Diseño Conceptual Y Preliminar De Un Avión Tipo Comercial

Total Page:16

File Type:pdf, Size:1020Kb

Diseño Conceptual Y Preliminar De Un Avión Tipo Comercial DISEÑO CONCEPTUAL Y PRELIMINAR DE UN AVIÓN TIPO COMERCIAL Autor: Jheferson Riascos Viveros FUNDACIÓN UNIVERSITARIA LOS LIBERTADORES Facultad de ingeniería Programa de ingeniería aeronáutica Bogotá D.C 2016 DISEÑO CONCEPTUAL Y PRELIMINAR DE UN AVIÓN TIPO COMERCIAL Autor: Jheferson Riascos Viveros Trabajo de grado para optar por el título de Ingeniero aeronáutico Asesor: Andreas Werner Alwin Gravenhorst FUNDACIÓN UNIVERSITARIA LOS LIBERTADORES Facultad de ingeniería Programa de ingeniería aeronáutica Bogotá D.C 2016 Notas de Aceptación _________________________________ _________________________________ _________________________________ _________________________________ _______________________________ Presidente del Jurado _________________________________ Jurado _________________________________ Jurado _________________________________ Asesor Metodológico Bogotá D.C DEDICATORIA A Dios porque cumplí el propósito de él en mi permitiendo que este que este proyecto de grado sea todo un éxito. A mi padre porque la mejor herencia que me ha dado a parte de su infinito amor, el conocimiento, sus consejos, su apoyo de manera incondicional, sin importar mis errores y fracasos. A mi madre que me enseño las cosas de la vida, me creó con principios, valores y que desde el cielo me apoyó para culminar con éxito mi carrera y verme como todo un ingeniero aeronáutico. A mis hermanos Robinson Riascos Viveros, Daniel Riascos Carmona y Tatiana Katherine Riascos Viveros por su amor y apoyo de manera incondicional. A todos los docentes y compañeros que me aconsejaron y me motivaron para que este proyecto de grado sea todo un éxito. AGRADECIMIENTOS A mi familia por su apoyo de manera incondicional y permitir que mi sueño de ser ingeniero aeronáutico sea una realidad. Al ing. Andreas Gravenhorst que por su gran experiencia, conocimiento y trayectoria en el ámbito aeronáutico, me orientó brindando sus aportes, sugerencias y opiniones que fueron de vital importancia para la culminación de este proyecto de grado. Al ing. Nelson Javier Pedraza Betancourt que por su actitud me ayudo de buena fe en orientarme de la manera correcta para la culminación del proyecto de grado. Al ing. John Jairo Vaca Ríos por su tiempo, amistad y sus enseñanzas. Al ing. Francisco Javier González Cruz y Jairo Andrés Gutiérrez Suarez por su cooperación y disposición A mis amigos y monitores de los laboratorios por su apoyo y paciencia en el desarrollo del proyecto de grado. 1. CONCEPTOS .................................................................................................. 21 1.1 CONCEPTO DE DISEÑO ......................................................................... 21 1.1.1 Diseño de aeronaves ......................................................................... 21 1.1.2 Diseño conceptual .............................................................................. 21 1.1.3 Diseño preliminar ............................................................................... 22 2. HIPOTESIS ..................................................................................................... 23 2.1 COEFICIENTE DE OSWALD ....................................................................... 24 2.2 CUERDA MEDIA AERODINAMICA (MAC) .................................................. 24 3. NORMATIVAS ................................................................................................. 26 3.1 FAA FAR Part 1 – DEFINICION Y ABREVIATURAS ............................... 26 3.1.1 FAA FAR Part 25 – ESTANDARES DE AERONAVEGABILIDAD: CATEGORIA DE AVIONES DE TRANSPORTE– SUB-PARTE B .................. 26 4. AERONAVES SIMILARES .............................................................................. 27 4.1 DOUGLAS DC-10 ......................................................................................... 28 4.2 Tristar L-1011 ............................................................................................... 29 4.3 Boeing 747 ................................................................................................... 30 4.4 Airbus 380 .................................................................................................... 31 4.5 Antonov 225 ................................................................................................. 31 5. PLANTAMIENTO DEL PROBLEMA ............................................................... 32 6. JUSTIFICACIÓN ............................................................................................. 33 7. OBJETIVOS .................................................................................................... 35 7.1 OBJETIVO GENERAL .................................................................................. 35 7.2 OBJETIVOS ESPECÍFICOS ........................................................................ 