Theoretical Performance of Multi-Junction Solar Cells Combining III-V and Si Materials
Total Page:16
File Type:pdf, Size:1020Kb
Theoretical performance of multi-junction solar cells combining III-V and Si materials Ian Mathews,1,2* Donagh O'Mahony,1 Brian Corbett1 and Alan P. Morrison1,2 1Tyndall National Institute, UCC, Lee Maltings, Prospect Row, Cork, Ireland 2Department of Electrical and Electronic Engineering, University College Cork, Cork, Ireland *[email protected] Abstract: A route to improving the overall efficiency of multi-junction solar cells employing conventional III-V and Si photovoltaic junctions is presented here. A simulation model was developed to consider the performance of several multi-junction solar cell structures in various multi- terminal configurations. For series connected, 2-terminal triple-junction solar cells, incorporating an AlGaAs top junction, a GaAs middle junction and either a Si or InGaAs bottom junction, it was found that the configuration with a Si bottom junction yielded a marginally higher one sun efficiency of 41.5% versus 41.3% for an InGaAs bottom junction. A significant efficiency gain of 1.8% over the two-terminal device can be achieved by providing an additional terminal to the Si bottom junction in a 3-junction mechanically stacked configuration. It is shown that the optimum performance can be achieved by employing a four-junction series-connected mechanically stacked device incorporating a Si subcell between top AlGaAs/GaAs and bottom In0.53Ga0.47As cells. © 2012 Optical Society of America OCIS Codes: (230.0230) Optical devices; (350.6050) Solar energy; (040.5350) Photovoltaic. References and links 1. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 39),” Prog. Photovolt. Res. Appl. 20(1), 12–20 (2012). 2. D. J. Friedman, “Progress and challenges for next-generation high-efficiency multijunction solar cells,” Curr. Opin. Solid St. M. 14(6), 131–138 (2010). 3. D. C. Law, R. R. King, H. Yoon, M. J. Archer, A. Boca, C. M. Fetzer, S. Mesropian, T. Isshiki, M. Haddad, and K. M. Edmondson, “Future technology pathways of terrestrial III–V multijunction solar cells for concentrator photovoltaic systems,” Sol. Energy Mater. Sol. Cells 94(8), 1314–1318 (2010). 4. J. F. Geisz, J. M. Olson, M. J. Romero, C. S. Jiang, and A. G. Norman, “Lattice-mismatched GaAsP Solar Cells Grown on Silicon by OMVPE,” in Proceedings of the IEEE 4th World Conference on Photovoltaic Energy Conversion (Institute of Electrical and Electronics Engineers, Hawaii, 2006), 772–775 (2006). 5. T. J. Grassman, M. R. Brenner, M. Gonzalez, A. M. Carlin, R. R. Unocic, R. R. Dehoff, M. J. Mills, and S. A. Ringel, “Characterization of Metamorphic GaAsP/Si Materials and Devices for Photovoltaic Applications,” IEEE Trans. Electron Dev. 57(12), 3361–3369 (2010). 6. K. Volz, A. Beyer, W. Witte, J. Ohlmann, I. Nemeth, B. Kunert, and W. Stolz, “GaP nucleation on exact Si (0 0 1) substrates for III/V device integration,” J. Cryst. Growth 315(1), 37–47 (2011). 7. K. Hayashi, T. Soga, H. Nishikawa, T. Jimbo, and M. Umeno, “MOCVD growth of GaAsP on Si for tandem solar cell application,” in Proceedings of the 24th IEEE Photovoltaics Specialist Conference, (Institute of Electrical and Electronics Engineers, Hawaii, 1994) 1890–1893. 8. R. Ginige, B. Corbett, M. Modreanu, C. Barrett, J. Hilgarth, G. Isella, D. Chrastina, and H.- Kanel, “Characterization of Ge-on-Si virtual substrates and single junction GaAs solar cells,” Semicond. Sci. Technol. 21(6), 775–780 (2006). 9. M. J. Archer, D. C. Law, S. Mesropian, M. Haddad, C. M. Fetzer, A. C. Ackerman, C. Ladous, R. R. King, and H. A. Atwater, “GaInP/GaAs dual junction solar cells on Ge/Si epitaxial templates,” Appl. Phys. Lett. 92(10), 103503 (2008). 10. B. Mitchell, G. Peharz, G. Siefer, M. Peters, T. Gandy, J. C. Goldschmidt, J. Benick, S. W. Glunz, A. W. Bett, and F. Dimroth, “Four‐junction spectral beam‐splitting photovoltaic receiver with high optical efficiency,” Prog. Photovolt. Res. Appl. 19(1), 61–72 (2011). 11. W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510–519 (1961). #167357 - $15.00 USD Received 26 Apr 2012; revised 22 Jun 2012; accepted 30 Jun 2012; published 29 Aug 2012 (C) 2012 OSA 10 September 2012 / Vol. 20, No. S5 / OPTICS EXPRESS A754 12. S. R. Kurtz, P. Faine, and J. M. Olson, “Modeling of two-junction, series connected tandem solar cells using top- cell thickness as an adjustable parameter,” J. Appl. Phys. 68(4), 1890–1895 (1990). 13. L. Hsu and W. Walukiewicz, “Modeling of InGaN/Si tandem solar cells,” J. Appl. Phys. 104(2), 024507 (2008). 14. K. Jandieri, S. D. Baranovskii, W. Stolz, F. Gebhard, W. Guter, M. Hermle, and A. W. Bett, “Fluctuations of the peak current of tunnel diodes in multi-junction solar cells,” J. Phys. D Appl. Phys. 42(15), 155101 (2009). 15. NREL, “ASTM (G-173-03),” http://rredc.nrel.gov/solar/spectra/am1.5/. 