publiquement par Olfa FERCHICHI Le 28 Septembre 2020 Étude des propriétés structurales et spectroscopiques de peroxydes aux niveaux DFT et ab initio JURY Manef ABDERRABBA Professeur à l’Université de Carthage Rapporteur Jean Christophe TREMBLAY Professeur à l’Université de Lorraine Rapporteur et Président du Jury Halima MOUHIB Maître de conférences à l’Université Gustave EiUel Examinatrice Hassen GHALILA Professeur à l’Université de Tunis El Manar Examinateur Alexander ALIJAH Professeur à l’Université de Reims Directeur de thèse Najoua DERBEL Professeur à la Faculté des Sciences de Bizerte Directrice de thèse Thibaud COURS Maître de conférences à l’Université de Reims Membre invité Dédicaces Je dédie cette thèse : À mes très chers parents Mohammed et Latifa, Loin de vous, votre soutien et votre encouragement m'ont toujours donné de la force pour persévérer et pour prospérer dans la vie. À mes sœurs et mon frère, Je vous remercie énormément pour tous les efforts que vous avez fait pour moi et les soutiens moraux dont j’ai pu bénéficier. À mon cher mari Johan TARAPEY Merci pour tes encouragements, tu as toujours su trouver les mots qui conviennent pour me remonter la morale dans les moments pénibles, grâce à toi j’ai pu surmonter toutes les difficultés. -
Group 17 (Halogens)
Sodium, Na Gallium, Ga CHEMISTRY 1000 Topic #2: The Chemical Alphabet Fall 2020 Dr. Susan Findlay See Exercises 11.1 to 11.4 Forms of Carbon The Halogens (Group 17) What is a halogen? Any element in Group 17 (the only group containing Cl2 solids, liquids and gases at room temperature) Exists as diatomic molecules ( , , , ) Melting Boiling 2State2 2 2Density Point Point (at 20 °C) (at 20 °C) Fluorine -220 °C -188 °C Gas 0.0017 g/cm3 Chlorine -101 °C -34 °C Gas 0.0032 g/cm3 Br2 Bromine -7.25 °C 58.8 °C Liquid 3.123 g/cm3 Iodine 114 °C 185 °C Solid 4.93 g/cm3 A nonmetal I2 Volatile (evaporates easily) with corrosive fumes Does not occur in nature as a pure element. Electronegative; , and are strong acids; is one of the stronger weak acids 2 The Halogens (Group 17) What is a halogen? Only forms one monoatomic anion (-1) and no free cations Has seven valence electrons (valence electron configuration . ) and a large electron affinity 2 5 A good oxidizing agent (good at gaining electrons so that other elements can be oxidized) First Ionization Electron Affinity Standard Reduction Energy (kJ/mol) Potential (kJ/mol) (V = J/C) Fluorine 1681 328.0 +2.866 Chlorine 1251 349.0 +1.358 Bromine 1140 324.6 +1.065 Iodine 1008 295.2 +0.535 3 The Halogens (Group 17) Fluorine, chlorine and bromine are strong enough oxidizing agents that they can oxidize the oxygen in water! When fluorine is bubbled through water, hydrogen fluoride and oxygen gas are produced. -
Proton-Coupled Reduction of N2 Facilitated by Molecular Fe Complexes
Proton-Coupled Reduction of N2 Facilitated by Molecular Fe Complexes Thesis by Jonathan Rittle In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California 2016 (Defended November 9, 2015) ii 2016 Jonathan Rittle All Rights Reserved iii ACKNOWLEDGEMENTS My epochal experience in graduate school has been marked by hard work, intellectual growth, and no shortage of deadlines. These facts leave little opportunity for an acknowledgement of those whose efforts were indispensable to my progress and perseverance, and are therefore disclosed here. First and foremost, I would like to thank my advisor, Jonas Peters, for his tireless efforts in molding me into the scientist that I am today. His scientific rigor has constantly challenged me to strive for excellence and I am grateful for the knowledge and guidance he has provided. Jonas has given me the freedom to pursue scientific research of my choosing and shown a remarkable degree of patience while dealing with my belligerent