Petrology and Structure Bayonne Batholith Southeastern British Columbia

Total Page:16

File Type:pdf, Size:1020Kb

Petrology and Structure Bayonne Batholith Southeastern British Columbia University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 1982 Petrology and structure Bayonne batholith southeastern British Columbia Philip M. Barrett The University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Barrett, Philip M., "Petrology and structure Bayonne batholith southeastern British Columbia" (1982). Graduate Student Theses, Dissertations, & Professional Papers. 7084. https://scholarworks.umt.edu/etd/7084 This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. COPYRIGHT ACT OF 1976 Th is is an unpublished m a n u sc r ipt in w hich c o p y r ig h t sub ­ s i s t s . Any further r e p r in t in g of it s contents must be approved BY THE AUTHOR. MANSFIELD L ibrary Un iv e r s it y of Montana Da t e ! ____1 9 8 2 PETROLOGY AND STRUCTURE, BAYONNE BATHOLITH, SOUTHEASTERN BRITISH COLUMBIA by Philip M. Barrett B.S., University of Washington, 1974 Presented in partial fu lfillm e n t of the requirements for the degree of Master of Science UNIVERSITY OF MONTANA 1982 Approved by: c l / 1 / 7 g / t ' cTLtyytytxXOri. Chairman, Board of Examiners Dean, Graduate Scnbol ___________7 -X 7 ' S x - Date UMI Number: EP37885 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. UMT OwMKtatkm Pubtishing UMI EP37885 Published by ProQuest LLC (2013). Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code ProQuesf ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106 - 1346 ABSTRACT B arrett, Philip M ., M.S., Summer, 1982 Geology Petrology and Structure, Bayonne Batholith, Southeastern British Columbia Director: David M. Fountain o j^ < k 'T V • The primary purpose of this study is to determine i f a major fa u lt lies buried in the Purcell Trench near the southern end of Kootenay Lake in southeastern British Columbia and how such a fa u lt might be related to the structural evolution of the Selkirk metamorphic core complex (SMCC) to the south. Pétrographie data indicates the existence in the Bayonne batholith of two previously unrecognized granitic phases, one an S-type granite. S- and I-type plutons in the region may have been emplaced during separate intrusive events. The most westerly and north­ westerly occurrences of S-type granites in the region broadly coincide with the location of the Kootenay Arc, and this boundary may mark the western edge of autochthonous Precambrian continental crust. A roughly north-south-trending zone of ductile and cataclastic deformation has developed in rocks of the Bayonne batholith. Three stages of deformation history, possibly representing two separate tectonic events, can be distinguished. Later ductile deformation produced conjugate east- and west-dipping mylonite shears for which a normal sense of displacement is indicated. The conjugate shears indicate a subhorizontal, ENE-WSW extension. Later ductile and cataclastic structures could have been produced by stresses of the same orientation during a single tectonic event. Stratigraphie offsets and contrasts in metamorphic grade and late thermal histories of intrusive rocks across the Purcell Trench near the southern end of Kootenay Lake suggest a major fault buried in the trench. The structures exposed near Kootenay Landing may be subsidiary to the postulated Purcell Trench fa u lt. The presence of the features suggesting the postulated Purcell Trench fault and a slickenside lineation parallel to one measured 65 km to the south expand to the north the range of the terrane that can be considered the SMCC. The second tectonic event of this study correlates at least with the later cataclastic deformation event of the SMCC and other core complexes and is interpreted to have occurred during the Eocene. 11 ACKNOWLEDGMENTS I would like to dedicate this thesis to my wife, Karen, who nurtured i t and me in many ways over the years and drafted most of the figures. I sincerely appreciate the unwavering support that my committee members, Dave Fountain, Don Hyndman and Rob Ream, have given me throughout the evolution of the study. F in ally, I want to thank Doug Archibald, Fred M iller and Ray Price for graciously sharing their knowledge with me. 111 TABLE OF CONTENTS Page ABSTRACT................................................................................................................ii ACKNOWLEDGMENTS............................................................................................i i i LIST OF FIGURES.............................................................................................v ii LIST OF TABLES ............................................................................................... ix LIST OF PLATES ................................................................................................. x CHAPTER 1. INTRODUCTION.................................................................. 1 Location and Access ............................................................. 3 Structural Setting ............................................................ 3 Kootenay A r c .............................................................................. 6 St. Mary fa u lt ..........................................................................6 Selkirk metamorphic core complex ................................. 