35 8. METODOLOGÍA .............................................................................................. 35 8.1 TIPO DE INVESTIGACIÓN: ......................................................................... 35 8.2 ETAPAS METODOLÓGICAS: ...................................................................... 35 8.3 DISEÑO CONCEPTUAL: ............................................................................. 36 8.4 DISEÑO PRELIMINAR: ................................................................................ 36 9. FASE DE DISEÑO CONCEPTUAL ................................................................. 36 9.1 INTRODUCCION .......................................................................................... 36 9.2 FUNCIONES DE LOS COMPONENTES PRIMARIOS DEL AVIÓN ............ 39 9.3 CONFIGURACIONES ALTERNATIVAS DEL AVIÓN A DISEÑAR .............. 44 9.4 CONFIGURACIÓN DEL PLANO ALAR ........................................................ 50 9.5 CONFIGURACION DEL EMPENAJE ........................................................... 56 9.6 CONFIGURACIÓN DEL SISTEMA DE PROPULSIÓN ................................ 62 9.7 CONFIGURACIÓN DEL TREN DE ATERRIZAJE ........................................ 65 9.8 CONFIGURACIÓN DEL FUSELAJE ............................................................ 69 9.9 DISEÑO CONCEPTUAL DE LA AERONAVE .............................................. 72 9.10 ESTIMACION DEL PESO DEL AVIÓN ...................................................... 75 10. FASE DE DISEÑO PRELIMINAR ............................................................. 79 10.1 PERFORMANCE ...................................................................................... 80 10.1.1 RELACION DE SUTENTACION/DRAG ............................................. 80 10.1.2 VELOCIDADES .................................................................................. 81 10.1.5 RANGOS ............................................................................................ 90 10.1.6 ÁREA ALAR ....................................................................................... 91 10.1.7 RELACION EMPUJE SOBRE PESO ................................................. 97 10.1.7.1 CLASIFICACIÓN DEL MOTOR ...................................................... 99 10.1.8 TAKE-OFF RUN ............................................................................... 114 10.1.9 RATA DE ACENSO .......................................................................... 122 10.1.10 TECHO DE SERVICIO (CEILING) ................................................ 128 10.1.11 ENDURANCE ............................................................................... 135 10.2 DISEÑO PRELIMINAR DEL PRIMER PLANO ALAR ............................. 137 10.2.1 INTRODUCCIÓN ................................................................................. 137 10.2.2 REFERENCIA DEL PRIMER PLANO ALAR O (REFERENCIA ALAR MÍNIMA REQUERIDA) .................................................................................. 137 10.2.3 CUERDA ALAR PROMEDIO DEL PRIMER PLANO ALAR ............. 139 10.2.4 ENVERGADURA DEL PRIMER PLANO ALAR ............................... 144 10.2.5 RELACIÓN DE ASPECTO DEL PRIMER PLANO ALAR (AR) ........ 146 10.2.6 TAPER λ .......................................................................................... 146 10.2.7 ANGULO DE AFLECHAMIENTO DEL PRIMER PLANO ALAR....... 148 10.2.8 Angulo Diedro ( ) ............................................................................. 150 10.2.9 NÚMEROS DE REYNOLDS ............................................................ 152 10.2.10 SELECCIÓN Y ESTUDIOS DEL PERFIL ALAR ........................... 153 10.2.11 INCIDENCIA DEL PLANO ALAR .................................................. 174 10.2.12 Twist Geométrico.............................................................................. 177 10.2.13 Twist aerodinámico ........................................................................... 177 10.2.14 Diseño preliminar en solid edge del plano alar ................................. 178 10.3 DISEÑO PRELIMINAR DEL FUSELAJE ................................................ 179 10.3.1 INTRODUCCIÓN ............................................................................. 179 10.3.2 DISEÑO, CONFIGURACIÓN Y DISPOSICIÓN INTERNA DEL FUSELAJE. ................................................................................................... 181 10.3.3 DISEÑO CABINA ............................................................................... 182 10.3.4 SECCIÓN TRANSVERSAL DE LA CABINA ...................................... 183 10.3.5 DISTANCIA Y TAMAÑO DE LOS ASIENTOS ................................... 185 10.3.6 NÚMERO Y TIPO DE
Recommended publications
  • Eurocopterx3
