Construction and Preservation of Batholiths in the Northern U.S. Cordillera
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Threedimensional Seismic Model of the Sierra Nevada Arc, California
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 105, NO. B5, PAGES 10,899-10,921, MAY 10, 2000 Three-dimensional seismic model of the Sierra Nevada arc California and its implications for crustal and upper mantle composition Moritz M. Fliednet• and SimonL. Klemperer Department of Geophysics, Stanford University, Stanford, California Nikolas I. Christensen Department of Geology and Geophysics,University of Wisconsin, Madison Abstract. A three-dimensionalP wave velocity model of south-central California from the Coast Rangesto the Sierra Nevada showsthat the crust under most of the southernSierra Nevadabatholith has seismicvelocities (5.9-6.3 kin/s) below the continentalaverage. The crustis not muchthicker (on averageabout 35 kin) than in the adjacent Great Valley and Basin and Range province apart from a small, northwa,rd thickening, crustal root under the western Sierra Nevada that reachesa depth of 42 kin. Crustal velocities above the continental average are observedbeneath much of the Great Valley due to a high-velocity body underlying the sedimentarybasin and the Foothillsmetamorphic belt (6.4-7.0 kin/s). Upper mantlevelocities are generallylow (7.8 kin/s) but spana widerange (7.4-8.2 kin/s). We display the velocity model in several crosssections a, nd maps of Moho depth and averagecrustal velocity. The measuredvelocities in the upper and mid crust of the Sierra Nevada batholith are in good agreementwith laboratory measurements on Sierra Nevada tonalites after correctionsfor density a.ndtemperature. Peridotite xenoliths from the eastern Sierra Nevada suggeststrong upper mantle anisotropy, which could explain someof the velocity heterogeneityin the Sierra Nevada mantle. By the time Creta,ceous subduction-related magmatism ceased,the Sierra Nevada arc must have had a thick marie lower crust; yet a principal result of our work is that today the batholith has a crust of mainly felsic compositionthroughout. -
Possible Correlations of Basement Rocks Across the San Andreas, San Gregorio- Hosgri, and Rinconada- Reliz-King City Faults
Possible Correlations of Basement Rocks Across the San Andreas, San Gregorio- Hosgri, and Rinconada- Reliz-King City Faults, U.S. GEOLOGICAL SURVEY PROFESSIONAL PAPER 1317 Possible Correlations of Basement Rocks Across the San Andreas, San Gregorio- Hosgri, and Rinconada- Reliz-King City Faults, California By DONALD C. ROSS U.S. GEOLOGICAL SURVEY PROFESSIONAL PAPER 1317 A summary of basement-rock relations and problems that relate to possible reconstruction of the Salinian block before movement on the San Andreas fault UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON: 1984 DEPARTMENT OF THE INTERIOR WILLIAM P. CLARK, Secretary U.S. GEOLOGICAL SURVEY Dallas L. Peck, Director Library of Congress Cataloging in Publication Data Boss, Donald Clarence, 1924- Possible correlations of basement rocks across the San Andreas, San Gregrio-Hosgri, and Rinconada-Reliz-King City faults, California (U.S. Geological Survey Bulletin 1317) Bibliography: p. 25-27 Supt. of Docs, no.: 119.16:1317 1. Geology, structural. 2. Geology California. 3. Faults (geology) California. I. Title. II. Series: United States. Geological Survey. Professional Paper 1317. QE601.R681984 551.8'09794 84-600063 For sale by the Distribution Branch, Text Products Section, U.S. Geological Survey, 604 South Pickett St., Alexandria, VA 22304 CONTENTS Page Abstract _____________________________________________________________ 1 Introduction __________________________________________________________ 1 San Gregorio-Hosgri fault zone ___________________________________________ 3 San Andreas -
Eocene–Early Miocene Paleotopography of the Sierra Nevada–Great Basin–Nevadaplano Based on Widespread Ash-Flow Tuffs and P