tendencies. Perhaps equally important, Jonas has built a research group that is perpetually filled with the best students and postdoctoral scholars. Their contributions to my graduate experience are immeasurable and I wish them all the best of luck in their future activities. In particular, John Anderson, Dan Suess, and Ayumi Takaoka were senior graduate students who took me under their wings when I joined the lab as a naïve first-year graduate student. I am grateful for the time and effort that they collectively spent in teaching me the art of chemical synthesis and for our unforgettable experiences outside of lab. -
Structural and Electronic Influences on Phosphite Basicity and Its Application to Heterogeneous and Homogeneous Catalysis David Evan Schiff Iowa State University
Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1983 Structural and electronic influences on phosphite basicity and its application to heterogeneous and homogeneous catalysis David Evan Schiff Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Inorganic Chemistry Commons Recommended Citation Schiff, David Evan, "Structural and electronic influences on phosphite basicity and its application to heterogeneous and homogeneous catalysis " (1983). Retrospective Theses and Dissertations. 8960. https://lib.dr.iastate.edu/rtd/8960 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This reproduction was made from a copy of a document sent to us for microfilming. While the most advanced technology has been used to photograph and reproduce this document, the quality of the reproduction is heavily dependent upon the quality of the material submitted. The following explanation of techniques is provided to help clarify markings or notations which may appear on this reproduction. 1.The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure complete continuity. -
Transition Metal Complexes of Dicyanoacetylene
Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1971 Transition Metal Complexes of Dicyanoacetylene: a Study of the Reaction Chemistry of Low Valence States of the Transition Metals, Platinum, Palladium, Nickel, Rhodium, and Iridium. Gregory Lloyd Mcclure Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Mcclure, Gregory Lloyd, "Transition Metal Complexes of Dicyanoacetylene: a Study of the Reaction Chemistry of Low Valence States of the Transition Metals, Platinum, Palladium, Nickel, Rhodium, and Iridium." (1971). LSU Historical Dissertations and Theses. 2001. https://digitalcommons.lsu.edu/gradschool_disstheses/2001 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. 71-29,382 McCLURE, Gregory Lloyd, 1993- TRANSITION METAL COMPLEXES OF DICYANOACETYLENE: A STUDY OF THE REACTION CHEMISTRY OF LOW VALENCE STATES OF THE TRANSITION METALS, PLATINUM, PALLADIUM, NICKEL, RHODIUM, AND IRIDIUM. The Louisiana State University and Agricultural and Mechanical College, Ph.D., 1971 C hem i stry, inorgan ic University Microfilms, A XEROX Company , Ann Arbor. Michigan THIS DISSERTATION HAS BEEN MICROFILMED EXACTLY AS RECEIVED TRANSITION -
Ionization Photophysics and Spectroscopy of Dicyanoacetylene Sydney Leach, Martin Schwell, Gustavo A
Ionization photophysics and spectroscopy of dicyanoacetylene Sydney Leach, Martin Schwell, Gustavo A. Garcia, Yves Bénilan, Nicolas Fray, Marie-Claire Gazeau, François Gaie-Levrel, Norbert Champion, and Jean-Claude Guillemin Citation: The Journal of Chemical Physics 139, 184304 (2013); doi: 10.1063/1.4826467 View online: http://dx.doi.org/10.1063/1.4826467 View Table of Contents: http://scitation.aip.org/content/aip/journal/jcp/139/18?ver=pdfcov Published by the AIP Publishing This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP: 193.51.99.1 On: Wed, 05 Feb 2014 16:48:49 THE JOURNAL OF CHEMICAL PHYSICS 139, 184304 (2013) Ionization photophysics and