Turco * – Luigi Cerruti *

Total Page:16

File Type:pdf, Size:1020Kb

Turco * – Luigi Cerruti * — 369 — FRANCESCA TURCO * – LUIGI CERRUTI * La spettrometria di massa negli Stati Uniti, 1916-1936 ** The Mass-Spectrometry in the United States, 1916-1939 Summary – The paper considers principally the contributions of A.J. Dempster (1886- 1950) and K.T. Bainbridge (1904-1996), however the strong interest in mass-spectrometry in the American scientific community is not understandable without referring to the great dis- coveries of F.W. Aston (1877-1945). After a short discussion of the instruments used by Aston, and of the fundamental meaning of the whole number rule and the packing fraction, the biography and principal results of Dempster are given, in the particular research context on the packing fraction. Bainbridge’s best research in the period was carried out in a differ- ent context, because it was spurred by the discovery of deuterium. In regard to the latter finding, it is outlined the complex chain of events which first led W.F. Giauque (1895-1982) from a research on the absolute value of entropy to the detection of the isotope 180, and then led H.C. Urey (1893-1981) to the discovery of the heavy isotope of hydrogen. In the course of the narrative, a particular emphasis is given to the details both of instruments and of experiments, because many events of the story demonstrate that in the history of science innovative laboratory practices and unexpected experimental results are – at least – as important as new hypotheses and theories. * Dipartimento di Chimica Generale ed Organica Applicata, Università degli Studi di Torino. ** Relazione presentata al IX Convegno Nazionale di «Storia e Fondamenti della Chimica» (Modena, 25-27 ottobre 2001). — 370 — 0. LA SPETTROMETRIA DI MASSA, UN TERRITORIO DI CONFINE FRA FISICA E CHIMICA Fra i molti aspetti che distinguono le scienze del Novecento dalle epoche pre- cedenti non vi è solo l’uso di una strumentazione sempre più estrema nelle sue pre- stazioni, ma vi è la creazione di territori sperimentali di confine, comuni a più disci- pline ‘classiche’, in cui la distinzione fra chimica e fisica, o tra biologia e chimica, è data solo dalle finalità conoscitive secondo cui sono raccolti i dati. Un caso, esem- plare, è quello della affermazione delle tecniche di spettrometria di massa, che ha portato negli anni 1920-1930 contributi di avanguardia, tanto per la fisica quanto per la chimica, per poi entrare progressivamente in tutti i laboratori chimici a par- tire dalla fine della seconda guerra mondiale. Le prime tappe del processo di svi- luppo della tecnica sono già state trattate in maniera approfondita in un precedente lavoro,1 con un’attenzione particolare alla figura di Francis William Aston (1877- 1945) e alle conseguenze del suo lavoro sulla fisica del nucleo; ne riporteremo una sintesi nel primo paragrafo. Saranno poi approfondite le figure di Arthur Jeffrey Dempster (1886-1950) (sezione 2), un ricercatore statunitense che, contemporanea- mente a quanto fatto da Aston nel Regno Unito, mise a punto uno spettrometro di diversa concezione, che trovò le sue più importanti applicazioni in un’altra dire- zione, più legata alla chimica (sezione 5) e quella di Kenneth Tompkins Bainbridge (1904-1996), sempre negli Stati Uniti (sezione 4.1). È infatti in un confronto dialet- tico fra il vecchio e il nuovo continente che troveranno compimento le più feconde conseguenze del lavoro di Aston, fra le quali la scoperta degli isotopi del’ossigeno (sezione 3) e dell’idrogeno (sezione 3.2). In sostanza il lavoro è articolato in una oscillazione fra due discipline vicinali, chimica e fisica; in un periodo storico, il Novecento, durante il quale si è realizzato un forte effetto sinergico dei dati speri- mentali con diversi domini specialistici, tanto da rendere difficile ed piuttosto arbi- traria la definizione di un confine disciplinare: da un problema squisitamente chi- mico verrà la messa a punto di una