16. S. Adachi, Physical Properties of III–V Semiconductor Compounds (John Wiley and Sons, 1992). 17. S. M. Sze, Physics of Semiconductor Devices (John Wiley and Sons, 1981). 18. M. R. Brozel and G. E. Stillman, Properties of Gallium Arsenide (INSPEC, 1996). 19. P. Bhattacharya, Properties of lattice-matched and strained Indium Gallium Arsenide (INSPEC, 1993). 20. C. Jacoboni, C. Canali, G. Ottaviani, and A. A. Quaranta, “A review of some charge transport properties of silicon,” Solid-State Electron. 20(2), 77–89 (1977). 21. R. J. Van Overstraeten and R. P. Mertens, “Heavy doping effects in Si,” Solid-State Electron. 30(11), 1077–1087 (1987). 22. J. A. del Alamo and R. M. Swanson, “Modelling of minority-carrier transport in heavily doped silicon emitters,” Solid-State Electron. 30(11), 1127–1136 (1987). 23. H. A. Zarem, J. A. Lebens, K. B. Nordstrom, P. C. Sercel, S. Sanders, L. E. Eng, A. Yariv, and K. J. Vahala, “Effect of Al mole fraction on carrier diffusion lengths and lifetimes in AlxGa1−xAs,” Appl. Phys. Lett. 55(25), 2622–2624 (1989). 24. W. E. Chieh-Ting Lin, McMahon, J. S. Ward, J. F. Geisz, M. W. Wanlass, J. J. Carapella, W. Olavarria, M. Young, M. A. Steiner, R. M. Frances, A. E. Kibbler, A. Duda, J. M. Olson, E. E. Perl, D. J. Friedman, and J. E. Bowers, “Fabrication of two-terminal metal-interconnected multijunction III-V solar cells,” in Proceedings of the 38th IEEE Photovoltaics Specialist Conference, (Institute of Electrical and Electronics Engineers, Texas, 2012). 25. R. J. Boettcher, P. G. Borden, and P. E. Gregory, “The temperature dependence of the efficiency of an AlGaAs/GaAs solar cell operating at high concentration,” Electron Dev. Lett. 2(4), 88–89 (1981). 1. Introduction Triple-junction solar cells based on the III-V material system are the current state of the art photovoltaic devices with conversion efficiencies of over 40% under solar concentration [1]. The performance of triple-junction solar cells is steadily improving but alternative multi- junction materials and technologies are required to significantly advance device performance towards efficiencies of 50% [2] and further reduce the cost of concentrating photovoltaic (CPV) systems. The integration of III-V materials with Si is of interest as its 1.1 eV bandgap is close to the desired 1 eV value for the bottom and second from bottom junction in triple and four junction solar cells, respectively [3]. Furthermore, if Si can be used as the principle substrate it provides additional benefits over conventional Ge-based multi-junction solar cells or indeed other candidate materials such as InP or GaAs since Si wafers are available in larger sizes which provide economies of scale and will increase the cell yield per epitaxial growth run. There are a number of drawbacks which make the integration of Si with III-V materials in multi-junction devices difficult. Direct epitaxial growth is inhibited by the lattice mismatch, difference in thermal expansion co-efficient and polar/non-polar interface between Si and III- V materials. GaP nucleation layers provide a route to direct growth of III-V materials on Si as this high bandgap material is closely lattice matched to Si [4–6]. Tandem solar cells incorporating an active GaAsP junction grown directly on an active Si substrate have also been demonstrated with a 2-terminal efficiency of 9.2% [7]. III-V templates formed using Ge buffer layers or by III-V layer transfer and wafer bonding to Si have also been used to grow solar cells [8, 9]. However, such epitaxial templates must have low threading dislocation densities in order to act as suitable solar cell growth templates, which is difficult in the case of materials with a large mismatch in thermal expansion coefficient. These constraints on III-V epitaxial growth on Si substrates are removed by mechanically stacking individual solar cells. To date, the highest performing multi-junction solar cell incorporating III-V and Si solar cells is a spectrum splitting system built at the Fraunhofer ISE which achieved an outdoor photovoltaic conversion efficiency of 34.3% under one-sun conditions [10]. #167357 - $15.00 USD Received 26 Apr 2012; revised 22 Jun 2012; accepted 30 Jun 2012; published 29 Aug 2012 (C) 2012 OSA 10 September 2012 / Vol. 20, No. S5 / OPTICS EXPRESS A755 Up to now, research has focussed on overcoming the difficult challenges faced when integrating Si successfully in multi-junction solar cells. When considered, the potential photovoltaic conversion efficiency of these novel bandgap combinations has been modelled using the detailed balance limit of efficiency method [11]. This method assumes each junction in the device is made of a direct bandgap material where each photon with energy greater than that bandgap is absorbed and contributes one carrier pair to the external circuit.