Red Cell Transfusion and the Immune System S
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Unintentional Platelet Removal by Plasmapheresis
Journal of Clinical Apheresis 16:55–60 (2001) Unintentional Platelet Removal by Plasmapheresis Jedidiah J. Perdue,1 Linda K. Chandler,2 Sara K. Vesely,1 Deanna S. Duvall,2 Ronald O. Gilcher,2 James W. Smith,2 and James N. George1* 1Hematology-Oncology Section, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 2Oklahoma Blood Institute, Oklahoma City, Oklahoma Therapeutic plasmapheresis may remove platelets as well as plasma. Unintentional platelet loss, if not recognized, may lead to inappropriate patient assessment and treatment. A patient with thrombotic thrombocytopenic purpura- hemolytic uremic syndrome (TTP-HUS) is reported in whom persistent thrombocytopenia was interpreted as continuing active disease; thrombocytopenia resolved only after plasma exchange treatments were stopped. This observation prompted a systematic study of platelet loss with plasmapheresis. Data are reported on platelet loss during 432 apheresis procedures in 71 patients with six disease categories using three different instruments. Com- paring the first procedure recorded for each patient, there was a significant difference among instrument types ,than with the COBE Spectra (1.6% (21 ס P<0.001); platelet loss was greater with the Fresenius AS 104 (17.5%, N) .With all procedures, platelet loss ranged from 0 to 71% .(24 ס or the Haemonetics LN9000 (2.6%, N (26 ס N Among disease categories, platelet loss was greater in patients with dysproteinemias who were treated for hyper- viscosity symptoms. Absolute platelet loss with the first recorded apheresis procedure, in the 34 patients who had a normal platelet count before the procedure, was also greater with the AS 104 (2.23 × 1011 platelets) than with the Spectra (0.29 × 1011 platelets) or the LN9000 (0.37 × 1011 platelets). -
Platelet-Rich Plasmapheresis: a Meta-Analysis of Clinical Outcomes and Costs
THE jOURNAL OF EXTRA-CORPOREAL TECHNOLOGY Original Article Platelet-Rich Plasmapheresis: A Meta-Analysis of Clinical Outcomes and Costs Chris Brown Mahoney , PhD Industrial Relations Center, Carlson School of Management, University of Minnesota, Minneapolis, MN Keywords: platelet-rich plasmapheresis, sequestration, cardiopulmonary bypass, outcomes, economics, meta-analysis Presented at the American Society of Extra-Corporeal Technology 35th International Conference, April 3-6, 1997, Phoenix, Arizona ABSTRACT Platelet-rich plasmapheresis (PRP) just prior to cardiopulmonary bypass (CPB) surgery is used to improve post CPB hemostasis and to minimize the risks associated with exposure to allogeneic blood and its components. Meta-analysis examines evidence ofPRP's impact on clinical outcomes by integrating the results across published research studies. Data on clinical outcomes was collected from 20 pub lished studies. These outcomes, DRG payment rates, and current national average costs were used to examine the impact of PRP on costs. This study provides evidence that the use of PRP results in improved clinical outcomes when compared to the identical control groups not receiving PRP. These improved clinical out comes result in subsequent lower costs per patient in the PRP groups. All clinical outcomes analyzed were improved: blood product usage, length of stay, intensive care stay, time to extu bation, incidence of cardiovascular accident, and incidence of reoperation. The most striking differences occur in use of all blood products, particularly packed red blood cells. This study provides an example of how initial expenditure on technology used during CPB results in overall cost savings. Estimated cost savings range from $2,505.00 to $4,209.00. -
Recommendations for Collecting Red Blood Cells by Automated Apheresis Methods