tecnica di confine fra chimica e fisica, che avrà fra le prime e più vistose conseguenze la definizione di concetti fondamentali per entrambe (la costituzione dei nuclei atomici); una volta esauriti giunti a maturazione questi primi e clamorosi semi, con una lenta inversione di tendenza l’attenzione tor- nerà a focalizzarsi sulle ‘qualità’ squisitamente chimiche della spettrometria di massa: determinazioni fondamentali e applicazioni analitiche, con la trasformazione di pratiche sperimentali della chimica organica fra le più consolidate. Senza voler anticipare i risultati della presente ricerca possiamo comunque rilevare che questa è stata orientata da una precisa assunzione storiografica, e cioè dalla particolare ferti- lità conoscitiva delle ‘zone grigie’, dove scienze diverse vengono a contatto, talvolta senza che la gran parte degli scienziati ‘disciplinaristi’ se ne rendano conto. 1 F. T URCO, L. CERRUTI, «Profound and far-reaching theoretical implications. La spettrome- tria di massa di Aston e il suo impatto sulla fisica del nucleo», Edvige Schettino (a cura di) atti del XX congresso Nazionale di Storia della Fisica e dell’Astronomia, Napoli: CUEN, 2001, pp. 371-422. — 371 — Un’altra oscillazione dialettica che risulta dalla ricostruzione dello sviluppo della tecnica di spettrometria di massa è quella fra interpretazioni teoriche e prati- che sperimentali. Queste ultime sono spesso neglette nella storia della scienza, in favore di una ricostruzione esclusivamente attenta allo svilupppo delle teorie, cer- cheremo di mostrare come i due aspetti, per lo meno in alcune fasi dell’evoluzione delle scienze, siano in realtà indissolubili. Di volta in volta la messa a punto di nuove tecniche, o la raccolta di dati sperimentali assolutamente inattesi, ha reso possibile la formalizzazione di nuove e fertili teorie, oppure l’esigenza di effettuare particolari determinazioni ha spinto alla messa a punto di strumenti dalle presta- zioni via via più evolute. 1. DA THOMSON AD ASTON: UN NUOVO CONTESTO SPERIMENTALE E TEORICO La figura di Francis William Aston 2 ha un certo rilievo nello sviluppo della scienza del Novecento, essenzialmente per essere stato uno dei non molti scienziati che furono in grado di dare un contributo egualmente apprezzato dalle comunità dei chimici e dei fisici, contigue ma non sempre comunicanti. Questa sua ‘doppia’ figura scientifica comincia a delinearsi già a partire dal suo corso di studi, che lo porta a contatto con docenti di ottimo livello in entrambe le discipline, e dai suoi primi lavori. Aston, nato nel 1877 nella contea di Birmingham, dal 1893 studia presso il Mason’s college, con insegnanti quali i chimici W.A. Tilden e P.F. Frank- land ed il fisico J.H. Poynting. Nel 1898 intraprende, grazie ad una borsa di studio, un lavoro di stereochimica con Frankland. Dal 1903 al 1908 lavora come fisico ricercatore con Poynting alla Birmingham University (l’ex Mason’s College). È in questo periodo che incomincia ad occuparsi di fenomeni di conduzione in gas a bassa pressione, ed in particolare del cosiddetto dark space di Crookes, una zona buia che si forma dietro il catodo nei tubi di scarica. Nel 1910, a 33 anni, Aston viene invitato da J.J. Thomson, dietro suggerimento di Poynting, al Cavendish Laboratory del Trinity College di Cambridge, prima in qualità di assistente perso- nale e, a partire dal 1913, come Clerk Maxwell Scholar. L’episodio fondamentale di questa collaborazione è la costruzione, terminata nel 1912, di una versione miglio- rata dell’apparecchio a raggi positivi, sul quale Thomson lavorava da tempo. Con questo strumento viene analizzato il neon, che dà origine a due tracce sulla lastra fotografica utilizzata come rivelatore: una corrispondente alla massa 20 e una alla 22. Si tratta dei due isotopi del gas nobile, ma l’interpretazione iniziale è diversa e piuttosto confusa. Dal discorso pronunciato da Thomson nel gennaio 1913, in occasione di una conferenza alla Royal Institution, emerge un certo