    GLOBAL AUGUST 2013 / Vol. 5 / No. 8 Magazine for the Airline • Charter • Travel • Business • Defence • Air Show • Training & General Aviation Industries SA - R25 We fly with Red Thales Glen Dell Unveils Cockpit Bull’s of the future Beechcraft Answers need for light ISR capabilities Magic with the Baron G58 Merlins Getting Paris Air Started Show 2013 Airbus Military Awards A400M tailplane work to Denel Aerostructures Speed record for EurocopterX3 Buy now online at: www.magzter.com h We fly the Cabri GuimbalG2 Cover pic by: Alan Norris KZN’s Winter Durban Air Tour Air ends Show wit GLOBAL PO Box 72416, Parkview, 2122 - 35 Main Road, Barbeque Downs, 1685 Tel: 011 701 5050 Fax: 086 515 2154 - www.globalaviator.co.za Publisher: Mike de Villiers - 082 466 7757 [email protected] Web design: Cesaré de Villiers [email protected] You can’t build a reputation Accounts: Tessa Jansen Van Rensburg [email protected] on what you’re going to do Travel Editor: Charmaine de Villiers - Cell: 082 551 4377 [email protected] – Henry Ford Contributors: Owen Zupp (AUS), Charmaine de Villiers (SA), Cesaré de Villiers (SA), Mike Wright (SA), Dr Guy Gratton (UK), Helen Krasner (UK), Nico van Remmerden (Holland), Skaiste Knyzaite, Richard Browne (CT), Tim Kern (USA). Advertising: Mike de Villiers Sales Director +27 82 466 7757 [email protected] Chris Theodosi Sales Manager - Johannesburg Office 072 799 1879 - [email protected] Mike Wright Sales Manager - Durban Office [email protected] Printing Paarl Media
    [Show full text]
  • Military Drones in Europe Dr. Dominika Kunertova's Report
    sdu.dk Center for War Studies Military Drones #sdudk in Europe Research Report by Dominika Kunertova The European Defense Market and the Spread of Military UAV technology Spring/Summer 2019 Center for War Studies Military Drones in Europe Photo from www.unmannedsystemstechnology.com 4 · Center for War Studies / Military Drones in Europe Center for War Studies The Center for War Studies was established in 2012 as a At CWS, our vision is to shape and contribute to the high profile and high quality research pole dedicated to major debates on the past, present and future of war, the multidisciplinary study of war. and its impact on societies. We bring together academics from political science, law, history and culture in order War is the most dramatic event in human affairs, and to illuminate the multiple dimensions of war and its prevention, conduct and consequences define and peace, thus creating one of Europe’s largest and most shape human societies. The enormous importance of diverse research environment dedicated to this issue. studying and understanding war therefore stems from its We proudly go outside of the ivory tower and bring destructive and transformative nature. our research on war to the heart of societal debates, through engagement with military institutions, political As an academic field of research, war studies is focused on authorities and the public. Our research also informs the changing character of war and its relation to peace. our educational programs, at the University of Southern It is essentially problem-driven and multidisciplinary, Denmark, notably the Master of International Security borrowing from the social sciences, technical sciences and Law (MOISL).
    [Show full text]
  • MAPPING the DEVELOPMENT of AUTONOMY in WEAPON SYSTEMS Vincent Boulanin and Maaike Verbruggen
    MAPPING THE DEVELOPMENT OF AUTONOMY IN WEAPON SYSTEMS vincent boulanin and maaike verbruggen MAPPING THE DEVELOPMENT OF AUTONOMY IN WEAPON SYSTEMS vincent boulanin and maaike verbruggen November 2017 STOCKHOLM INTERNATIONAL PEACE RESEARCH INSTITUTE SIPRI is an independent international institute dedicated to research into conflict, armaments, arms control and disarmament. Established in 1966, SIPRI provides data, analysis and recommendations, based on open sources, to policymakers, researchers, media and the interested public. The Governing Board is not responsible for the views expressed in the publications of the Institute. GOVERNING BOARD Ambassador Jan Eliasson, Chair (Sweden) Dr Dewi Fortuna Anwar (Indonesia) Dr Vladimir Baranovsky (Russia) Ambassador Lakhdar Brahimi (Algeria) Espen Barth Eide (Norway) Ambassador Wolfgang Ischinger (Germany) Dr Radha Kumar (India) The Director DIRECTOR Dan Smith (United Kingdom) Signalistgatan 9 SE-169 72 Solna, Sweden Telephone: +46 8 655 97 00 Email: [email protected] Internet: www.sipri.org © SIPRI 2017 Contents Acknowledgements v About the authors v Executive summary vii Abbreviations x 1. Introduction 1 I. Background and objective 1 II. Approach and methodology 1 III. Outline 2 Figure 1.1. A comprehensive approach to mapping the development of autonomy 2 in weapon systems 2. What are the technological foundations of autonomy? 5 I. Introduction 5 II. Searching for a definition: what is autonomy? 5 III. Unravelling the machinery 7 IV. Creating autonomy 12 V. Conclusions 18 Box 2.1. Existing definitions of autonomous weapon systems 8 Box 2.2. Machine-learning methods 16 Box 2.3. Deep learning 17 Figure 2.1. Anatomy of autonomy: reactive and deliberative systems 10 Figure 2.2.