7 2. IGNEOUS PETROLOGY ....................................................................... 10 Petrology of the Bayonne Batholith ............................... 10 General features ................................................................. 10 Mine s t o c k ...............................................................................10 Main mass of the Bayonne ba th o lith ................................14 Kootenay Landing Granite .......................................... 16 Areal Extent of Bayonne Batholith Phases .................... 17 Age of the Bayonne B a th o lith .............................................. 17 Regional Igneous Petrology .......................................... 21 i V CHAPTER Page Regional correlation ......................................................... 21 S-type and I-type granites ............................................ 21 Spatial Separation of S- and I-type Granites . 25 Temporal Separation of S- and I-type Granites . 26 3. STRUCTURAL GEOLOGY ...................................................................... 33 Ductile deformation ............................................................. 33 Mesoscopic and macroscopic description .................. 33 Microscopic textures .................................................... 37 Indicators of sense of shear ....................................... 41 Cataclastic Deformation .................................................... 51 Slickensided surfaces .................................................... 51 Microbreccia ..................................................................... 52 Deformation History ............................................................. 54 4. REGIONAL TECTONIC IMPLICATIONS ............................................ 62 Purcell Trench Fault ............................................................. 63 N55°W Cross-faults and Continuations of the Purcell Trench Fault .................................................... 65 Selkirk Metamorphic Core Complex ................................... 68 Complex Deformational Histories of Core Com plexes .......................... 69 Timing of Regional Tectonic Events .............................. 70 St. Mary Fault .............................................................................. 74 Fault Near Jersey C re e k .........................................................74 V CHAPTER Page 5. SUMMARY AND CONCLUSIONS..............................................................76 Igneous Petrology .................................................................... 76 Structural Geology .... .............................................. 78 Regional Tectonic Implications ...................................... 80 REFERENCES.........................................................................................................83 VI LIST OF FIGURES Figure Page 1. Plutonic rocks and major structures of the Selkirk-Priest River region .................................................... 2 2. Geologic map, including sample locations ...................... 5 3. QAP plot of estimated modes of 26 samples from Bayonne batholith ...................................................................... 12 4. Absolute total magnetic fie ld contours and contacts inferred from them .................................................. 19 5. Equal-area projection of 19 poles to mylonite fo liatio n from the deformation zone exposed near Kootenay
Recommended publications
  • Part 629 – Glossary of Landform and Geologic Terms
    Title 430 – National Soil Survey Handbook Part 629 – Glossary of Landform and Geologic Terms Subpart A – General Information 629.0 Definition and Purpose This glossary provides the NCSS soil survey program, soil scientists, and natural resource specialists with landform, geologic, and related terms and their definitions to— (1) Improve soil landscape description with a standard, single source landform and geologic glossary. (2) Enhance geomorphic content and clarity of soil map unit descriptions by use of accurate, defined terms. (3) Establish consistent geomorphic term usage in soil science and the National Cooperative Soil Survey (NCSS). (4) Provide standard geomorphic definitions for databases and soil survey technical publications. (5) Train soil scientists and related professionals in soils as landscape and geomorphic entities. 629.1 Responsibilities This glossary serves as the official NCSS reference for landform, geologic, and related terms. The staff of the National Soil Survey Center, located in Lincoln, NE, is responsible for maintaining and updating this glossary. Soil Science Division staff and NCSS participants are encouraged to propose additions and changes to the glossary for use in pedon descriptions, soil map unit descriptions, and soil survey publications. The Glossary of Geology (GG, 2005) serves as a major source for many glossary terms. The American Geologic Institute (AGI) granted the USDA Natural Resources Conservation Service (formerly the Soil Conservation Service) permission (in letters dated September 11, 1985, and September 22, 1993) to use existing definitions. Sources of, and modifications to, original definitions are explained immediately below. 629.2 Definitions A. Reference Codes Sources from which definitions were taken, whole or in part, are identified by a code (e.g., GG) following each definition.