imbarazzo nel- l’interpretazione di questo dato inatteso. Thomson suppone che la parabola corri- 2 I dati biografici sono tratti da «Obituary notices. Francis William Aston», J. Chem. Soc., 1948, pp. 1468-1475 e da W.H. BROCK, «Aston, Francis William», Dictionary of Scientific Bio- graphy, New York: Scribner, 1970, ad vocem. — 372 — spondente alla massa 22 sia dovuta ad un composto idrogenato del neon «benché non abbiamo a tutt’oggi nessuna prova diretta della combinazione di questo gas inerte».3 Con un atteggiamento spregiudicato che altre volte aveva riservato a leggi fondametali della fisica, è addirittura pronto a mettere in discussione uno stru- mento conoscitivo potente e fecondo di risultati brillanti come la tavola periodica: «Può essere tuttavia che diamo alla legge di Mendeleef un’interpretazione troppo rigida e che, nelle vicinanze del peso atomico del neon, ci sia un gruppo di due o più elementi dalle proprietà simili, come in altre parti della tavola abbiamo il ferro, il nichel, il cobalto».4 Tra Thomson ed Aston si realizza una sorta di divisione del lavoro investiga- tivo. Il fisico si dedica all’approfondimento della prima congettura, la formazione dell’idruro di neon, e lascia che sia il chimico fisico ad applicarsi all’ipotesi, che al momento sembra meno probabile, dell’esistenza di un «meta-neon» (ricordiamo che la notazione «metaelementi» è di Crookes, il lavoro del quale Aston doveva conoscere piuttosto bene). Aston affronta il problema tentando la separazione con distillazione frazionata ed in un secondo tempo tramite diffusione. Nel 1913 l’ope- razione è parzialmente riuscita, e Aston annuncia la presenza di un nuovo elemento con le stesse proprietà del neon. Questo giro di parole contiene già il concetto di isotopia, ma senza approfondirlo, in maniera piuttosto vaga. È probabilmente l’in- fluenza di Thomson, che nel frattempo si sta occupando di ricerche su una parti- cella di massa tre 5 (vedi anche oltre, sezione 2), ad impedire che Aston prenda un deciso impegno ontologico. Proprio perché la separazione è parzialmente riuscita, Thomson continua a parlare di «neon» e di «gas con peso atomico 22» come di elementi diversi.
Recommended publications
  • The Emergence of Radioecology
    Cambridge University Press 978-1-107-09602-8 — Radioecology R. J. Pentreath Excerpt More Information 1 The Emergence of Radioecology 1.1 Glowing in the Dark On the frieze of the south-west facing Grenelle side of the Eiffel Tower in Paris, sandwiched between the names of Broca and Coriolis, is the name Becquerel. Paul Broca was a gifted physician and anthropologist and Gaspard-Gustave de Coriolis a famous engineer and scientist. Antoine César Becquerel, however, was a physicist who, with his son Alexandre- Edmund, had made major contributions to the study of electricity. Alexandre-Edmund was himself to make major contributions to science, not only in relation to the study of electricity but also to the early development of photography; he was very interested in the curious phenomena of luminescence and phosphorescence as well. But it was Alexandre-Edmund’s son, Antoine Henri Becquerel, who was to stumble upon a completely different phenom- enon that was to change forever our understanding of the world around us, and that phenomenon was radioactivity. Just as fortunate, perhaps, was the fact that Henri did so only because of the very recent discovery of what we now know as ionising radiation by Wilhelm Conrad Röntgen, and that discovery had been very dramatic indeed. Röntgen had been experimenting with the discharge of electricity in vacuum tubes that had metal plates sealed into their ends so that they could be connected to a battery or an induction coil. Such tubes, first produced by Johann Geissler in 1857, had been used by Julius Plücker in 1858 to study the nature of electricity, the flow of which caused a glowing light to emerge from the negative plate (the cathode) and then disappear into the positive plate (the anode).