    [Show full text]
  • Présentation Powerpoint
    Version: July, 2019 ® NATIONAL STOCK PLY SPEED RATING MAIN AIRCRAFT POSITION SIZE TECHNOLOGY PART NUMBER MAIN MARKET NUMBER RATING (MPH) A-10 MLG 36X11 BIAS 008-742-4 2620-01-129-7607 22 174 Military A-10 MLG 36X11 BIAS 008-742-4 2620-01-129-7607 22 250 Military A-37, U-1, O-2, HH-60H, SH- NLG / MLG / 6.00-6 BIAS 001-317-0 2620-00-060-7013 8 120 Military 60 TLG A-4, F-4, V-22 NLG 18X5.7-8 BIAS 008-649-1 2620-00-946-1108 14 200 Military Aérospatiale Alouette III SA NLG / MLG 355X150-4 BIAS 065-543-0 2620-14-514-6183 4 160 Military 316, SA 319 AH-64 MLG 8.50-10 BIAS 001-350-2 2620-01-168-0164 10 120 Military AV-8B MLG 26X7.75R13 X - NYLON M16101 2620-01-252-2753 10 230 Military AV-8B NLG 26X8.75R11 X - NYLON M16601 2620-99-783-3900 16 230 Military B-1B NLG 35X11.5-16 BIAS 008-842-0 2620-01-208-2894 22 256 Military B-1B MLG B46X16.0-23.5 BIAS 008-887-1 2620-01-207-5302 30 276 Military B-52 MLG 56X16 BIAS 008-794-1 2620-00-575-8886 38 225 Military B-52 MLG 56X16 BIAS 008-794-1 2620-00-575-8886 38 239 Military B-52 WTG 32X8.8 BIAS 041-712-0 2620-00-900-1191 16 160 Military C-130 NLG 12.50-16 BIAS 008-369-0 2620-00-834-6673 12 139 Military C-130 NLG 12.50-16 BIAS 008-369-0 2620-00-834-6673 12 150 Military C-130 MLG 20.00-20 BIAS 008-413-2 2620-00-142-5161 26 174 Military C-130 MLG 20.00-20 BIAS 008-413-2 2620-00-142-5161 26 174 Military C-17 MLG 50X21.0-20 BIAS 004-877-1 2620-01-494-0888 30 225 Military C-17 MLG 50X21.0-20 BIAS 004-877-1 2620-01-494-0888 30 225 Military C-17 NLG 40X16.0-14 BIAS 008-846-0 2620-01-409-1814 26 225 Military C-17
    [Show full text]
  • Korea Aerospace Industries199
    i UNIVERSIDADE ESTADUAL DE CAMPINAS Instituto de Economia DINÂMICA DA INOVAÇÃO E MUDANÇAS ESTRUTURAIS: UM ESTUDO DE CASO DA INDÚSTRIA AERONÁUTICA MUNDIAL E A INSERÇÃO BRASILEIRA Marcos José Barbieri Ferreira Tese de Doutoramento apresentada ao Instituto de Economia da UNICAMP para obtenção do título de Doutor em Ciências Econômicas — área de concentração: Teoria Econômica, sob a orientação do Prof. Dr. Fernando Sarti. Este exemplar corresponde ao original da tese defendida por Marcos José Barbieri Ferreira em 28/09/2009 e orientado pelo Prof. Dr. Fernando Sarti. CPG, 28 / 09 / 2009 ___________________________ Campinas, 2009 ii Ficha catalográfica elaborada pela biblioteca do Instituto de Economia/UNICAMP Ferreira, Marcos José Barbieri. F413d Dinâmica da inovação e mudanças estruturais: um estudo de caso da in- dústria aeronáutica mundial e a inserção brasileira / Marcos José Barbieri Ferreira. -- Campinas, SP: [s.n.], 2009. Orientador : Fernando Sarti. Tese (doutorado) – Universidade Estadual de Campinas, Instituto de Economia. 1. EMBRAER. 2. Força Aérea Brasileira. 3. Inovações tecnológicas. 