    [Show full text]
  • Washington Division of Geology and Earth Resources Open File Report
    OF~ 76-~ PETR)3ENFSIS OF THE MXJNT STUART BATHOLITH PID:rrnIC EQJI\7ALENT OF THE HIGH-AIJ.JMINA BASALT ASSO:IATION by Erik H. Erikson Jr. Depart:rrent of Geology Eastern Washington State College Cheney ,Wc::.shington 99004 June 1, 1976 Abstract. The 1-bunt Stuart batholith is a Late Cretaceous calc-alkaline pluton · . canposed of intrusive phases ranging in canposition fran two-pyroxene gabbro to granite. This batholith appears to represent the plutonic counterpart of the high-alumina basalt association. Mineralogical, petrological and chrono­ logical characteristics are consistent with a m:::rlel in which the intrusive series evolved fran one batch of magnesian high-alumina basalt by successive crystal fractionation of ascending residual magrna. ' canputer m:::rleling of this intrusive sequence provides a quanti- tative evaluation of the sequential change of magrna CCIIlfX)sition. These calculations indicate that this intrusive suite is consanguineous, and that subtraction of early-fonned crystals £ran the oldest magrna is capable of reprcducing the entire magrna series with a remainder of 2-3% granitic liquid. Increasing f()tash discrepancies prcduced by the rrodeling may reflect the increasing effects of volatile transfer in progressively rrore hydrous and silicic melts. Mass-balances between the arrounts of curn-ulate and residual liquid ccnpare favorably with the observed arrounts of intenrediate rocks exposed in the batholith, but not with the mafic rocks. Ma.fie cum: ulates must lie at depth. Mafic magmas probably fractionated by crystal settling, while quartz diorite and rrore granitic magrnas underwent a process of inward crystallization producing exposed gradationally zoned plutons.Aat present erosional levels.
    [Show full text]
  • Tectonic Evolution of the Northern Sierra Nevada
    TECTONIC EVOLUTION OF THE NORTHERN SIERRA NEVADA BATHOLITH A DISSERTATION SUBMITTED TO THE DEPARTMENT OF GEOLOGICAL AND ENVIRONMENTAL SCIENCES AND THE COMMITTEE ON GRADUATE STUDIES OF STANFORD UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Nicholas James Van Buer December 2011 © 2011 by Nicholas James Van Buer. All Rights Reserved. Re-distributed by Stanford University under license with the author. This work is licensed under a Creative Commons Attribution- Noncommercial 3.0 United States License. http://creativecommons.org/licenses/by-nc/3.0/us/ This dissertation is online at: http://purl.stanford.edu/xb187vq0064 Includes supplemental files: 1. Plate 1. Geologic Map of the Jayhawk Well 7.5' Quadrangle, Pershing County, Nevada (jayhawkwell.pdf) 2. Plate 2. Geologic Map of the Juniper Pass 7.5' Quadrangle, Pershing County, Nevada (Juniperpass.pdf) 3. Plate 3. Geologic Map of the Tohakum Peak NE 7.5' Quadrangle, Pershing County, Nevada (TohakumpkNE.pdf) 4. Plate 4. Geologic Map of the Tunnel Spring 7.5' Quadrangle, Pershing County, Nevada (tunnelspr.pdf) 5. Plate 5. Geologic Map of the Bob Spring 7.5' Quadrangle, Pershing County, Nevada (bobspring.pdf) 6. Plate 6. Geologic Map of the Tohakum Peak SE 7.5' Quadrangle, Pershing County, Nevada (TohakumpkSE.pdf) 7. Plate 7. Geologic Map of the Sage Hen Spring 7.5' Quadrangle, Pershing County, Nevada (SageHenSpr.pdf) 8. Plate 8. Geologic Map of the Bluewing Spring 7.5' Quadrangle, Pershing County, Nevada (BluewingSpr.pdf) ii I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy.