Guidance for Industry Recommendations for Collecting Red Blood Cells by Automated Apheresis Methods Additional copies of this guidance document are available from: Office of Communication, Training and Manufacturers Assistance (HFM-40) 1401 Rockville Pike, Rockville, MD 20852-1448 (Tel) 1-800-835-4709 or 301-827-1800 (Internet) http://www.fda.gov/cber/guidelines.htm U.S. Department of Health and Human Services Food and Drug Administration Center for Biologics Evaluation and Research (CBER) January 2001 Technical Correction February 2001 TABLE OF CONTENTS Note: Page numbering may vary for documents distributed electronically. I. INTRODUCTION ............................................................................................................. 1 II. BACKGROUND................................................................................................................ 1 III. CHANGES FROM THE DRAFT GUIDANCE .............................................................. 2 IV. RECOMMENDED DONOR SELECTION CRITERIA FOR THE AUTOMATED RED BLOOD CELL COLLECTION PROTOCOLS ..................................................... 3 V. RECOMMENDED RED BLOOD CELL PRODUCT QUALITY CONTROL............ 5 VI. REGISTRATION AND LICENSING PROCEDURES FOR THE MANUFACTURE OF RED BLOOD CELLS COLLECTED BY AUTOMATED METHODS.................. 7 VII. ADDITIONAL REQUIREMENTS.................................................................................. 9 i GUIDANCE FOR INDUSTRY Recommendations for Collecting Red Blood Cells by Automated Apheresis Methods This -
Transfusion Reactions 7
HEMATOLOGY Immunohematology, transfusion medicine and bone marrow transplantation Institute of Pathological Physiology First Facultry of Medicine, Charles University in Prague http://patf.lf1.cuni.cz Questions and Comments: MUDr. Pavel Klener, Ph.D., [email protected] Presentation in points 1. Imunohematology 2. AB0 blood group system 3. Rh blood group system 4. Hemolytic disease of the newborn and neonatal alloimmune thrombocytopenia 5. Pre-transfusion examinations 6. Transfusion reactions 7. Transfusion medicine and hemapheresis 8. HLA system 9. Stem cell/ bone marrow transplantation Origins of immunohematology and transfusion medicine Imunohematology as a branch of medicine developed hand in hand with the origins of transfusion therapy. It focuses on concepts and questions associated with transfusion therapy, immunisation (as a result of transfusion therapy and pregnancy) and organ transplantation. In 1665, an English physiologist, Richard Lower, successfully performed the first animal- to-animal blood transfusion that kept ex-sanguinated dogs alive by transfusion of blood from other dogs. In 1667, Jean Bapiste Denys, transfused blood from the carotid artery of a lamb into the vein of a young man, which at first seemed successful. However, after the third transfusion of lamb’s blood the man suffered a reaction and died. Due to the many disastrous consequences resulting from blood transfusion, transfusions were prohibited from 1667 to 1818- when James Blundell of England successfully transfused human blood to women suffering from hemorrhage at childbirth. Revolution in 1900 In 1900 Karl Landsteiner discovered the AB0 blood groups. This landmark event initiated the era of scientific – based transfusion therapy and was the foundation of immunohematology as a science. -
A New Insight Into Apheresis Platelet Donation by Sickle Cell Trait
Hematology & Medical Oncology Research Article ISSN: 2398-8495 A new insight into apheresis platelet donation by sickle cell trait carriers: evidences of safety and quality Suzanna Araujo Tavares Barbosa1, Denise Menezes Brunetta1, Sérgio Luiz Arruda Parente Filho2*, Guilherme de Alencar Salazar Primo2, Franklin José Candido Santos1, Luciana Maria de Barros Carlos1, Naliele Cristina Maia de Castro1, Juan Daniel Zuñiga Pro2 and Elizabeth De Francesco Daher2 1Hematology and Hemotherapy Center of Ceara, Brazil 2Department of Internal Medicine, School of Medicine, Federal University of Ceará. Fortaleza, Ceará, Brazil Introduction yield of 3 x 1011 platelets in 90% of sampled units and a residual WBC count below 5 x 106 per unit [13,14]. On the other hand, the European In countries with a high prevalence of the sickle cell trait (SCT), Committee on Blood Transfusion is less demanding, requiring a platelet which is often determined by neonatal screening programs, a significant yield of at least 2 x 1011 per unit and a residual leukocyte count below proportion of blood donors may be SCT carriers [1]. In Brazil, for 3 x 108 per unit [15]. The AABB indicates that at least 90% of apheresis example, where SCT prevalence ranges from 1.1% to 9.8% in the overall platelets should have a pH ≥ 6.2 at the end of the storage time [14], population [2], the trait is found in up to 2.48% of blood donors [3-7]. while the European and the Brazilian regulations specify a pH greater Because individuals with SCT are usually asymptomatic, many of them than 6.4 at the end of shelf-life, with additional recommendation for are unaware of their condition at the time of donation [1]. -
