The Laccolith-Stock Controversy: New Results from the Southern Henry Mountains, Utah

Total Page:16

File Type:pdf, Size:1020Kb

The Laccolith-Stock Controversy: New Results from the Southern Henry Mountains, Utah The laccolith-stock controversy: New results from the southern Henry Mountains, Utah MARIE D. JACKSON* Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, Maryland 21218 DAVID D. POLLARD Departments of Applied Earth Sciences and Geology, Stanford University, Stanford, California 94305 ABSTRACT rule out the possibility of a stock at depth. At Mesa, Fig. 1). Gilbert inferred that the central Mount Hillers, paleomagnetic vectors indi- intrusions underlying the large domes are Domes of sedimentary strata at Mount cate that tongue-shaped sills and thin lacco- floored, mushroom-shaped laccoliths (Fig. 3). Holmes, Mount Ellsworth, and Mount Hillers liths overlying the central intrusion were More recently, C. B. Hunt (1953) inferred that in the southern Henry Mountains record suc- emplaced horizontally and were rotated dur- the central intrusions in the Henry Mountains cessive stages in the growth of shallow (3 to 4 ing doming through about 80° of dip. This are cylindrical stocks, surrounded by zones of km deep) magma chambers. Whether the in- sequence of events is not consistent with the shattered host rock. He postulated a process in trusions under these domes are laccoliths or emplacement of a stock and subsequent or which a narrow stock is injected vertically up- stocks has been the subject of controversy. contemporaneous lateral growth of sills and ward and then pushes aside and domes the sed- According to G. K. Gilbert, the central intru- minor laccoliths. Growth in diameter of a imentary strata as it grows in diameter. After the sions are direct analogues of much smaller, stock from about 300 m at Mount Holmes to stock is emplaced, tongue-shaped sills and lacco- floored intrusions, exposed on the flanks of nearly 3 km at Mount Hillers, as Hunt sug- liths are injected radially from the discordant the domes, that grew from sills by lifting and gested, should have been accompanied by sides of the stock (Fig. 4). Mount Holmes, bending of a largely concordant overburden. considerable radial shortening of the sedi- Mount Ellsworth, and Mount Hillers are taken According to C. B. Hunt, the central intru- mentary strata and a style of folding which is to represent successive stages in the development sions are cylindrical stocks, sheathed with a not observed. Geologic and geophysical data of this process. Although the inference that the zone of shattered sedimentary rocks, and the and mechanical models support a laccolithic central intrusions in the Henry Mountains are small flanking sills and laccoliths grew later- origin for the central magma chambers under- stocks has found acceptance in some textbooks ally as tongue-shaped masses from the dis- lying the domes. (Shelton, 1966, p. 16-17), the nature of these cordant sides of these stocks. New geologic bodies is recognized as problematic in others mapping demonstrates that the sedimentary INTRODUCTION (Billings, 1972, p. 341). Indeed, the present overburden, now partially eroded from the erosional level in the Henry Mountains makes domes, was uplifted about 1.2 km at Mount Toward the end of the last century, G. K. it difficult to distinguish Hunt's stocks from Holmes, 1.8 km at Mount Ellsworth, and at Gilbert (1877) originated the concept of a lacco- Gilbert's laccoliths as the principal constituents least 2.5 km at Mount Hillers. The radii of the lith, on the basis of his observations in the Henry of the large domes, on the basis of surficial domes are similar, between 5 and 7 km. The Mountains of Utah. He postulated a process in mapping alone. strata over the domes have a doubly hinged which magma rises vertically in a dike or nar- To clarify the differences between laccoliths shape, consisting of a concave-upward lower row pipe-like conduit until it spreads between and stocks as illustrated in Figures 3 and 4, the hinge and a concave-downward upper hinge. horizontal strata to form a sill. The sill propa- following points are emphasized. A limb of approximately constant dip joins gates laterally until it lifts the overburden and (1) Laccoliths may be low in height relative these two hinges and dips 20° at Mount causes the sedimentary strata to bend concor- to their horizontal dimensions, and they range Holmes, 50° to 55° at Mount Ellsworth, and dantly over the thickening laccolith. In the from circular to tongue-shaped in plan form. 75° to 85° at Mount Hillers. The distal por- southern Henry Mountains (Fig. 1), sedimentary Stocks have a great height relative to a roughly tion of each dome is composed of a gently domes forming Mount Holmes, Mount Ells- constant diameter, and they approximate a tall, dipping peripheral limb 3 to 4 km long, pre- worth, and Mount Hillers (Fig. 2) are approxi- upright, circular cylinder. sumably underlain by sills and minor lacco- mately