4. Políti- ca industrial. I. Sarti, Fernando. II. Universidade Estadual de Campinas. Insti- tuto de Economia. III. Titulo. 09-038-BIE Título em Inglês: Dynamics of innovation and structural changes: a case study of the global aeronautical industry and Brazilian industry international insertion Keywords : Technological innovations ; Aeronautical industry ; Industrial policy ; EMBRAER ; Brazilian Air Force Área de concentração : Teoria Econômica Titulação : Doutor em Ciências Econômicas Banca examinadora : Prof. Dr. Fernando Sarti Prof. Dr. Paulo Bastos Tigre Prof. Dr. Ricardo Machado Ruiz Prof. Dr. Carlos Américo Pacheco Prof. Dr. Paulo Sérgio Fracalanza Data da defesa: 28-09-2009 Programa de Pós-Graduação: Ciências Econômicas iii Tese de Doutorado Aluno: MARCOS JOSÉ BARBIERI FERREIRA “Dinâmica da Inovação e Mudanças Estruturais: Um Estudo de Caso da Indústria Aeronáutica Mundial e a Inserção Brasileira“ Defendida em 28 / 09 / 2009 COMISSÃO JULGADORA Prof.
    [Show full text]
  • Rapporto Di Ricerca Ce.MI.S.S. S.T.E.P.I. AG-Gab-03
    Centro Militare di Studi Strategici Rapporto di Ricerca 2013 - STEPI AG-GAB-03 EFFETTI DELLA SPESA PER LA DIFESA SUL SISTEMA ECONOMICO NAZIONALE di Dott. PhD Claudio CATALANO data di chiusura della ricerca: Ottobre 2013 INDICE EFFETTI DELLA SPESA PER LA DIFESA SUL SISTEMA ECONOMICO NAZIONALE SOMMARIO pag. 1 PARTE GENERALE E ANALITICA Capitolo 1 - Identificazione dell'oggetto della ricerca: l'Industria Aerospazio Difesa e Sicurezza in Italia pag. 4 Capitolo 2 - Analisi storica degli investimenti nei settori Aerospazio Difesa e Sicurezza pag. 9 Capitolo 3 - Determinazione dei processi economici che realizzano l'effetto "moltiplicatore" nell'ambito dell'economia del sistema Paese pag. 18 NOTA: Il Capitolo 3 NON e' disponibile al pubblico e pertanto, in questa versione abbreviata del Rapporto di Ricerca, NON e' presente. R_e_S_20140116_abbreviato.docx i Author: Dott. Claudio CATALANO - Edit: T.Col. (A.M.) Monaci ing. Volfango PARTE SPECIALISTICA E DI SUPPORTO Capitolo 4 - Definizione e valorizzazione delle competenze acquisite a livello nazionale per ognuno dei sotto-settori industriali dell'Aerospazio Difesa e Sicurezza pag. 45 Capitolo 5 - Inquadramento, definizione e analisi dei macro-trend tecnologici, e dello stato dell'arte nel settore Aerospazio Difesa e Sicurezza pag. 75 Capitolo 6 - Principali raggruppamenti per filiere produttive / cluster tecnologici pag. 113 Capitolo 7 - Casi-studio di Sistemi d'Arma e/o Alte Tecnologie di rilievo significativo pag. 121 Capitolo 8 - Il caso italiano a confronto con le politiche industriali per il settore Aerospazio Difesa e Sicurezza dei partner europei; pag. 156 Capitolo 9 - Identificazione e prioritizzazione degli scenari d'investimento. pag. 165 Capitolo 10 – Conclusioni pag. 184 Bibliografia pag.