Why Implement Universal Leukoreduction? Wafaa Y
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector review Why implement universal leukoreduction? Wafaa Y. Bassuni,a Morris A. Blajchman,b May A. Al-Mosharya From the aCentral Laboratory and Transfusion Services, King Fahad Medical City, Riyadh, Saudi Arabia, and bMcMaster Transfusion Medicine Research Program, McMaster University, Hamilton, Ontario Correspondence and reprints: Wafaa Bassuni, MD · Consultant, Hematopathology Central Laboratory and Transfusion Services, King Fahad Medical City · PO Box 51988 Riyadh 11553, Saudi Arabia · T: +966-1-470-7119 M: +966-506247993 · [email protected] · Accepted for publication February 2008 Hematol Oncol Stem Cel Ther 2008; 1(2): 106-123 The improvement of transfusion medicine technology is an ongoing process primarily directed at increas-i ing the safety of allogeneic blood component transfusions for recipients. Over the years, relatively little attention had been paid to the leukocytes present in the various blood components. The availability of leukocyte removal (leukoreduction) techniques for blood components is associated with a considerable improvement in various clinical outcomes. These include a reduction in the frequency and severity of feb- brile transfusion reactions, reduced cytomegalovirus transfusion-transmission risk, the reduced incidence of alloimmune platelet refractoriness, a possible reduction in the risk of transfusion-associated variant Creutzfeldt-Jakob disease transmission, as well as reducing the overall risk of both recipient mortality and organ dysfunction, particularly in cardiac surgery patients and possibly in other categories of patients. Internationally, 19 countries have implemented universal leukocyte reduction (ULR) as part of their blood safety policy. The main reason for not implementing ULR in those countries that have not appears to be primarily concerns over costs. -
Viewed to Screen Them from a Future Donor So to Avoid Iatrogenic Anemia and Thrombocytopenia
Tiwari Vikas, Negi Ayush; International Journal of Advance Research and Development (Volume3, Issue8) Available online at: www.ijarnd.com Pre-and-post-donation hematological values in healthy donors undergoing plateletpheresis with fresenius.com.tec Vikas Tiwari1, Ayush Negi2 1Professor, Fortis Escort Heart Institute, New Delhi, Delhi 2Student, Fortis Escort Heart Institute, New Delhi, Delhi ABSTRACT The present prospective study was carried out in the department of transfusion medicine Forties Escorts Heart Institute, New Delhi from Sep. 2011 to Feb 2012.the study was carried out with the aim to evaluate the effect of automated donation by fresenius.com.tec on the haematological values (HB, PLT count, WBC count, PDW,MPV) pre and post donation and to further evaluate the efficiency of platelet collection by fresenius.com.tec in terms of processing time, platelet yield, type of procedure(SN and DN)and ACD used. A total of 240 donors were subjected for apheresis out of these 229 are male donor and 11 were the female donors and 71 donors were subjected to the donation by SN procedure and 169 underwent donation by DN procedure. Majority of the donor (87%) was between the age group 18-40 years very few donors were (13%) observed between the age group of 41-60 years of age. Total of 240 donors were subjected for apheresis out of them 229 male (95%) donor and very few (5%) are the female donors. A total of 240 donors were subjected for apheresis out of them 71 underwent SN apheresis and 169 were subjected DN apheresis procedure. Majority of the donor (70.42%) underwent DN procedure. -
Practice Guidelines for Perioperative Blood Management an Updated Report by the American Society of Anesthesiologists Task Force on Perioperative Blood Management*