    [Show full text]
  • Using the “Freshney.Org Periodic Table” in Education Environments. Paul
    Using the “freshney.org Periodic Table” in Education environments. Paul Alan Freshney December 15 th 2008 This document is for use with; Periodic Table Classic Periodic Table Explorer Periodic Table Mini ( http://www.freshney.org/education ) 1. Introduction The freshney.org Periodic Table (FPT) comes with plenty of content for use in any school, college or other educational establishment, but as I was writing it I realized that it would be useful if individuals could tailor it their specific needs. From the very beginning the FPT was designed so that it could be customised by individuals or institutions. All of the information pages (element, glossary, biographies etc.) are all stored as individual HTML pages within the ‘data’ directory. These can be edited and altered as you wish, please do not redistribute them though! None of the software’s data is stored in any binary format that would make alteration or customization impossible. Please feel free to customize the application as you wish, though please don’t redistribute it!! This will allow you to harness the power of the software for your own purposes as well as to make it more relevant for your teaching / educational needs. All of the content for the Periodic Table software is created through the use of XML files (with over one hundred thousand lines of content in total) and XSL transformations. It is not my intention to release these to the public domain, but I may be willing to release them to interested individuals or educational establishments in the future…. I will be updating the content of the software for many years to come, if you have any specific requests then please don’t hesitate to get in touch.
    [Show full text]
  • Arihant Phy Handbook
    Telegram @neetquestionpaper Telegram @aiimsneetshortnotes1 [26000+Members] www.aiimsneetshortnotes.com Telegram @neetquestionpaper Telegram @aiimsneetshortnotes1 [26000+Members] hand book KEY NOTES TERMS DEFINITIONS FORMULAE Physics Highly Useful for Class XI & XII Students, Engineering & Medical Entrances and Other Competitions www.aiimsneetshortnotes.com Telegram @neetquestionpaper Telegram @aiimsneetshortnotes1 [26000+Members] www.aiimsneetshortnotes.com Telegram @neetquestionpaper Telegram @aiimsneetshortnotes1 [26000+Members] hand book KEY NOTES TERMS DEFINITIONS FORMULAE Physics Highly Useful for Class XI & XII Students, Engineering & Medical Entrances and Other Competitions Keshav Mohan Supported by Mansi Garg Manish Dangwal ARIHANT PRAKASHAN, (SERIES) MEERUT www.aiimsneetshortnotes.com Telegram @neetquestionpaper Telegram @aiimsneetshortnotes1 [26000+Members] Arihant Prakashan (Series), Meerut All Rights Reserved © Publisher No part of this publication may be re-produced, stored in a retrieval system or distributed in any form or by any means, electronic, mechanical, photocopying, recording, scanning, web or otherwise without the written permission of the publisher. Arihant has obtained all the information in this book from the sources believed to be reliable and true. However, Arihant or its editors or authors or illustrators don’t take any responsibility for the absolute accuracy of any information published and the damages or loss suffered there upon. All disputes subject to Meerut (UP) jurisdiction only. Administrative & Production Offices Regd. Office ‘Ramchhaya’ 4577/15, Agarwal Road, Darya Ganj, New Delhi -110002 Tele: 011- 47630600, 43518550; Fax: 011- 23280316 Head Office Kalindi, TP Nagar, Meerut (UP) - 250002 Tele: 0121-2401479, 2512970, 4004199; Fax: 0121-2401648 Sales & Support Offices Agra, Ahmedabad, Bengaluru, Bareilly, Chennai, Delhi, Guwahati, Hyderabad, Jaipur, Jhansi, Kolkata, Lucknow, Meerut, Nagpur & Pune ISBN : 978-93-13196-48-8 Published by Arihant Publications (India) Ltd.