    [Show full text]
  • The Air League Newsletter
    The Air League Newsletter Issue 4: July/August 2013 ABOVE - The British Airways A380 dominates the static aircraft park towering over the Eurocopter line up at the recent Paris Air Show. (Editor’s photo) CIVIL AEROSPACE BOOMING BUT DEFENCE IN DECLINE he 2013 Paris Air Show may have been memorable for its dramatic thunderstorms, but the show demonstrated once again that civil aerospace is booming, with delivery backlogs reaching up to seven years ahead and worth tens of $billions. Prospects for new defence programmes, however, are looking Tless positive, as companies struggle to maintain momentum in the face of shrinking budgets, in real terms, and stretched-out procurement schedules. All are campaigning hard to increase exports to try and compensate for falling domestic military orders. The first flight of the new Airbus A350, on the eve of the advanced cockpit. It also announced launch orders and show, highlighted the remarkable upsurge in the civil sector commitments for 365 aircraft. which has seen contracts signed for hundreds of aircraft in recent weeks. This is excellent news for Rolls-Royce and Much confusion reigns in the European market for Airbus UK. New show announcements covered firm sales Remotely Piloted Air Systems, or as they are more widely and commitments for 630 Airbus and 342 Boeing aircraft. known, UAVs. Political commitment seems to have The big two planemakers simply can’t make their products evaporated during the three years since the signing of an quick enough to satisfy airline growth and replacement Anglo-French agreement to co-develop a Medium Altitude needs, and this in turn is placing great strains right down Long Endurance (MALE) UAV known as Telemos, and the supply chain.
    [Show full text]
  • An Unmanned Aircraft System for Maritime Search and Rescue
    An Unmanned Aircraft System for Maritime Search and Rescue by Andre Paul Meredith Thesis presented in partial fulfilment of the requirements for the degree of Master of Science in Engineering at Stellenbosch University Supervisor: Prof Thomas Jones Department of Electrical and Electronic Engineering March 2011 Declaration By submitting this thesis electronically, I declare that the entirety of the work contained therein is my own, original work, that I am the sole author thereof (save to the extent explicitly otherwise stated), that reproduction and publication thereof by Stellenbosch University will not infringe any third party rights and that I have not previously in its entirety or in part submitted it for obtaining any qualification. Date: March 2011 Copyright © 2011 Stellenbosch University All rights reserved i Abstract Search and Rescue is an essential service provided by States and Militaries to search for, locate and rescue survivors of accidents and incidents. Civil Search and Rescue utilizes a system of well-trained professionals or volunteers, an effective Search and Rescue organization, supported by industry and other providers of infrastructure and assets. The service is rendered to save the lives of civilian individuals in imminent danger of losing their lives. Military (Combat) Search and Rescue is provided by militaries to save the lives of military practitioners in a similar predicament. In addition, Search and Rescue is performed over land and over the sea. All forms of Search and Rescue rely on capable, specialized assets for efficiency en affectivity. Assets are specified and chosen on the grounds of various factors, amongst others operating environment, operational profile, performance and special abilities.
    [Show full text]
  • Low Observable Principles, Stealth Aircraft and Anti-Stealth Technologies
    Journal of Computations & Modelling, vol.4, no.1, 2014, 129-165 ISSN: 1792-7625 (print), 1792-8850 (online) Scienpress Ltd, 2014 Low Observable Principles, Stealth Aircraft and Anti-Stealth Technologies Konstantinos Zikidis (Maj, HAF)1, Alexios Skondras (2nd Lt, HAF)2, Charisios Tokas (2nd Lt, HAF)3, Abstract During the last decades, stealth technology has proven to be one of the most effective approaches as far as the endeavor to hide from radar systems is concerned. Especially for military aircraft, “stealth” or “low observable” technology has become ubiquitous: all new aircraft types are designed taking into account low observable principles and techniques, while existing jet fighters are considered for modification in order to reduce their radar signature. Low radar signature for a target means that it is detected and tracked at a shorter distance from a radar. However, low observable does not mean no observable, i.e., complete disappearance from the radar screens. Furthermore, stealthiness comes at a price. Apart from the development cost, stealth aircraft have higher flyaway cost and important maintenance costs, while they have significant operational limitations due to the specific aircraft shape imposed and materials used, and also due to the limited fuel and weapons, which have to be carried internally. Any pylon, tank, missile or pod carried externally increases the radar signature. Having realized the capabilities of stealth aircraft, many countries have been developing anti-stealth technologies. The following systems have been reported to be potential counter-stealth approaches: passive / multistatic radars, very low frequency radars, over-the-horizon radars and sensitive IR sensor systems.
