Research Paper GEOSPHERE Controls on the expression of igneous intrusions in seismic reflection data GEOSPHERE; v. 11, no. 4 Craig Magee, Shivani M. Maharaj, Thilo Wrona, and Christopher A.-L. Jackson Basins Research Group (BRG), Department of Earth Science and Engineering, Imperial College, 39 Prince Consort Road, London SW7 2BP, UK doi:10.1130/GES01150.1 14 figures; 2 tables ABSTRACT geometries in the field is, however, hampered by a lack of high-quality, fully CORRESPONDENCE:
[email protected] three-dimensional (3-D) exposures and the 2-D nature of the Earth’s surface The architecture of subsurface magma plumbing systems influences a va- (Fig. 1). Geophysical techniques such as magnetotellurics, InSAR (interfero- CITATION: Magee, C., Maharaj, S.M., Wrona, T., riety of igneous processes, including the physiochemical evolution of magma metric synthetic aperture radar), and reflection seismology have therefore and Jackson, C.A.-L., 2015, Controls on the expres- sion of igneous intrusions in seismic reflection data: and extrusion sites. Seismic reflection data provides a unique opportunity to been employed to either constrain subsurface intrusions or track real-time Geosphere, v. 11, no. 4, p. 1024–1041, doi: 10 .1130 image and analyze these subvolcanic systems in three dimensions and has magma migration (e.g., Smallwood and Maresh, 2002; Wright et al., 2006; /GES01150.1. arguably revolutionized our understanding of magma emplacement. In par- Biggs et al., 2011; Pagli et al., 2012). Of these techniques, reflection seismol- ticular, the observation of (1) interconnected sills, (2) transgressive sill limbs, ogy arguably provides the most complete and detailed imaging of individual Received 11 November 2014 and (3) magma flow indicators in seismic data suggest that sill complexes intrusions and intrusion systems.