    [Show full text]
  • EL “VACÍO” ES MATERIA Aproximación a La Física
    El "vacÍo" es materia 1 El "vacÍo" es materia EL “VACÍO” ES MATERIA Aproximación a la física 2 El "vacÍo" es materia EL “VACÍO” ES MATERIA Aproximación a la física Obra coordinada por: Manuel Menchén Antequera Agradecimientos a: Ángel de la Cruz Bermejo Casiano Hernández Hernández Liliana Pineda Manuel Lidón Medina Ramón Lidón Medina Pedro Gómez Romero Raquel Bello-Morales Arroyo Portada: Manuel Menchén Ozaíta Autor: Club de Amigos de la Unesco de Madrid Editor: Club de Amigos de la Unesco de Madrid Plaza de Tirso de Molina 8. 1º 28012 Madrid (España) Primera edición: Marzo, 2010 Segunda edición: Junio, 2012 Tercera edición, revisada y ampliada: Junio, 2013 www.nodo50.org/caum Depósito Legal: ISBN: 978-84-614-1068-2 Edición de distribución gratuita. 3 El "vacÍo" es materia Este cuaderno de aproximación a la Física fue elaborado con las notas, apuntes, fragmentos de textos, lecturas y comentarios e incluso noticias y datos documentales que nutrieron los debates semanales del Taller realizado en el CAUM durante casi dos años. Finalmente, surgió la idea de publicarlo coincidiendo con la celebración del Año Internacional de la Astronomía, permitiendo a sus redactores dar libremente al cuaderno el carácter que ahora tiene. Una edición ulterior permitiría recoger cuantas críticas y correcciones merezca a objeto de superarlo, e incluso modificarlo, ahora sobre todo cuando más patente se hace la apremiante necesidad de contribuir a elaborar de la mano de la Ciencia y la Cultura un Gran Proyecto Social profundamente movilizador. “Encontraremos el camino, guiándonos por las estrellas”. A. S. Pushkin. “Si descubrimos una teoría completa, con el tiempo habrá de ser, en sus líneas maestras, comprensible para todos y no únicamente para unos pocos científicos… Entonces todos, filósofos, científicos y gente corriente, seremos capaces de tomar parte en la discusión…”.
    [Show full text]
  • A Complete Bibliography of Publications in the Proceedings of the American Philosophical Society (1900–1949)
    A Complete Bibliography of Publications in the Proceedings of the American Philosophical Society (1900{1949) Nelson H. F. Beebe University of Utah Department of Mathematics, 110 LCB 155 S 1400 E RM 233 Salt Lake City, UT 84112-0090 USA Tel: +1 801 581 5254 FAX: +1 801 581 4148 E-mail: [email protected], [email protected], [email protected] (Internet) WWW URL: http://www.math.utah.edu/~beebe/ 25 August 2019 Version 1.00 Title word cross-reference ◦ −183 [Bee39]. 1 [Atk18c]. 2 [Atk18c]. Σ [Doo03]. 1189 [Dav39b]. 146 [SO37]. 1777 [Chi48]. 1867 [Col41a]. 1900 [Ano00e, Ano00j, Ano00i, Ano00k, Ano00m, Ano00l, Ano00o, Ano00n, Ano00h, Ano00q, Ano00p, Ano00s, Ano00r, Ano00u, Ano00t, Ano00w, Ano00v, Low01]. 1901 [Ano01f, Ano01g, Ano01h, Ano01i, Ano01j, Ano01l, Ano01k, Ano01m, Ano01n, Ano01p, Ano01o, Ano01q, Ano01r, Ano01t, Ano01s, Ano01e]. 1902 [Ano02e, Ano02f, Ano02h, Ano02g, Ano02j, Ano02i, Ano02l, Ano02k, Ano02m, Ano02o, Ano02n, Ano02p, Ano02q]. 1903 [Ano03e, Ano03f, Ano03h, Ano03g, Ano03j, Ano03i, Ano03l, Ano03k, Ano03n, Ano03m, Ano03o, Ano03p, Ano03q, Ano03s, Ano03r]. 1904 [Ano04e, Ano04f, Ano04h, Ano04g, Ano04j, Ano04i, Ano04k, Ano04l, Ano04n, 1 2 Ano04m, Ano04p, Ano04o, Ano04q, Ano04r]. 1905 [Ano05f, Ano05h, Ano05g, Ano05i, Ano05k, Ano05j, Ano05l, Ano05n, Ano05m, Ano05p, Ano05o]. 1906 [Ano06e, Ano06f, Ano06g, Ano06h, Ano06j, Ano06i, Ano06k, Ano06m, Ano06l, Ano06o, Ano06n, Ano06q, Ano06p, Ogb07]. 1907 [Ano07f, Ano07g, Ano07i, Ano07h, Ano07j, Ano07l, Ano07k, Ano07m, Ano07o, Ano07n, Ano07p, Ano07q]. 1908 [Ano08e, Ano08g, Ano08f, Ano08h, Ano08j, Ano08i, Ano08k, Ano08m, Ano08l, Ano08n]. 1918 [And19, Cam19, Lam19, Mil19a]. 1931 [Lin33]. 1937 [Con37a]. 1940 [Wie45]. 1941 [Bar45, Wad45b]. 1942 [Ang42]. 2 [Kra47]. 200-Inch [Tho30]. 61 [Str43]. A.D. [Dav39b]. A.M [Pet03].