equidimensional in plan form and have (2) Laccoliths have a local feeder, such as a liths. Although geologic cross sections and radii of 5 to 7 km. Near the summits of Mount dike or stock, which has a very different size and regional aeromagnetic data for the three Ellsworth and Mount Hillers, large masses of mechanism of formation from those of the lacco- domes are consistent with floored, laccolithic diorite porphyry are exposed and are interpreted lith. Stocks do not have a local feeder; they are central intrusions, these data alone do not as the tops of central intrusions. Numerous dikes continuous to great depth, perhaps extending to and sills of diorite porphyry crop out in and a deep magma reservoir. adjacent to the domes, as do small laccoliths that •Present address: U.S. Geological Survey, Hawaii (3) Stocks grow upward, perhaps by stoping, National Park, Hawaii 96718. have well-exposed floors (for example, Black zone melting, and/or diapiric piercement as dis- Geological Society of America Bulletin, v. 100, p. 117-139, 19 figs., 2 tables, January 1988. 117 Downloaded from http://pubs.geoscienceworld.org/gsa/gsabulletin/article-pdf/100/1/117/3379075/i0016-7606-100-1-117.pdf by guest on 24 September 2021 118 JACKSON AND POLLARD Figure 1. Simplified geologic map of the southern Henry Mountains (after Hunt, 1953, and this study). Younger rocks crop out pro- gressively from east to west, indicating a gen- tle 1° to 2° dip to the west-southwest. Open triangles indicate mountain summits. Out- lined areas indicate maps shown in Figures 7, 8, and 9. cussed by Daly (1933) and Marsh (1982), and so they are not floored and they may be largely discordant. Laccoliths grow from a thin sill that thickens into a floored body, and so they are largely concordant. Distinguishing between lac- coliths and stocks is made more difficult because laccoliths can attain greater height by peripheral faulting. This produces bysmaliths, bodies that have discordant sides but are floored. The purpose of this paper is to introduce new evidence that bears on the laccolith-stock con- troversy and on the origins of epizonal magma chambers. We describe the structure of the three southern domes in the Henry Mountains on the basis of new geologic mapping. We give detailed descriptions of the host-rock flexures, using cross sections through each dome. Models of the shapes and volumes of the central intrusions based on regional aeromagnetic surveys are summarized, and the sequence of intrusion is interpreted using paleomagnetic data from sills and thin laccoliths at Mount Hillers. Finally, some of the mechanical differences that might characterize laccoliths and stocks are reviewed. From this work, a sequential progression of magmatic and deformational events is inferred and compared with the previous hypotheses of Gilbert (1877) and Hunt (1953). GEOLOGIC SETTING The Henry Mountains, in southeastern Utah (Fig. 1), are one of more than ten mountain ranges on the central and eastern Colorado Pla- teau composed of sedimentary domes with ig- neous cores, surrounded by dikes, sills, and minor laccoliths. The ages of these ranges cluster 110°45' 110° about the Cretaceous-Tertiary boundary and the mid-Tertiary (Armstrong, 1969; Cunningham and others, 1977). The Henry Mountains form a range that is about 60 km long, trends roughly 48 Ma. Sullivan (1987), however, has found The mountains are situated on the gently dip- north-south, and is composed of 5 peaks sepa- younger ages for these rocks, 20 to 29 Ma, ping (about 2° west) eastern limb of a north- rated by low passes. From north to south, the using fission-track methods. In the southern south-trending structural basin that is bounded peaks are Mount Ellen, Mount Pennell, Mount Henry Mountains, all of the intrusive rock on the west by the Waterpocket monocline Hillers, Mount Holmes, and Mount Ellsworth. is diorite or quartz diorite porphyry. The (Hunt, 1953, Plate 1). A stratigraphic section K-Ar dating of the diorite porphyry from flank- petrology of these rocks is described by Engel (Fig. 5) compiled from data of Hunt (1953), ing laccoliths at Mount Ellen and Mount Hillers (1959), and Kilinc (1979) has studied their Hintze (1963), Peterson and others (1980), and by Armstrong (1969) gives Eocene ages, 44 to crystallization temperatures. Stokes (1980) shows estimated thicknesses of Downloaded from http://pubs.geoscienceworld.org/gsa/gsabulletin/article-pdf/100/1/117/3379075/i0016-7606-100-1-117.pdf by guest on 24 September 2021 NEW LACCOLITH-STOCK RESULTS, HENRY MOUNTAINS, UTAH 119 the formations. About 2.7 km of strata, from the p. 51) gives a maximum of 1 km of lower Ter- about 3.7 km of sedimentary rock overlay the base of the Permian Cutler Formation to the tiary sediments presently overlying the Mesa Permian Cutler Formation during the early to Cretaceous (Campanian) Mesa Verde Forma- Verde Formation about 100 km west of the mid-Tertiary, when the intrusions were em- tion, is exposed in the Henry Mountains.