Origin and Evolution of the Sierra Nevada and Walker Lane themed issue Eocene–Early Miocene paleotopography of the Sierra Nevada–Great Basin–Nevadaplano based on widespread ash-fl ow tuffs and paleovalleys Christopher D. Henry1, Nicholas H. Hinz1, James E. Faulds1, Joseph P. Colgan2, David A. John2, Elwood R. Brooks3, Elizabeth J. Cassel4, Larry J. Garside1, David A. Davis1, and Steven B. Castor1 1Nevada Bureau of Mines and Geology, University of Nevada, Reno, Nevada 89557, USA 2U.S. Geological Survey, Menlo Park, California 94025, USA 3California State University, Hayward, California 94542, USA 4Department of Earth and Environment, Franklin & Marshall College, Lancaster, Pennsylvania 17604, USA ABSTRACT the great volume of erupted tuff and its erup- eruption fl owed similar distances as the mid- tion after ~3 Ma of nearly continuous, major Cenozoic tuffs at average gradients of ~2.5–8 The distribution of Cenozoic ash-fl ow tuffs pyroclastic eruptions near its caldera that m/km. Extrapolated 200–300 km (pre-exten- in the Great Basin and the Sierra Nevada of probably fi lled in nearby topography. sion) from the Pacifi c Ocean to the central eastern California (United States) demon- Distribution of the tuff of Campbell Creek Nevada caldera belt, the lower gradient strates that the region, commonly referred and other ash-fl ow tuffs and continuity of would require elevations of only 0.5 km for to as the Nevadaplano, was an erosional paleovalleys demonstrates that (1) the Basin valley fl oors and 1.5 km for interfl uves. The highland that was drained by major west- and Range–Sierra Nevada structural and great eastward, upvalley fl ow is consistent and east-trending rivers, with a north-south topographic boundary did not exist before with recent stable isotope data that indicate paleodivide through eastern Nevada. -
Part 629 – Glossary of Landform and Geologic Terms
Title 430 – National Soil Survey Handbook Part 629 – Glossary of Landform and Geologic Terms Subpart A – General Information 629.0 Definition and Purpose This glossary provides the NCSS soil survey program, soil scientists, and natural resource specialists with landform, geologic, and related terms and their definitions to— (1) Improve soil landscape description with a standard, single source landform and geologic glossary. (2) Enhance geomorphic content and clarity of soil map unit descriptions by use of accurate, defined terms. (3) Establish consistent geomorphic term usage in soil science and the National Cooperative Soil Survey (NCSS). (4) Provide standard geomorphic definitions for databases and soil survey technical publications. (5) Train soil scientists and related professionals in soils as landscape and geomorphic entities. 629.1 Responsibilities This glossary serves as the official NCSS reference for landform, geologic, and related terms. The staff of the National Soil Survey Center, located in Lincoln, NE, is responsible for maintaining and updating this glossary. Soil Science Division staff and NCSS participants are encouraged to propose additions and changes to the glossary for use in pedon descriptions, soil map unit descriptions, and soil survey publications. The Glossary of Geology (GG, 2005) serves as a major source for many glossary terms. The American Geologic Institute (AGI) granted the USDA Natural Resources Conservation Service (formerly the Soil Conservation Service) permission (in letters dated September 11, 1985, and September 22, 1993) to use existing definitions. Sources of, and modifications to, original definitions are explained immediately below. 629.2 Definitions A. Reference Codes Sources from which definitions were taken, whole or in part, are identified by a code (e.g., GG) following each definition. -
Washington Division of Geology and Earth Resources Open File Report
OF~ 76-~ PETR)3ENFSIS OF THE MXJNT STUART BATHOLITH PID:rrnIC EQJI\7ALENT OF THE HIGH-AIJ.JMINA BASALT ASSO:IATION by Erik H. Erikson Jr. Depart:rrent of Geology Eastern Washington State College Cheney ,Wc::.shington 99004 June 1, 1976 Abstract. The 1-bunt Stuart batholith is a Late Cretaceous calc-alkaline pluton · . canposed of intrusive phases ranging in canposition fran two-pyroxene gabbro to granite. This batholith appears to represent the plutonic counterpart of the high-alumina basalt association. Mineralogical, petrological and chrono logical characteristics are consistent with a m:::rlel in which the intrusive series evolved fran one batch of magnesian high-alumina basalt by successive crystal fractionation