    [Show full text]
  • The Stern-Gerlach Experiment Revisited
    The Stern-Gerlach Experiment Revisited Horst Schmidt-Böcking∗1, Lothar Schmidt1, Hans Jürgen Lüdde2, Wolfgang Trageser1, Alan Templeton3, and Tilman Sauer4 1Institute for Nuclear Physics, Goethe-University Frankfurt, Frankfurt, Germany. 2Institute for Theoretical Physics, Goethe-University Frankfurt, Germany. 3Oakland, CA, USA. 4Institute of Mathematics, Johannes Gutenberg-University Mainz, Mainz, Germany. Version of September 30, 2016 Abstract The Stern-Gerlach-Experiment (SGE) performed in 1922 is a seminal benchmark experiment of quantum physics providing evidence for several fundamental properties of quantum systems. Based on the knowledge of today we illustrate the different benchmark results of the SGE for the development of modern quantum physics and chemistry. The SGE provided the first direct experimental evidence for angu- lar momentum quantization in the quantum world and therefore also for the existence of directional quantization of all angular momenta in the process of measurement. Furthermore, it measured for the first time a ground state property of an atom, it produced for the first time a fully “spin-polarized” atomic beam, and it also revealed the electron spin, even though this was not realized at the time. The SGE was the first fully suc- cessful molecular beam experiment where the kinematics of particles can be determined with high momentum-resolution by beam measurements in vacuum. This technique provided a kind of new kinematic microscope with which inner atomic or nuclear properties could be investigated. Historical facts of the original SGE are described together with early attempts by Einstein, Ehrenfest, Heisenberg, and others to reveal the physical processes creating directional quantization in the SGE. Heisen- berg’s and Einstein’s proposals of an improved multi-stage SGE are pre- sented.
    [Show full text]
  • Dynamis-7 29.Indd
    Making isotopes matter: Francis Aston and the mass-spectrograph Jeff Hughes Centre for the History of Science, Technology and Medicine. University of Manchester. [email protected] Dynamis Fecha de recepción: 22 de febrero de 2008 [0211-9536] 2009; 29: 131-165 Fecha de aceptación: 23 de julio de 2008 SUMMARY: 1.―Introduction. 2.―From bottlewasher to gentleman-researcher: Francis Aston at the Cavendish laboratory. 3.―Negotiating the nuclear atom: Rutherford, Bohr and Soddy. 4.―From positive rays to mass-spectrograph: Aston and the element of surprise. 5.―Ruther- ford, Aston and the constitutive role of the mass-spectrograph. 6.―The Nobel Prizes and the history of isotopes. 7.―Conclusion. ABSTRACT: Francis Aston «discovered» the isotopes of the light elements at the Cavendish Laboratory in 1919 using his newly devised mass-spectrograph. With this device, a modi- fication of the apparatus he had used as J.J. Thomson’s lab assistant before the war, Aston was surprised to find that he could elicit isotopes for many of the elements. This work was contested, but Rutherford, recently appointed to head the Cavendish, was a strong supporter of Aston’s work, not least because it supported his emergent programme of re- search into nuclear structure. This paper will explore Aston’s work in the context of skilled practice at the Cavendish and in the wider disciplinary contexts of physics and chemistry. Arguing that Aston’s work was made significant by Rutherford ―and other constituencies, including chemists and astrophysicists― it will explore the initial construction of isotopes as scientific objects through their embodiment in material practices.