Recommended publications
  • Petrographic Study of a Quartz Diorite Stock Near Superior, Pinal County, Arizona
    Petrographic study of a quartz diorite stock near Superior, Pinal County, Arizona Item Type text; Thesis-Reproduction (electronic); maps Authors Puckett, James Carl, 1940- Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 23/09/2021 23:40:37 Link to Item http://hdl.handle.net/10150/554062 PETROGRAPHIC STUDY OF A QUARTZ DIORITE STOCK NEAR SUPERIOR, PINAL COUNTY, ARIZONA by James Carl Puckett, Jr. A Thesis Submitted to the Faculty of the DEPARTMENT OF GEOLOGY In Partial Fulfillment of the Requirements For the Degree of MASTER OF SCIENCE In the Graduate College THE UNIVERSITY OF ARIZONA 1 9 7 0 STATEMENT BY AUTHOR This thesis has been submitted in partial fulfillment of re­ quirements for an advanced degree at The University of Arizona and is deposited in the University Library to be made available to borrowers under rules of the Library. Brief quotations from this thesis are allowable without special permission, provided that accurate acknowledgment of source is made. Requests for permission for extended quotation from or reproduction of this manuscript in whole or in part may be granted by the head of the major department or the Dean of the Graduate College when in his judg­ ment the proposed use of the material is in the interests of scholar­ ship. In all other instances, however, permission must be obtained from the author.
    [Show full text]
  • Reconnaissance of the Northwest Rim of the Colorado River Basin
    RME -77(Pt. ~ ) / Subject Category :' GEOLOGY 'AND MINERA,LOGY U NI TED STATES ATOMIC ENERGY COMM I SSION RECONN.AISS ...-lliCE OF THE NORTHWEST RIM OF THE COLORADO RIVER BASIN, WAYNE AND GARFIELD COUNTIES, UTAH By Robert C. Ge rhard January 1955 Exploration Division Grand J unct ion Operations Office Grand Junction, Colorado Tech n ic a l In formation Ser v i ce Oak. R i dge Te n nes s ee UNCLASSI FI ED I. REC (o NNA l qSA CE OF THE NORYrI1rJEST Rill OF' THE- COLORA OO RIVER BASIN, .. WAYNE AND GARFIELD COUN TIES, UTAH . .- ABSTRACT About five mont hs ' f:eld work was devoted to examining the Salt Wash and Mossback outcrops i n a 1,0 O-square--mile area along the north-" . west r"JTl of 'thE; Co oraclo River, Wayne and Garfield Counties, Utah.- In the Little Rockies district, oxidized d~posits of vanadium- . _ uranium ore, associated chiefl ; with ca r bonized wood, logs, and plant '. "~. fragments, occur in extremely small lenses in two horizons of the Salt ~~: Wash member of t he Morrison f ormation. Beca use of the small l~ri tic ular : .~. nature of presently known or ebodies, ?hysical ~xploration in t his dist r1c t ~ ~ does not now appear to be econOIll:..ca.J..J.Y f easible. 0 -' • __ - . .. "In the Sout he rn Green River Desert, urap.ium m:i.n era liz~tion a Ssc 'cia ted.} ~ ~'~:' ~ ~' with carbon trash, asphaltite, and copper mi nerals occurs in the lower " -~ .: Mossback channel unit fillino paleochannels cut into the Moenkopi for.mation ~ -:-" ..