of ascending residual magrna. ' canputer m:::rleling of this intrusive sequence provides a quanti- tative evaluation of the sequential change of magrna CCIIlfX)sition. These calculations indicate that this intrusive suite is consanguineous, and that subtraction of early-fonned crystals £ran the oldest magrna is capable of reprcducing the entire magrna series with a remainder of 2-3% granitic liquid. Increasing f()tash discrepancies prcduced by the rrodeling may reflect the increasing effects of volatile transfer in progressively rrore hydrous and silicic melts. Mass-balances between the arrounts of curn-ulate and residual liquid ccnpare favorably with the observed arrounts of intenrediate rocks exposed in the batholith, but not with the mafic rocks. Ma.fie cum: ulates must lie at depth. Mafic magmas probably fractionated by crystal settling, while quartz diorite and rrore granitic magrnas underwent a process of inward crystallization producing exposed gradationally zoned plutons.Aat present erosional levels. -
Tectonic Evolution of the Northern Sierra Nevada
TECTONIC EVOLUTION OF THE NORTHERN SIERRA NEVADA BATHOLITH A DISSERTATION SUBMITTED TO THE DEPARTMENT OF GEOLOGICAL AND ENVIRONMENTAL SCIENCES AND THE COMMITTEE ON GRADUATE STUDIES OF STANFORD UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Nicholas James Van Buer December 2011 © 2011 by Nicholas James Van Buer. All Rights Reserved. Re-distributed by Stanford University under license with the author. This work is licensed under a Creative Commons Attribution- Noncommercial 3.0 United States License. http://creativecommons.org/licenses/by-nc/3.0/us/ This dissertation is online at: http://purl.stanford.edu/xb187vq0064 Includes supplemental files: 1. Plate 1. Geologic Map of the Jayhawk Well 7.5' Quadrangle, Pershing County, Nevada (jayhawkwell.pdf) 2. Plate 2. Geologic Map of the Juniper Pass 7.5' Quadrangle, Pershing County, Nevada (Juniperpass.pdf) 3. Plate 3. Geologic Map of the Tohakum Peak NE 7.5' Quadrangle, Pershing County, Nevada (TohakumpkNE.pdf) 4. Plate 4. Geologic Map of the Tunnel Spring 7.5' Quadrangle, Pershing County, Nevada (tunnelspr.pdf) 5. Plate 5. Geologic Map of the Bob Spring 7.5' Quadrangle, Pershing County, Nevada (bobspring.pdf) 6. Plate 6. Geologic Map of the Tohakum Peak SE 7.5' Quadrangle, Pershing County, Nevada (TohakumpkSE.pdf) 7. Plate 7. Geologic Map of the Sage Hen Spring 7.5' Quadrangle, Pershing County, Nevada (SageHenSpr.pdf) 8. Plate 8. Geologic Map of the Bluewing Spring 7.5' Quadrangle, Pershing County, Nevada (BluewingSpr.pdf) ii I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. -
The Boulder Creek Batholith, Front Range, Colorado
I u The Boulder Creek Batholith, Front Range, Colorado By DOLORES J. GABLE GEOLOGICAL SURVEY PROFESSIONAL PAPER 1101 A study of differentiation, assimilation, and origin of a granodiorite batholith showing interrelated differences in chemistry and mineralogy in the batholith and cogenetic rock types UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1980 UNITED STATES DEPARTMENT OF THE INTERIOR CECIL D. ANDRUS, Secretary GEOLOGICAL SURVEY H. William Menard, Director Library of Congress Cataloging in Publication Data Gable, Dolores J. 1922- The Boulder Creek batholith, Front Range, Colorado (Geological Survey Professional Paper 1101) Bibliography: p. 85 Supt. of Docs. No.: I 19.16:1101 1. Batholiths Colorado Boulder region. I. Title. II. Series: United States Geological Survey Professional Paper 1101. QE611.5.U6G3 551.8; 8 78-24482 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 CONTENTS Page Page Abstract................................................ 1 Origin of the Boulder Creek Granodiorite and the Twin Introduction ............................................ 1 Spruce Quartz Monzonite .......................... 62 Previous work........................................... 2 Mineralogy, petrology, and chemistry of minerals in the Techniques used in this study ............................ 2 batholith.......................................... 64 Geologic setting ......................................... 3 Biotite ...'........................................... 64 The batholith .......................................... -