    [Show full text]
  • The History of Nuclidic Masses and of Their Evaluation
    The History of Nuclidic Masses and of their Evaluation Georges Audi Centre de Spectrom´etrie Nucl´eaire et de Spectrom´etrie de Masse, CSNSM, IN2P3-CNRS, et UPS, Bˆatiment 108, F-91405 Orsay Campus, France Contribution to the special issue of the “International Journal of Mass Spectrometry” (IJMS) in the honor of the 65th anniversary of J¨urgen Kluge’s birthday (submitted December 24, 2005, resubmitted January 27, 2006) Abstract This paper is centered on some historical aspects of nuclear masses, and their relations to major discoveries. Besides nuclear reactions and decays, the heart of mass measurements lies in mass spectrometry, the early history of which will be reviewed first. I shall then give a short history of the mass unit which has not always been defined as one twelfth of the carbon-12 mass. When combining inertial masses from mass spectrometry with energy differences obtained in reactions and decays, the conversion factor between the two is essential. The history of the evaluation of the nuclear masses (actually atomic masses) is only slightly younger than that of the mass measurements themselves. In their modern form, mass evaluations can be traced back to 1955. Prior to 1955, several tables were established, the oldest one in 1935. PACS. 01.40.Di ; 01.65.+g ; 06.20.Dk ; 06.20.Fn ; 07.75.+h ; 21.10.Dr ; 23.40.-s ; 23.50.+z ; 23.60.+e Keywords: Nuclear binding energies - atomic masses - history of atomic masses - history of mass spectrometry - evaluation of atomic masses 1 The history of nuclear masses The history of nuclear masses is almost as old as that of nuclear physics itself.
    [Show full text]
  • 2 Best Practice 2017-18
    GOVT. COLLEGE OF TEACHER EDUCATION, THYCAUD, THIRUVANANTHAPURAM BEST PRACTICES BY DEPARTMENT OF PHYSICAL SCIENCE Do you know what happened today in History of Science? 2017-18 1 TITLE OF THE PRACTICE: DO YOU KNOW WHAT HAPPENED TODAY IN HISTORY OF SCIENCE? THE CONTEXT THAT REQUIRED INITIATION OF THE PRACTICE This is an attempt to develop the ability to think divergent in the context of teaching learning science by students at the secondary level. Contributions made by scientists and their enthusiasm can be greatly influence secondary school children. When the prospective teachers under my guidance when trained a work related to the days of importance in science was under discussion when unit 1 of 04.08 Theoretical Bases of Teaching Physical science made in the classroom. Only few days were known by the students. Then we decided to prepare a material in a compiled form about 365 days of importance in science as part of academic work done to be done by the Physical Science Association of 2017-18 batch. As it is two- year course students from 2017-19 batch and 2016-18 batch together contributed to this work. This was a huge work done within a period of nine months from 2017 December to 2018 August. Even though it was started in the year 2017 it could be completed in 2018. OBJECTIVES OF THE PRACTICE To develop interest in science To enhance the knowledge in the field of history and inventions in science of student teachers To develop comprehensive report writing ability and editing materials for compilation THE PRACTICE The information regarding days importance in science and it will serve as a source of information for anyone who is interested in science teaching and learning.