    [Show full text]
  • Part 629 – Glossary of Landform and Geologic Terms
    Title 430 – National Soil Survey Handbook Part 629 – Glossary of Landform and Geologic Terms Subpart A – General Information 629.0 Definition and Purpose This glossary provides the NCSS soil survey program, soil scientists, and natural resource specialists with landform, geologic, and related terms and their definitions to— (1) Improve soil landscape description with a standard, single source landform and geologic glossary. (2) Enhance geomorphic content and clarity of soil map unit descriptions by use of accurate, defined terms. (3) Establish consistent geomorphic term usage in soil science and the National Cooperative Soil Survey (NCSS). (4) Provide standard geomorphic definitions for databases and soil survey technical publications. (5) Train soil scientists and related professionals in soils as landscape and geomorphic entities. 629.1 Responsibilities This glossary serves as the official NCSS reference for landform, geologic, and related terms. The staff of the National Soil Survey Center, located in Lincoln, NE, is responsible for maintaining and updating this glossary. Soil Science Division staff and NCSS participants are encouraged to propose additions and changes to the glossary for use in pedon descriptions, soil map unit descriptions, and soil survey publications. The Glossary of Geology (GG, 2005) serves as a major source for many glossary terms. The American Geologic Institute (AGI) granted the USDA Natural Resources Conservation Service (formerly the Soil Conservation Service) permission (in letters dated September 11, 1985, and September 22, 1993) to use existing definitions. Sources of, and modifications to, original definitions are explained immediately below. 629.2 Definitions A. Reference Codes Sources from which definitions were taken, whole or in part, are identified by a code (e.g., GG) following each definition.
    [Show full text]
  • B2158 Pt 08 Text
    Previous section Volume contents Processes of Laccolithic Emplacement in the Southern Henry Mountains, Southeastern Utah By Marie Jackson1 CONTENTS References Cited............................................................................................................. 27 FIGURES 1. Simplified geologic map of the south Henry Mountains .......................................... 52 2. Interpretive radially oriented cross sections through Mounts Holmes, Ellsworth, and Hillers ................................................................................................................. 54 3. Zijderveldt plots showing the progressive demagnetization of a diorite porphyry sample from sill A in cross section C–C′.................................................................. 56 4. G.K. Gilbert’s concept of laccoliths in Henry Mountains ........................................ 56 5. Structure contour maps and cross sections of Mounts Holmes, Ellsworth, and Hillers, illustrating C.B. Hunt’s concept of relationships between the stocks and uplifts of the beds ............................................................................................... 57 6. Vertical cross sections showing states in growth of central intrusions and domes in the Henry Mountains ................................................................................. 58 A sequence of sedimentary rocks about 4 km thick was New geologic mapping (Jackson and Pollard, 1988) bent, stretched, and uplifted during the growth of three igne- demonstrates that the sedimentary
    [Show full text]
  • Utah G E Ological Mineral Survey
    UTAH G E OLOGICAL & MINERAL SURVEY PAGEl SURVEY N OTES VOLUME 23 NUMBER 1 TABLE OF CONTENTS Antelope Island State Park . • . 2 Contributors to Geologic Mapping in Utah ... ..• • ..•.......... 15 FROM THE New Geologic Databases for Utah .•. 18 Wanted - High-Quality Geologic DIRECTOR'S CORNER Mappers • ...•...•.. • ...... • • 22 AAPG Cross Section of Utah ... .. •• 22 Update on Geologic Mapping .. ..... 23 Books & Papers ......•...... .• .. 24 New Publications ... •.•• . ..... 25 UGMS Staff • •.•• ... • .. • ... .. .