spectroscopy of dicyanoacetylene Sydney Leach,1,a) Martin Schwell,2,a) Gustavo A. Garcia,3 Yves Bénilan,2 Nicolas Fray,2 Marie-Claire Gazeau,2 François Gaie-Levrel,3,b) Norbert Champion,1 and Jean-Claude Guillemin4 1LERMA UMR CNRS 8112, Observatoire de Paris-Meudon, 5 place Jules-Jansen, 92195 Meudon, France 2LISA UMR CNRS 7583, Université Paris-Est Créteil and Université Paris Diderot, Institut Pierre Simon Laplace, 61 Avenue du Général de Gaulle, 94010 Créteil, France 3Synchrotron SOLEIL, L’Orme des Merisiers, St. Aubin, B.P. 48, 91192 Gif-sur-Yvette Cedex, France 4Institut des Sciences Chimiques de Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS UMR 6226, 11 Allée de Beaulieu, CS 50837, 35708 Rennes Cedex 7, France (Received 17 June 2013; accepted 8 October 2013; published online 11 November 2013) Photoionization of dicyanoacetylene was studied using synchrotron radiation over the excitation range 8–25 eV, with photoelectron-photoion coincidence techniques. -
Hydrogen Isocyanide, HNC, in Titan's Ionosphere
EPSC Abstracts Vol. 8, EPSC2013-589, 2013 European Planetary Science Congress 2013 EEuropeaPn PlanetarSy Science CCongress c Author(s) 2013 Hydrogen isocyanide, HNC, in Titan’s ionosphere V. Vuitton (1), R. V. Yelle (2), S. J. Klippenstein (3), P. Lavvas (4), S. M. Hörst (5) and A. Bazin (1) (1) IPAG, UMR CNRS 5274, Université Joseph Fourier Grenoble 1, France, (2) LPL, University of Arizona, Tucson AZ, USA, (3) Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne IL, USA, (4) GSMA, UMR CNRS 6089, Université de Reims Champagne-Ardenne, France, (5) CIRES, University of Colorado, Boulder CO, USA ([email protected]) to a lesser extent from N(4S) + CH HNC + H. It Abstract 2 → is mainly destroyed by its reaction with N(2D) above The first identification of hydrogen isocyanide, HNC, 1000 km and H at lower altitude. The column density 13 2 in Titan’s atmosphere has recently been reported. Us- obtained is 3.4 10 cm− , which is about 3 times × ing a coupled ion-neutral photochemical model, we higher than the value derived from the observations. It find that both neutral and ion chemistry contribute to is argued that this discrepancy can be explained by the the production and loss of HNC. According to our cal- poor knowledge of three key reactions: H + HNC 6 2 → culations, the HNC density reaches a peak of 10 H + HCN, H + H2CN HNC/HCN + H2 and N( D) 3 ∼ → cm− at an altitude of 950-1000 km. This translates + HNC CN2 + H / CH + N2. 13 2 → into a a column density of 1.8 10 cm− above 800 × km, in fair agreement with the observations. -
High Energy Radical Chemistry Formation of HCN-Rich
www.nature.com/scientificreports Correction: Author Correction OPEN High Energy Radical Chemistry Formation of HCN-rich Atmospheres on early Earth Received: 9 February 2017 Martin Ferus1, Petr Kubelík1,2, Antonín Knížek1, Adam Pastorek1, John Sutherland3 & Accepted: 13 June 2017 Svatopluk Civiš1 Published: xx xx xxxx Recent results in prebiotic chemistry implicate hydrogen cyanide (HCN) as the source of carbon and nitrogen for the synthesis of nucleotide, amino acid and lipid building blocks. HCN can be produced during impact events by reprocessing of carbonaceous and nitrogenous materials from both the impactor and the atmosphere; it can also be produced from these materials by electrical discharge. Here we investigate the efect of high energy events on a range of starting mixtures representative of various atmosphere-impactor volatile combinations. Using continuously scanning time–resolved spectrometry, we have detected ·CN radical and excited CO as the initially most abundant products. Cyano radicals and excited carbon monoxide molecules in particular are reactive, energy-rich species, but are resilient owing to favourable Franck–Condon factors. The subsequent reactions of