    [Show full text]
  • Drones and the European Union Prospects for a Common Future Drones a Nd the European Union: Prospects for a Common Future
    Research Paper Jack McDonald International Security Department | February 2018 Drones and the European Union Prospects for a Common Future Drones a nd the European Union: Prospects for a Common Future Summary The debate over the use of drones is an opportunity for states to identify elements of military practice that their publics find uncomfortable or troubling, and to explain these areas of milit ary operations in context. Countries would benefit from working together to identify accountability gaps arising from fundamental elements of military cooperation, including the role of intelligence transfers in joint operations, and the distribution of re sponsibility for lethal actions in the context of coalition operations. Transparency in investigation procedures, as well as devoting sufficient resources towards ensuring that mistakes are identified, will improve the perception of drone use among domesti c audiences. Identifying and communicating common standards and practices of mitigating complicity should be a priority for countries to ensure that they do not unwittingly become complicit in unlawful lethal operations. Although operational safety may hin der the ability of states to be completely transparent, understanding among the general public could be improved through the communication of policies and procedures regarding non - lethal assistance to partner states conducting lethal operations, both insid e and outside the context of an armed conflict. 1 | Chatham House Drones a nd the European Union: Prospects for a Common Future Introduction The use of armed drones in military operations has become more prevalent as the technology has developed. At present more than 30 nation states possess, or are developing, armed drones for mili tary use.
    [Show full text]
  • Special Issue Cfm I/2014 I/2014
    I/2014 1410 SPECIAL ISSUE CFM I/2014 I/2014 Challenges : External Army Aviation will play a major warfare”. Examined are various 33 role in various scenarios, its new programmes including the and Internal assets up primarily directed X-47B, nEUROn and Taranis In an interview with General Bikram towards and meant for “ground from the West but also new 1410 Singh, the COAS stresses the key operations by using medium of UAV shapes from China, Russia thrust areas to enhance overall the air.” and India. operational effectiveness of the Indian Army. The contemporary SPECIAL security environment is dynamic ISSUE and poses challenges across the Depiction of IAI Ramta’s new mine and IED entire spectrum of conflict, ranking detection system (courtesy IAI). from “conventional threats, along our borders to sub-conventional threats, including its proxy war Rafale : The Mission manifestations” 106 EDITORIAL PANEL Possible Air Marshal Anil Chopra, one MANAGING EDITOR Maritime Security 68 of the first group of pilots Vikramjit Singh Chopra of India converting on Mirage 2000s in Former CNS, Admiral Arun France and thereafter continuing EDITORIAL ADVISOR Prakash makes a presentation on with his distinguished career, Admiral Arun Prakash future challenges and the crafting writes on the various attributes of a maritime security policy for of the Dassault Rafale which EDITORIAL PANEL India. His emphasis is that while omni-role fighter “would allow Pushpindar Singh to other countries, the Indian the IAF to dominate this skies Air Marshal Brijesh Jayal Ocean is only one of the oceanic and project power through air- Dr. Manoj Joshi areas, to India it is the “vital sea.” sovereignty missions”.
    [Show full text]
  • Dassault Aviation's Neuron
    aero-online.org August 2013 Dassault Aviation’s nEUROn Vibro-acoustic Countermeasures Metals Re-emerge What’s Online Top Products Top Articles Adjustable retraction for cable guidance SAE G-19 Committee Triflex RSP cable-guid- making progress on ance systems from igus counterfeit parts feature an adjustable re- standards traction system; they are SAE International’s G- designed for secure 19 Counterfeit Electronic cable guidance on large Components Com mittee, robot arms or for robots chartered to address the programmed to perform different aspects of pre- complex movements. venting, detecting, re- The force at which the sponding to, and coun- unit retracts can be ad- teracting the threat of justed by changing the counterfeit electronic pressure inside its pneu- Phil Zulueta, Chairman of the SAE G-19 components, provides a Committee. matic cylinder. The system can be attached to various robot status report on the ac- models quickly and easily via compact mounting brackets. tivities of the committee and its subcommittees. Read more at Read more at www.sae.org/mags/aem/12008. www.sae.org/mags/aem/12100. Capacitor charging power supplies Battery safety starts in the factory UltraVolt Inc.’s high-power 8C-30C series capacitor charger At an April 2013 NTSB forum on batteries, a Saft represen- modules feature an output power of 250W, which is a 100% tative said the company tests every one of the cells it pro- increase compared to the previous offering of 125W. The duces — something not all cell makers can say. Read more at modules were designed for applications including pulsed www.sae.org/mags/aem/12113.
    [Show full text]