    [Show full text]
  • Prior, Martin; Rini, Adriana
    Aalborg Universitet Three Little Essays Arthur Prior in 1931 Jakobsen, David; Øhrstrøm, Peter; Prior, Martin; Rini, Adriana Creative Commons License CC BY-NC-ND 4.0 Publication date: 2020 Document Version Også kaldet Forlagets PDF Link to publication from Aalborg University Citation for published version (APA): Jakobsen, D., Øhrstrøm, P., Prior, M., & Rini, A. (red.) (2020). Three Little Essays: Arthur Prior in 1931. (1 udg.) Aalborg Universitetsforlag. Logic and Philosophy of Time Bind 3 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research. ? You may not further distribute the material or use it for any profit-making activity or commercial gain ? You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us at [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from vbn.aau.dk on: December 26, 2020 Three Little Essays: Arthur Prior in 1931 Logic and Philosophy of Time, Vol. 3 David Jakobsen, Peter Øhrstrøm, Martin Prior & Adriane Rini (Eds.) Three Little Essays: Arthur Prior in 1931 Edited by: David Jakobsen, Peter Øhrstrøm, Martin Prior, & Adriane Rini Logic and Philosophy of Time, Volume 3 Three Little Essays: Arthur Prior in 1931 Logic and Philosophy of Time, Volume 3 Edited by David Jakobsen, Peter Øhrstrøm, Martin Prior & Adriane Rini Series editors: Per Hasle, Patrick Blackburn & Peter Øhrstrøm 1st Printed Edition © The authors and Aalborg University Press, 2020 Copy editing and interior design: Fatima Sabir Cover design: akila by Kirsten Bach Larsen Photo on front cover: A.N.
    [Show full text]
  • Department of Commerce 2017-18
    GOVT. COLLEGE OF TEACHER EDUCATION, THYCAUD, THIRUVANANTHAPURAM INNOVATIVE PRACTICES BY DEPARTMENT OF COMMERCE GRAPHIC ORGANIZER BASED INSTRUCTIONAL PRACTICES 2017-18 TITLE OF THE PRACTICE: GRAPHIC ORGANIZER BASED INSTRUCTIONAL PRACTICES THE CONTEXT THAT REQUIRED INITIATION OF THE PRACTICE In this technological era, teachers will have to learn and practice new pedagogies capable of maintaining high standards in the face of India’s socio cultural diversity and economic disparity. If we expect students to learn appropriate competencies and skills, we must structure the learning environment so that these can be addressed and practiced. For this, appropriate pedagogic practices and episodes of teaching and learning need to be evolved besides keeping track of child’s interests and needs. Graphic organizers are shape-based diagrams that organize students’ thoughts. Graphic organizers help students sort, differentiate, show relationships, make meaning, and manage data quickly and easily before, during, and after reading and discussion. This method is can be adopted as an effective method of instruction. Our students use graphic organizer based instructional strategy during their teaching practice course. The prospective teachers know the effectiveness of this approach as they learnt through this method during their course of study. The Graphic Organizers, an instructional processing tool for: Modeling Learning experiences Assessment Graphic Organizer: An Instructional Special needs Processing Tool Variations Figure 2.6 Graphic Organizer: An Instructional Processing Tool Modeling: It is critical to model Graphic Organizer when you present it in to the class. Learning Experiences: Graphic Organizers can be effective used or individual and small group instruction through which they provide a structure for the students.
    [Show full text]
  • Mass Spectrometry—The Early Years
    International Journal of Mass Spectrometry 349–350 (2013) 3–8 Contents lists available at ScienceDirect International Journal of Mass Spectrometry j ournal homepage: www.elsevier.com/locate/ijms Mass spectrometry—The early years ∗ K.S. Sharma Department of Physics and Astronomy, University of Manitoba, Winnipeg, Canada R3T 2N2 a r t i c l e i n f o a b s t r a c t Article history: In 1913 J.J. Thomson constructed his famous positive-ray parabola apparatus at Cambridge and discovered Received 21 March 2013 two isotopes of neon. He subsequently discovered other isotopes. His work confirmed the concept of Received in revised form 22 May 2013 isotopes and provided an explanation for deviations of atomic weights determined through chemical Accepted 23 May 2013 techniques from the “whole number rule”. This achievement marks the beginning of the field of mass Available online 5 June 2013 spectroscopy which is celebrating its 100th anniversary in 2013. His student Aston extended this work by constructing an instrument that we properly term a mass spectrometer and contributed significantly to Keywords: our first glimpses into the binding energy of the nucleus. Independently, Dempster constructed a similar Atomic masses instrument at the University of Chicago also provided contributions to our knowledge of nuclear masses. Nuclear physics The birth of this field of measurement has its roots in nuclear physics and chemistry. It has grown to be Mass spectrometry History the driver of a huge international industry and is utilized as a tool in almost every field of science. This Instrumental paper will recount the early days of the field.
    [Show full text]