The Sierra Nevada Batholith a Synthesis. of Recent Work Across the Central Part
I _; The Sierra Nevada Batholith A Synthesis. of Recent Work Across the Central Part By PAUL C. BATEMAN, LORIN ~- CLARK, N. KING HUBER, JAMES G. MOORE, and C. DEAN RINEHART SHORTER CONTRIBU.TIONS TO GENERAL GEOLOGY· G E 0 L 0 G I CAL SURVEY P R 0 FE S S I 0 N A L PAPER 414-D Prepared in cooperation with the State of Caltfornia, Division of Mines and Geology · ti II R fA u 0 F u' N f I ._rBRARV SPUI\ANf:.. !NASH. JUN 31971 . ·~-~ - ~ ... -- --s PtfASf RfT,fJR~ fO liBRARY UNITED S.TATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1963 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C., 20402 CONTENTS Page Abstract------------------------------------------- D1 Constitution' of the batho1ith-Continued Introduction ______________________________________ _ 2 Contact relations _______________ ~ ______ - -- _----- D22 Genernl geologic relations _______________________ _ 2 Contacts between different granitic rocks _____ - 22 Previous geologic work _________________________ _ 4 Contacts between granitic rocks and meta- Acknowledgments _____________________________ _ 5 morphic rocks or diorite ___________ -- __ ---- 22 Wu.llrocks u.nd roof rocks ___________________________ _ 5 Felsic dike swarms __________________ - ___ -------- 24 Pu.leozoic rocks ________________________________ _ 5 Mafic dike swarms _________________________ ----- 25 Mesozoic rocks ________________________________ _ 6 Structure -
Sierra Nevadan Granitic Bedrock and Ecosystem Regulation
Zoe Doebbler GEOL-G 190 Professor Michael Hamburger June 15, 2015 Sierra Nevadan Granitic Bedrock and Ecosystem Regulation Abstract The Sierra Nevada Batholith is a point of geological interest because of qualities related to its unique formation, composition, and geochemistry. Much of this is observable through the specific variety of granitic bedrock that makes up the vast majority of the batholith. The Sierra Nevadan granite is noteworthy for its influence upon the ecosystem on its surface. Although mostly made up of inorganic rock, the Sierra Nevada Batholith is home to many organisms, perhaps most famously groves of gigantic sequoia trees. This paper seeks to explore the characteristics of Sierra Nevadan granite and how it is and is not conducive to plant and animal life. Doebbler 2 Introduction The Sierra Nevada mountain range is located between California’s Central Valley and the Basin and Range Province. Home to a variety of natural wonders, from Mt. Whitney to Yosemite Valley, the Sierra Nevada’s 63,100 sq. km of land area (approximately 640 km north-south, 105 km east-west) encompasses a variety of geological and biological features (U.S. Forest Service). A significant component of the region is the Sierra Nevada Batholith which constitutes the core of the mountain range and is responsible for the granite bedrock prevalent throughout the Sierra Nevada. As a result, the Batholith and its granite are governing factors for the ecosystem growing upon them. Understanding the vegetation of the Sierra Nevada and its limiting factors can reveal characteristics about the bedrock below it. Fig. 1 Map of the Sierra Nevada mountain range (state of California in inset). -
Origin and Evolution of the Sierra Nevada and Walker Lane Themed Issue
Origin and Evolution of the Sierra Nevada and Walker Lane themed issue Introduction: Origin and Evolution of the Sierra Nevada and Walker Lane Keith D. Putirka1,* and Cathy J. Busby2,* 1California State University, Fresno, Department of Earth and Environmental Sciences, 2345 E. San Ramon Ave., MS/MH24, Fresno, California 93720, USA 2Department of Earth Science, University of California, Santa Barbara, California 93106, USA BACKGROUND AND HISTORY Figure 1. A map showing an outline of the Sierra Nevada This Geosphere themed issue is an outgrowth and approximate boundaries of of our Penrose Conference: Origin and Uplift the Walker Lane belt. The out- of the Sierra Nevada, California, which was line of the Walker Lane (and held in Bridgeport, California, August 16–20, its southern extension into the 2010. The theme is here expanded to include Eastern California Shear Zone) the Walker Lane (Fig. 1), since a large number is modifi ed