PRACTICE PARAMETERS Practice Guidelines for Perioperative Blood Management An Updated Report by the American Society of Anesthesiologists Task Force on Perioperative Blood Management* RACTICE guidelines are systematically developed rec- • What other guidelines are available on this topic? ommendations that assist the practitioner and patient in o These Practice Guidelines update “Practice Guidelines for P Perioperative Blood Transfusion and Adjuvant Therapies: An making decisions about health care. These recommendations Updated Report by the American Society of Anesthesiolo- may be adopted, modified, or rejected according to clinical gists Task Force on Perioperative Blood Transfusion and Ad- needs and constraints, and are not intended to replace local juvant Therapies” adopted by the American Society of Anes- thesiologists (ASA) in 2005 and published in 2006.1 institutional policies. In addition, practice guidelines devel- o Other guidelines on the topic for the management of blood oped by the American Society of Anesthesiologists (ASA) are transfusion have been published by the ASA, American College not intended as standards or absolute requirements, and their of Cardiology/American Heart Association,2 Society of Thoracic 3 use cannot guarantee any specific outcome. Practice guidelines Surgeons, Society of Cardiovascular Anesthesiologists, and the American Association of Blood Banks.4 The field of Blood Con- are subject to revision as warranted by the evolution of medi- servation has advanced considerably since the publication of the cal knowledge, technology, and practice. They provide basic ASA Guidelines for Transfusion and Adjuvant Therapies in ANES- recommendations that are supported by a synthesis and analy- THESIOLOGY in 2006. sis of the current literature, expert and practitioner opinion, • Why was this guideline developed? o In October 2012, the Committee on Standards and Practice open forum commentary, and clinical feasibility data. -
Circular of Information for the Use of Human Blood and Blood Components
CIRCULAR OF INFORMATION FOR THE USE OF HUMAN BLOOD Y AND BLOOD COMPONENTS This Circular was prepared jointly by AABB, the AmericanP Red Cross, America’s Blood Centers, and the Armed Ser- vices Blood Program. The Food and Drug Administration recognizes this Circular of Information as an acceptable extension of container labels. CO OT N O Federal Law prohibits dispensing the blood and blood compo- nents describedD in this circular without a prescription. THIS DOCUMENT IS POSTED AT THE REQUEST OF FDA TO PROVIDE A PUBLIC RECORD OF THE CONTENT IN THE OCTOBER 2017 CIRCULAR OF INFORMATION. THIS DOCUMENT IS INTENDED AS A REFERENCE AND PROVIDES: Y • GENERAL INFORMATION ON WHOLE BLOOD AND BLOOD COMPONENTS • INSTRUCTIONS FOR USE • SIDE EFFECTS AND HAZARDS P THIS DOCUMENT DOES NOT SERVE AS AN EXTENSION OF LABELING REQUIRED BY FDA REGUALTIONS AT 21 CFR 606.122. REFER TO THE CIRCULAR OF INFORMATIONO WEB- PAGE AND THE DECEMBER 2O17 FDA GUIDANCE FOR IMPORTANT INFORMATION ON THE CIRCULAR. C T O N O D Table of Contents Notice to All Users . 1 General Information for Whole Blood and All Blood Components . 1 Donors . 1 Y Testing of Donor Blood . 2 Blood and Component Labeling . 3 Instructions for Use . 4 Side Effects and Hazards for Whole Blood and P All Blood Components . 5 Immunologic Complications, Immediate. 5 Immunologic Complications, Delayed. 7 Nonimmunologic Complications . 8 Fatal Transfusion Reactions. O. 11 Red Blood Cell Components . 11 Overview . 11 Components Available . 19 Plasma Components . 23 Overview . 23 Fresh Frozen Plasma . .C . 23 Plasma Frozen Within 24 Hours After Phlebotomy . 28 Components Available . -
Transfusion-Related Mortality: the Ongoing Risks of Allogeneic Blood Transfusion and the Available Strategies for Their Prevention
From bloodjournal.hematologylibrary.org at UCLA on May 23, 2011. For personal use only. Perspective Transfusion-related mortality: the ongoing risks of allogeneic blood transfusion and the available strategies for their prevention Eleftherios C. Vamvakas1 and Morris A. Blajchman2,3 1Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA; 2Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON; and 3Canadian Blood Services, Hamilton, ON As the risks of allogeneic blood transfu- tality, but the possibility remains that a new nized to WBC antigens from donating sion (ABT)–transmitted viruses were re- transfusion-transmitted agent causing a fa- plasma products, adopting strategies to pre- duced to exceedingly low levels in the US, tal infectious disease may emerge in the vent HTRs, WBC-reducing components transfusion-related acute lung injury (TRALI), future. Aside from these established compli- transfused to patients undergoing cardiac hemolytic transfusion reactions (HTRs), cations of ABT, randomized controlled trials surgery, reducing exposure to allogeneic and transfusion-associated sepsis (TAS) comparing recipients of