these frst formed excited species lead to the production of ground-state prebiotic building blocks, principally HCN. During the frst sixteen years of the 21st century, major progress in the synthesis of biological molecules under prebiotically plausible conditions has been reported1–6. Hydrogen cyanide (HCN) and its hydration product 5–10 formamide (HCONH2) are central to such syntheses . HCN exhibits many properties that make it an ideal building block, but above all it is a high energy compound – because of its triple bond – which has a propensity to form when organic matter is bombarded with excess energy11. -
Navigating the Chemical Space of HCN Polymerization and Hydrolysis: Guiding Graph Grammars by Mass Spectrometry Data
Entropy 2013, 15, 4066-4083; doi:10.3390/e15104066 OPEN ACCESS entropy ISSN 1099-4300 www.mdpi.com/journal/entropy Article Navigating the Chemical Space of HCN Polymerization and Hydrolysis: Guiding Graph Grammars by Mass Spectrometry Data Jakob L. Andersen 1;2, Tommy Andersen 3, Christoph Flamm 4, Martin M. Hanczyc 3, Daniel Merkle 1;* and Peter F. Stadler 2;4;5;6;7;8 1 Department of Mathematics and Computer Science, University of Southern Denmark, Odense M DK-5230, Denmark; E-Mail: [email protected] 2 Max Planck Institute for Mathematics in the Sciences, Leipzig D-04103, Germany 3 Institute of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M DK-5230, Denmark; E-Mails: [email protected] (T.A.); [email protected] (M.M.H.) 4 Institute for Theoretical Chemistry, University of Vienna, Wien A-1090, Austria; E-Mails: [email protected] (C.F.); [email protected] (P.F.S.) 5 Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University of Leipzig, Leipzig D-04107, Germany 6 Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, D-04103, Germany 7 Center for non-coding RNA in Technology and Health, University of Copenhagen, Frederiksberg C DK-1870, Denmark 8 Santa Fe Institute, 1399 Hyde Park Rd, Santa Fe NM 87501, USA * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +45-6550-2322; Fax: +45-6550-2373. Received: 22 February 2013; in revised form: 10 September 2013 / Accepted: 11 September 2013 / Published: 25 September 2013 Abstract: Polymers of hydrogen cyanide and their hydrolysis products constitute a plausible, but still poorly understood proposal for early prebiotic chemistry on Earth. -
Polymerization of Dicyanoacetylene † ‡ ○ † ○ ■ ¶ § ■ § ■ Huiyang Gou,*, , , Li Zhu, , Haw-Tyng Huang, , Arani Biswas, , Derek W
Article pubs.acs.org/cm From Linear Molecular Chains to Extended Polycyclic Networks: Polymerization of Dicyanoacetylene † ‡ ○ † ○ ■ ¶ § ■ § ■ Huiyang Gou,*, , , Li Zhu, , Haw-Tyng Huang, , Arani Biswas, , Derek W. Keefer, , ∥ ◆ ⊥ † ‡ † ‡ † Brian L. Chaloux, , Clemens Prescher, Liuxiang Yang, , Duck Young Kim, , Matthew D. Ward, ■ # # ∇ ∥ § ■ ¶ □ Jordan Lerach, Shengnan Wang, Artem R. Oganov, , Albert Epshteyn, John V. Badding, , , , † and Timothy A. Strobel*, † Geophysical Laboratory, Carnegie Institution of Washington, Washington, DC 20015, United States ‡ Center for High Pressure Science and Technology Advanced Research, Beijing 100094, China § Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States ■ Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States ¶ Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States □ Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States ∥ Naval Research Laboratory, 4555 Overlook Avenue, SW, Washington, DC 20375, United States ⊥ Center for Advanced Radiation Sources, University of Chicago, Argonne, Illinois 60437, United States # Department of Geosciences, Center for Materials by Design, and Institute for Advanced Computational Science, State University of New York, Stony Brook, New York 11794-2100, United States ∇ Skolkovo Institute of Science and Technology, -