from Faulds et al. of our Penrose abstracts were oriented to that (2005) and Oldow and Cashman topic, and because that region is no less a part (2009); we draw the western Sierra of the Sierran story than the high peaks them- boundary to coincide with the Walker selves. A fundamental question for the confer- Sierra Nevada range front; the N evada Lane ence and themed issue is “How did the Sierra Walker Lane belt is then drawn Nevada form?” The question can mean many to include the region of the things to disparate disciplines. One might refer Basin and Range province where & to the age and origin of the rocks that form the basins and ranges trend more Sierra Nevada batholith, or instead to the time N–S, rather than NE–SW. -
Structure and Emplacement of the Eocene Golden Horn Batholith, North Cascades, Washington
San Jose State University SJSU ScholarWorks Master's Theses Master's Theses and Graduate Research Spring 2018 Structure and Emplacement of the Eocene Golden Horn Batholith, North Cascades, Washington Christopher Scudder San Jose State University Follow this and additional works at: https://scholarworks.sjsu.edu/etd_theses Recommended Citation Scudder, Christopher, "Structure and Emplacement of the Eocene Golden Horn Batholith, North Cascades, Washington" (2018). Master's Theses. 4919. DOI: https://doi.org/10.31979/etd.p6p4-am45 https://scholarworks.sjsu.edu/etd_theses/4919 This Thesis is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been accepted for inclusion in Master's Theses by an authorized administrator of SJSU ScholarWorks. For more information, please contact [email protected]. STRUCTURE AND EMPLACEMENT OF THE EOCENE GOLDEN HORN BATHOLITH, NORTH CASCADES, WASHINGTON A Thesis Presented to The Faculty of the Department of Geology San José State University In Partial Fulfillment of the Requirement for the Degree Master of Science by Christopher A. Scudder May 2018 © 2018 Christopher A. Scudder ALL RIGHTS RESERVED The Designated Thesis Committee Approves the Thesis Titled STRUCTURE AND EMPLACEMENT OF THE EOCENE GOLDEN HORN BATHOLITH, NORTH CASCADES, WASHINGTON by Christopher A. Scudder APPROVED FOR THE DEPARTMENT OF GEOLOGY SAN JOSÉ STATE UNIVERSITY May 2018 Dr. Robert Miller Department of Geology Dr. Ellen Metzger Department of Geology Dr. Jonathan Miller Department of Geology ABSTRACT STRUCTURE AND EMPLACEMENT OF THE EOCENE GOLDEN HORN BATHOLITH, NORTH CASCADES, WASHINGTON By Christopher A. Scudder The 48 Ma Golden Horn batholith is a ~310 km2, shallow intrusion constructed of sub-horizontal sheets in the crystalline core of the North Cascades of Washington. -
Age Determinations of Tee Rocks of the Batholiths of Baja Amd Southern
Ao. AGE DETERMINATIONS OF TEE ROCKS OF THE BATHOLITHS OF BAJA AMD SOUTHERN CALIFORNIA, SIERRA NEVADA, IDAHO, AND THE COAST RANGE OF WASHINGTON, BRITISH COLUMBIA, AND ALASKA* By Eo S, Larsen, Jr., David Gottfried, H. W. Jaffe, and C. L. Waring Augast 1957 Trace Elements Investigations Report 695 GEOLOGIC^ _ '•$.-'- DENVER *U$ This preliminary report is distributed •without editorial and technical review for conformity with official standards and nomenclature. It is not for public inspection or *This report concerns work done on "behalf of the Division of Research of the U« S. Atomic Energy Commission. USGS - TEI-695 GEOLOGY mD MINERALOGY Distribution If6. of copies Division of Ifew Materials, Albuquerque 0 <>*«,»,,«.**.««*»»»»*„*.**» 1 DiTision of Raw Materials, Austin .«...»«»...*»*.<,..«.***»*»...*. 1 Division of Raw Materials, Casper *»»,.*»«*.*. 0 ....„,,..«,......... 1 Division of Raw Materials, Denver ».».«,«»»««*.«.................. 1 Division of Raw Materials, Rapid City ..».„...».......*»....,.,.. 1 Division of Raw Materials, Salt Lake City ... , 0 .. o........ e ...... 1 Division of Raw Materials, Spokane .*.. 0 .*..».»*.*».*•»...*»»**.* 1 Division of Raw Materials, Washington ..,.. ..„,„<>. 0 .............. 5 Division of Research, Washington ......<,„..„*.„.„.,.<>,........... 1 Exploration Division, Grand Junction Operations Office .......... 1 Grand Junction Operations Office ......o......... a............... 1 Technical Information Service Extension, Oak Ridge 88 »........... 6 U» S» Geological Survey? Foreign Geology Branch,