non–white blood donors through conservative transfusion emerged as the leading causes of ABT- cell (WBC)–reduced versus WBC-reduced guidelines and avoidance of product pool- related deaths. Since 2004, preventive blood components in cardiac surgery have ing, and implementing pathogen-reduction measures for TRALI and TAS have been documented increased mortality in associa- technologies to address the residual risk of implemented, but their implementation re- tion with the use of non-WBC–reduced ABT. TAS as well as the potential risk of the next mains incomplete. Infectious causes of ABT-related mortality can thus be further transfusion-transmitted agent to emerge ABT-related deaths currently account for reduced by universally applying the policies in the foreseeable future. -
Red Cell Transfusion and Alloimmunization in Sickle Cell Disease Ferrata Storti Foundation
REVIEW ARTICLE Red cell transfusion and alloimmunization in sickle cell disease Ferrata Storti Foundation Grace E. Linder 1 and Stella T. Chou 2 1Department of Pathology and Lab Medicine, Children’s Hospital of Philadelphia, and 2Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA ABSTRACT Haematologica 2021 ed cell transfusion remains a critical component of care for acute Volume 106(7):1805-1815 and chronic complications of sickle cell disease. Randomized clin - Rical trials demonstrated the benefits of transfusion therapy for prevention of primary and secondary strokes and postoperative acute chest syndrome. Transfusion for splenic sequestration, acute chest syn - drome, and acute stroke are guided by expert consensus recommenda - tions. Despite overall improvements in blood inventory safety, adverse effects of transfusion are prevalent among patients with sickle cell dis - ease and include alloimmunization, acute and delayed hemolytic trans - fusion reactions, and iron overload. Judicious use of red cell transfu - sions, optimization of red cell antigen matching, and the use of erythro - cytapheresis and iron chelation can minimize adverse effects. Early recognition and management of hemolytic transfusion reactions can avert poor clinical outcomes. In this review, we discuss transfusion methods, indications, and complications in sickle cell disease with an emphasis on alloimmunization. Introduction Transfusion remains a central intervention for sickle cell disease (SCD), with most patients receiving one or more transfusions by adulthood. 1 Prospective, ran - domized clinical trials support transfusion for primary and secondary stroke pre - vention, but for many other indications, treatment is based on expert consensus. Correspondence: Guidelines on transfusion management for SCD are limited by availability of well- designed studies. -
Sickle Cell Disease: a Review
Review Sickle cell disease: a review S.D. Roseff* ickle cell disease (SCD) is described as the first identi- commonly found in western Africa. About one in every 400– fied “molecular” disease since its manifestations stem 500 African Americans, or 80,000, has SCD. About 9000 Sfrom a substitution of valine for glutamic acid in the African Americans, or one in 12, have sickle cell trait.4 structure of the β chain hemoglobin molecule.1 As a result On the other hand, patients who have manifestations of this change, RBCs form characteristic “sickle” shapes and of their sickle hemoglobin are considered to have SCD. This the surface of these RBCs attract each other, polymerizing includes patients who are homozygous for Hgb SS, as de- when in a low oxygen environment. This seemingly “small” scribed previously. In addition, some patients who inherit variation in the structure of the RBC causing polymerization Hgb S from one parent and another abnormal hemoglobin leads to manifestations such as chronic occlusion of blood from the other parent can also have SCD. Common exam- vessels (vaso-occlusion), reduced blood flow to vital organs ples are designated as Hgb SC and Sβ-thalassemia. These (ischemia), and alterations of the immune system. In ad- individuals can have a milder clinical course than that of dition, the abnormal sickle cells are prematurely removed individuals who are homozygous for Hgb S. from circulation, resulting in hemolytic anemia. Transfu- Since RBCs with Hgb S are abnormal, they are removed sion is a vital component of the treatment of some of the from circulation in the spleen more rapidly than normal complications of SCD.