• 25 Cover photos courtesy of ASCS and the UGMS Mapping Section. Design by Frampton/Associates. Th is issue of Survey Notes highlights proach. UGMS generalized mission is STA TE OF UTAH the work of UGMS Geologic Mapping to make the state richer, safer, and bet­ NORMAN H. BANGERTER, GOVERNOR Program. The feature article cele­ ter understood geologically. Geologic DEPARTMENT OF NATURAL RESOURCES brates the completion of a major map­ mapping is one of the primary ways we DEE C. HANSEN , EXE CUTIVE DIRE CTOR ping project which has resulted in a accomplish these tasks. We intend to SURVEY NOTES STAFF better understanding of Antelope ls­ systematically map all areas of the state EDITOR J. STRINGFELLOW land's geology and recreational poten­ at a suitable scale for multiple users. EDITORIAL STAFF tial. Several publications about the Multipurpose maps are designed for Julia M. McQueen, Patti Frampton island will be available later this year at least three general uses. This first is CARTOGRAPHERS including a geology map and explan­ to help find energy, mineral and Kent D. Brown, James W. Parker, Patricia H. atory brochure, a thick volume contain­ water resources. Energy resources and Speranza ing several technical articles, and a minerals are found in special geologic UGMSSTAFF number of publications especially de­ environments such as in faults and fis­ signed for visitors to the island who ADMINISTRATION sures, or in certain rock formations, or GENEVIEVE ATWOOD, Director want to better understand its geology.
    [Show full text]
  • National Park Service U.S
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science DOI Bison Report Looking Forward Natural Resource Report NPS/NRSS/BRMD/NRR—2014/821 ON THE COVER Bison bull at southeastern Utah's Henry Mountains Photograph by Utah Division of Wildlife Resources DOI Bison Report Looking Forward Natural Resource Report NPS/NRSS/BRMD/NRR—2014/821 Prepared by the Department of the Interior Bison Leadership Team and Working Group National Park Service Biological Resource Management Division 1201 Oakridge Drive, Suite 200 Fort Collins, Colorado 80525 June 2014 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate high-priority, current natural resource management information with managerial application. The series targets a general, diverse audience, and may contain NPS policy considerations or address sensitive issues of management applicability. All manuscripts in the series receive the appropriate level of peer review to ensure that the information is scientifically credible, technically accurate, appropriately written for the intended audience, and designed and published in a professional manner. This report received informal peer review by subject-matter experts who were not directly involved in the collection, analysis, or reporting of the data.
    [Show full text]
  • 34. the K-Replacement Origin of the Megacrystal Lower Caribou Creek Granodiorite and the Goat Canyon-Halifax Creeks Quartz Monzo
    1 ISSN 1526-5757 34. The K-replacement origin of the megacrystal Lower Caribou Creek granodiorite and the Goat Canyon-Halifax Creeks quartz monzonite --- modifications of a former tonalite and diorite stock, British Columbia, Canada Lorence G. Collins email: [email protected] February 8, 1999 Introduction About 25 km south of Nakusp and 1 km east of Burton, British Columbia, Canada, is a stock whose western half is the Lower Caribou Creek megacrystal granodiorite and whose eastern half is the Goat Canyon-Halifax Creeks fine- grained quartz monzonite (Fig. 1); Hyndman, 1968). Biotite-hornblende tonalite and diorite are additional facies that occur along the border of the stock. Zoned plagioclase in all these rocks indicates a shallow intrusion and relatively rapid crystallization. This stock was called to my attention by Donald Hyndman because the K-feldspar megacrysts in the granodiorite appeared to be orthoclase whereas the smaller K-feldspar crystals in the fine-grained quartz monzonite were microcline. Subsequently, he loaned me 19 thin sections from his Ph.D thesis study (Hyndman, 1968), and these sections provided a broad representation of the textural and compositional variations in both rock types. Because he indicated that the two granitic facies were gradational to each other, this stock offered an opportunity to study the field and textural relationships across the transitions between the rocks having the two kinds of K-feldspar. Following his loan of thin sections, I visited the area and obtained 44 additional samples (and thin sections) across transitions between the two rock types. Examinations of field relationships and both his and my thin sections provide the basis for the conclusions presented in this article.