    [Show full text]
  • The Boulder Creek Batholith, Front Range, Colorado
    I u The Boulder Creek Batholith, Front Range, Colorado By DOLORES J. GABLE GEOLOGICAL SURVEY PROFESSIONAL PAPER 1101 A study of differentiation, assimilation, and origin of a granodiorite batholith showing interrelated differences in chemistry and mineralogy in the batholith and cogenetic rock types UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1980 UNITED STATES DEPARTMENT OF THE INTERIOR CECIL D. ANDRUS, Secretary GEOLOGICAL SURVEY H. William Menard, Director Library of Congress Cataloging in Publication Data Gable, Dolores J. 1922- The Boulder Creek batholith, Front Range, Colorado (Geological Survey Professional Paper 1101) Bibliography: p. 85 Supt. of Docs. No.: I 19.16:1101 1. Batholiths Colorado Boulder region. I. Title. II. Series: United States Geological Survey Professional Paper 1101. QE611.5.U6G3 551.8; 8 78-24482 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 CONTENTS Page Page Abstract................................................ 1 Origin of the Boulder Creek Granodiorite and the Twin Introduction ............................................ 1 Spruce Quartz Monzonite .......................... 62 Previous work........................................... 2 Mineralogy, petrology, and chemistry of minerals in the Techniques used in this study ............................ 2 batholith.......................................... 64 Geologic setting ......................................... 3 Biotite ...'........................................... 64 The batholith ..........................................
    [Show full text]
  • The Sierra Nevada Batholith a Synthesis. of Recent Work Across the Central Part
    I _; The Sierra Nevada Batholith A Synthesis. of Recent Work Across the Central Part By PAUL C. BATEMAN, LORIN ~- CLARK, N. KING HUBER, JAMES G. MOORE, and C. DEAN RINEHART SHORTER CONTRIBU.TIONS TO GENERAL GEOLOGY· G E 0 L 0 G I CAL SURVEY P R 0 FE S S I 0 N A L PAPER 414-D Prepared in cooperation with the State of Caltfornia, Division of Mines and Geology · ti II R fA u 0 F u' N f I ._rBRARV SPUI\ANf:.. !NASH. JUN 31971 . ·~-~ - ~ ... -- --s PtfASf RfT,fJR~ fO liBRARY UNITED S.TATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1963 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C., 20402 CONTENTS Page Abstract------------------------------------------- D1 Constitution' of the batho1ith-Continued Introduction ______________________________________ _ 2 Contact relations _______________ ~ ______ - -- _----- D22 Genernl geologic relations _______________________ _ 2 Contacts between different granitic rocks _____ - 22 Previous geologic work _________________________ _ 4 Contacts between granitic rocks and meta- Acknowledgments _____________________________ _ 5 morphic rocks or diorite ___________ -- __ ---- 22 Wu.llrocks u.nd roof rocks ___________________________ _ 5 Felsic dike swarms __________________ - ___ -------- 24 Pu.leozoic rocks ________________________________ _ 5 Mafic dike swarms _________________________ ----- 25 Mesozoic rocks ________________________________ _ 6 Structure
    [Show full text]
  • Structure and Emplacement of the Eocene Golden Horn Batholith, North Cascades, Washington
    San Jose State University SJSU ScholarWorks Master's Theses Master's Theses and Graduate Research Spring 2018 Structure and Emplacement of the Eocene Golden Horn Batholith, North Cascades, Washington Christopher Scudder San Jose State University Follow this and additional works at: https://scholarworks.sjsu.edu/etd_theses Recommended Citation Scudder, Christopher, "Structure and Emplacement of the Eocene Golden Horn Batholith, North Cascades, Washington" (2018). Master's Theses. 