Development of a High-Density Initiation Mechanism for Supercritical Nitromethane Decomposition
The Pennsylvania State University The Graduate School DEVELOPMENT OF A HIGH-DENSITY INITIATION MECHANISM FOR SUPERCRITICAL NITROMETHANE DECOMPOSITION A Thesis in Mechanical Engineering by Christopher N. Burke © 2020 Christopher N. Burke Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science August 2020 The thesis of Christopher N. Burke was reviewed and approved by the following: Richard A. Yetter Professor of Mechanical Engineering Thesis Co-Advisor Adrianus C. van Duin Professor of Mechanical Engineering Thesis Co-Advisor Jacqueline A. O’Connor Professor of Mechanical Engineering Karen Thole Professor of Mechanical Engineering Mechanical Engineering Department Head ii Abstract: This thesis outlines the bottom-up development of a high pressure, high- density initiation mechanism for nitromethane decomposition. Using reactive molecular dynamics (ReaxFF), a hydrogen-abstraction initiation mechanism for nitromethane decomposition that occurs at initial supercritical densities of 0.83 grams per cubic centimeter was investigated and a mechanism was constructed as an addendum for existing mechanisms. The reactions in this mechanism were examined and the pathways leading from the new initiation set into existing mechanism are discussed, with ab-initio/DFT level data to support them, as well as a survey of other combustion mechanisms containing analogous reactions. C2 carbon chemistry and soot formation pathways were also included to develop a complete high-pressure mechanism to compare to the experimental results of Derk. C2 chemistry, soot chemistry, and the hydrogen-abstraction initiation mechanism were appended to the baseline mechanism used by Boyer and analyzed in Chemkin as a temporal, ideal gas decomposition. The analysis of these results includes a comprehensive discussion of the observed chemistry and the implications thereof. -
Neutral Production of Hydrogen Isocyanide (HNC) and Hydrogen Cyanide (HCN) in Titan’S Upper Atmosphere
EPSC Abstracts Vol. 7 EPSC2012-692-1 2012 European Planetary Science Congress 2012 EEuropeaPn PlanetarSy Science CCongress c Author(s) 2012 Neutral production of hydrogen isocyanide (HNC) and hydrogen cyanide (HCN) in Titan’s upper atmosphere E. Hébrard(1,2), M. Dobrijevic(1,2), J.C. Loison(3), A. Bergeat(3) and K.M. Hickson(3) (1) Université de Bordeaux, Laboratoire d’Astrophysique de Bordeaux, (2) CNRS/INSU, UMR 5804, BP 89, 33271 Floirac Cedex, France, (3) Institut des Sciences Moléculaires, UMR 5255, CNRS-Université de Bordeaux, 351 cours de la Libération, Talence Cedex, F-33405, France ([email protected]) Abstract tude would follow the typical profile for a polyatomic ion rather than a neutral molecule and that it might be Following the first detection of hydrogen isocyanide located mainly in the ionosphere with a peak of abun- (HNC) in Titan’s atmosphere, we have devised a new dance around 1200 km [10]. neutral chemical scheme for hydrogen cyanide (HCN) and hydrogen isocyanide (HNC) in the upper atmo- 2. Photochemical scheme sphere of Titan. To improvethe chemistry of HNC and HCN, a careful review of the literature has been per- Since the neutral composition of the atmosphere is a formed to retrieve critical reaction rates and to evaluate prerequisite for ionospheric models, it is of prime im- their uncertainty factors. We have also estimated the portance to study carefully the neutral processes lead- reaction rates of 48 new reactions using simple capture ing to the production and loss of both HCN and HNC. theory. Our photochemical model gives abundances In this present study, we have therefore focused on the of HNC and HCN in reasonable agreement with ob- reactions which are essential for the study of HCN servations.