4919. DOI: https://doi.org/10.31979/etd.p6p4-am45 https://scholarworks.sjsu.edu/etd_theses/4919 This Thesis is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been accepted for inclusion in Master's Theses by an authorized administrator of SJSU ScholarWorks. For more information, please contact [email protected]. STRUCTURE AND EMPLACEMENT OF THE EOCENE GOLDEN HORN BATHOLITH, NORTH CASCADES, WASHINGTON A Thesis Presented to The Faculty of the Department of Geology San José State University In Partial Fulfillment of the Requirement for the Degree Master of Science by Christopher A. Scudder May 2018 © 2018 Christopher A. Scudder ALL RIGHTS RESERVED The Designated Thesis Committee Approves the Thesis Titled STRUCTURE AND EMPLACEMENT OF THE EOCENE GOLDEN HORN BATHOLITH, NORTH CASCADES, WASHINGTON by Christopher A. Scudder APPROVED FOR THE DEPARTMENT OF GEOLOGY SAN JOSÉ STATE UNIVERSITY May 2018 Dr. Robert Miller Department of Geology Dr. Ellen Metzger Department of Geology Dr. Jonathan Miller Department of Geology ABSTRACT STRUCTURE AND EMPLACEMENT OF THE EOCENE GOLDEN HORN BATHOLITH, NORTH CASCADES, WASHINGTON By Christopher A. Scudder The 48 Ma Golden Horn batholith is a ~310 km2, shallow intrusion constructed of sub-horizontal sheets in the crystalline core of the North Cascades of Washington.
    [Show full text]
  • Age Determinations of Tee Rocks of the Batholiths of Baja Amd Southern
    Ao. AGE DETERMINATIONS OF TEE ROCKS OF THE BATHOLITHS OF BAJA AMD SOUTHERN CALIFORNIA, SIERRA NEVADA, IDAHO, AND THE COAST RANGE OF WASHINGTON, BRITISH COLUMBIA, AND ALASKA* By Eo S, Larsen, Jr., David Gottfried, H. W. Jaffe, and C. L. Waring Augast 1957 Trace Elements Investigations Report 695 GEOLOGIC^ _ '•$.-'- DENVER *U$ This preliminary report is distributed •without editorial and technical review for conformity with official standards and nomenclature. It is not for public inspection or *This report concerns work done on "behalf of the Division of Research of the U« S. Atomic Energy Commission. USGS - TEI-695 GEOLOGY mD MINERALOGY Distribution If6. of copies Division of Ifew Materials, Albuquerque 0 <>*«,»,,«.**.««*»»»»*„*.**» 1 DiTision of Raw Materials, Austin .«...»«»...*»*.<,..«.***»*»...*. 1 Division of Raw Materials, Casper *»»,.*»«*.*. 0 ....„,,..«,......... 1 Division of Raw Materials, Denver ».».«,«»»««*.«.................. 1 Division of Raw Materials, Rapid City ..».„...».......*»....,.,.. 1 Division of Raw Materials, Salt Lake City ... , 0 .. o........ e ...... 1 Division of Raw Materials, Spokane .*.. 0 .*..».»*.*».*•»...*»»**.* 1 Division of Raw Materials, Washington ..,.. ..„,„<>. 0 .............. 5 Division of Research, Washington ......<,„..„*.„.„.,.<>,........... 1 Exploration Division, Grand Junction Operations Office .......... 1 Grand Junction Operations Office ......o......... a............... 1 Technical Information Service Extension, Oak Ridge 88 »........... 6 U» S» Geological Survey? Foreign Geology Branch,
    [Show full text]
  • Glossary of Geological Terms
    GLOSSARY OF GEOLOGICAL TERMS These terms relate to prospecting and exploration, to the regional geology of Newfoundland and Labrador, and to some of the geological environments and mineral occurrences preserved in the province. Some common rocks, textures and structural terms are also defined. You may come across some of these terms when reading company assessment files, government reports or papers from journals. Underlined words in definitions are explained elsewhere in the glossary. New material will be added as needed - check back often. - A - A-HORIZON SOIL: the uppermost layer of soil also referred to as topsoil. This is the layer of mineral soil with the most organic matter accumulation and soil life. This layer is not usually selected in soil surveys. ADIT: an opening that is driven horizontally (into the side of a mountain or hill) to access a mineral deposit. AIRBORNE SURVEY: a geophysical survey done from the air by systematically crossing an area or mineral property using aircraft outfitted with a variety of sensitive instruments designed to measure variations in the earth=s magnetic, gravitational, electro-magnetic fields, and/or the radiation (Radiometric Surveys) emitted by rocks at or near the surface. These surveys detect anomalies. AIRBORNE MAGNETIC (or AEROMAG) SURVEYS: regional or local magnetic surveys that measures deviations in the earth=s magnetic field and carried out by flying a magnetometer along flight lines on a pre-determined grid pattern. The lower the aircraft and the closer the flight lines, the more sensitive is the survey and the more detail in the resultant maps. Aeromag maps produced from these surveys are important exploration tools and have played a major role in many major discoveries (e.g., the Olympic Dam deposit in Australia).
    [Show full text]
  • Nate Nahler G188 6/12/2008 Creation of the Sierra Nevada Batholith
    Nate Nahler G188 6/12/2008 Creation of the Sierra Nevada Batholith Abstract In the western United States lies one of the largest and highest mountain ranges on earth. Composed of vast quantities of Granitic rock the Sierra Nevada Mountains and the surrounding topography have distinct geologic structures which point to a period of intense deformation and magmatism as the region was formed. Through the analysis of rock types, chemical composition of those rocks, and the actual structures visible in the Sierra Nevada region and further east, it is apparent that many millions of years ago there was a collision between lithospheric plates on the western margin of the North American Plate. This collision caused subduction of the oceanic Farallon plate creating vast masses of magma which rose and crystallized to form the core of the mountain range we see today. In addition to the periods of magmatic intrusion the region went through several different phases of geological setting presenting itself in the sedimentary and metasedimentary rock structures visible today. Geographic & Geologic Setting The Sierra Nevada mountain range is the longest and highest such range in the lower 48 United States. The maximum range of elevation is 4400 meters in the south to 2700 meters in the north with a total length approaching 643km (Hill 2006). The range is surrounded by a tectonically active zone on the west coast of North America, primarily in the state of California, with small portions lying within Nevada. Currently to the west of the range lies a large transform plate boundary, the San Andreas Fault, which is still affecting the size and scope of the range today.
    [Show full text]
  • A Partial Glossary of Spanish Geological Terms Exclusive of Most Cognates
    U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY A Partial Glossary of Spanish Geological Terms Exclusive of Most Cognates by Keith R. Long Open-File Report 91-0579 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards or with the North American Stratigraphic Code. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. 1991 Preface In recent years, almost all countries in Latin America have adopted democratic political systems and liberal economic policies. The resulting favorable investment climate has spurred a new wave of North American investment in Latin American mineral resources and has improved cooperation between geoscience organizations on both continents. The U.S. Geological Survey (USGS) has responded to the new situation through cooperative mineral resource investigations with a number of countries in Latin America. These activities are now being coordinated by the USGS's Center for Inter-American Mineral Resource Investigations (CIMRI), recently established in Tucson, Arizona. In the course of CIMRI's work, we have found a need for a compilation of Spanish geological and mining terminology that goes beyond the few Spanish-English geological dictionaries available. Even geologists who are fluent in Spanish often encounter local terminology oijerga that is unfamiliar. These terms, which have grown out of five centuries of mining tradition in Latin America, and frequently draw on native languages, usually cannot be found in standard dictionaries. There are, of course, many geological terms which can be recognized even by geologists who speak little or no Spanish.
    [Show full text]
  • Plutonism in the Central Part of the Sierra Nevada Batholith, California
    Plutonism in the Central Part of the '5n«Sierra Nevada Batholith,* California *~r ._*» U.S. GEOLOGICAL SURVEY PROFESSIONAL PAPER 1483 Plutonism in the Central Part of the Sierra Nevada Batholith, California By PAUL C. BATEMAN U.S. GEOLOGICAL SURVEY PROFESSIONAL PAPER 1483 A study of the structure, composition, and pre-Tertiary history of the Sierra Nevada batholith in the Mariposa 1° by 2° quadrangle UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1992 U.S. DEPARTMENT OF THE INTERIOR MANUEL LUJAN, JR., Secretary U.S. GEOLOGICAL SURVEY DALLAS L. PECK, Director Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government Library of Congress Cataloging-in-Publication Data Bateman, Paul Charles, 1910- Plutonism in the central part of the Sierra Nevada batholith, California / by Paul C. Bateman p. cm. (U.S. Geological Survey professional paper ; 1483) Includes bibliographical references. 1. Batholiths Sierra Nevada Mountains (Calif, and Nev.) 2. Geology Sierra Nevada Mountains (Calif, and Nev.) I. Title. II. Series: Geological Survey professional paper ; 1483. QE11.5.U6B36 1992 91-14788 552M dc20 CIP For sale by the Books and Open-File Report Sales, U.S. Geological Survey, Federal Center, Box 25286, Denver, CO 80225 CONTENTS Page Hierarchical organization of granitic units 24 Introduction Plutons 25 Stratigraphic and structural setting Lithodemes 25 Metamorphism Late Proterozoic and Paleozoic strata of the White and Roof pendants, septa, and inclusions
    [Show full text]
  • Mechanisms of Intrusion of the Coastal Batholith of Peru Into Its Own Volcanic Ejecta
    Cauldron Subsidence and Fluidization: Mechanisms of Intrusion of the Coastal Batholith of Peru into Its Own Volcanic Ejecta JOHN S. MYERS Geological Survey of Greenland, 0stervoldgade 10, Copenhagen, Denmark ABSTRACT 10 to 60 km inland, and has subvertical walls and a flat roof. It was emplaced be- The Coastal Batholith of Peru shows how tween Late Albian and Eocene time (about diorite, tonalite, granodiorite, and granite 100 to 50 m.y. ago) into two groups of magmas rose through their last few volcanic rocks which were erupted from the kilometers by a process of magmatic stop- rising batholith. ing by their fluidized upper surface. The Structures and features relating to intru- magmas successively displaced both older, sive mechanisms are described together, more basic plutons and their own volcanic drawing on examples from different units debris downward and canje to rest within 3 of the batholith because the structure and km of the Earth's surface after loosing vol- intrusion mechanism of most plutons are atiles by eruptions through fissures and cal- broadly similar. A more complete account deras. There was a continuous association of the batholith, the volcanic rocks, and the between volcanic eruptions and plutonic in- regional geology is in press (Myers, in trusions from at least 100 to 30 m.y. ago in press). Plutonic rock names follow the a narrow belt parallel with the continental margin. The batholith is 50 km wide, more than 1,100 km long, and probably 15 km or less thick. It has steep walls and an extensively preserved flat roof exposed in mountainous desert with relief of 4,500 m.
    [Show full text]