    [Show full text]
  • Kln Property Kln 1-4 Claims
    on the KLN PROPERTY KLN 1-4 CLAIMS VANCOUVER h4INING DMSION BRITISH COLUMBIA NTS 092N/SE/6E Latitude: 5 l”20’00” Longitude: 125” 30’ 15” Prepared for: Frank Onucki Vancouver, B.C. Brian D. Game, P.Geo July, 1997 Douglas G. Baker, BSc. SUMMARY The KLN 1-4 claim group consistsof four contiguousclaim blocks for a total of 80 units. Claims were stakedto envelopeknown mineralizationin the ruggedHoodoo Creek area, locatedapproximately 120 kilometresnorth of CampbellRiver, B.C. The 1996 explorationprogram focusedon prospectingand gathering logistical information necessaryto developa strategyfor future mapping,sampling and drilling. The property was stakedin March 1996by J.R. Deightonand F. Onucki. KLN l-4 cover mineralizationknown to Mr. Deighton and Mr. Onucki through assessmentreports and their personalknowledge of the region. The areaof the KLN l-4 claimswas first staked in the 1960’sby KenncoExploration Ltd. to cover a zoneof copper-molybdenum mineralization. Minimal work was conductedin 1968by Kennco andthe claims were allowed to lapse. In 1976,United Mineral Servicesrestaked the area. Again minimal work was conductedand the claims allowedto lapse. During 1987,the areaof the current claimswas stakedby United Pacific Gold Ltd. as part of the Hannahgroup. Previousassessment reports show significant, sporadicgeochemical results associated with limonitic stockworkveins, hostedprimarily in dikes and intrusions,probably part of a Tertiary intrusive - extrusivecomplex emplaced in the CoastPlutonic Complex. The KLN claims are underlainby rocks of the CoastPlutonic Complex, primarily made up of coarsecrystalline intrusive rocks of Jurassicthrough Cretaceousage varying in compositionfrom graniteto granodiorite,and are locally overlainby volcanic agglomerateand flows. The purposeof the 1996prospecting program was to perform property reconnaissanceto facilitate fbture exploration,and to locatereported high gradesilver mineralization reportedby property owners.
    [Show full text]
  • The Yellowstone Paleontological Survey
    E PALEONT ON O T LO S G W I O C L A L L E National Y Park The Yellowstone Service Department of the Interior Paleontological Survey SURVEY Vincent L. Santucci Yellowstone Center for Resources National Park Service Yellowstone National Park, Wyoming YCR-NR-98-1 1998 How to cite this document: Santucci, V. L. 1998. The Yellowstone Paleontological Survey. Yellowstone Center for Resources, National Park Service, Yellowstone National Park, Wyoming,YCR-NR-98-1. Current address for Vincent L. Santucci is National Park Service, P.O. Box 592, Kemmerer, WY 83101. The Yellowstone Paleontological Survey To Lt. Col. Luke J. Barnett, III “Uncle by blood, brother in spirit!” Vincent L. Santucci Yellowstone Center for Resources National Park Service Yellowstone National Park, Wyoming YCR-NR-98-1 1998 Table of Contents Introduction .................................................................................................... 1 Stratigraphy .................................................................................................... 4 Fossil Chronology........................................................................................... 6 Taxonomy ..................................................................................................... 12 Localities ...................................................................................................... 15 Interpretation ................................................................................................ 19 Paleontological Resource Management.......................................................
    [Show full text]
  • Mineral Resources of the Bull Mountain Wilderness Study Area, Garfield and Wayne Counties, Utah
    Mineral Resources of the Bull Mountain Wilderness Study Area, Garfield and Wayne Counties, Utah U.S. GEOLOGICAL SURVEY BULLETIN 1751-B Chapter B Mineral Resources of the Bull Mountain Wilderness Study Area, Garfield and Wayne Counties, Utah By RUSSELL F. DUBIEL, CALVIN S. BROMFIELD, STANLEY E. CHURCH, WILLIAM M. KEMP, MARK J. LARSON, and FRED PETERSON U.S. Geological Survey JOHN T. NEUBERT U.S. Bureau of Mines U.S. GEOLOGICAL SURVEY BULLETIN 1751 MINERAL RESOURCES OF WILDERNESS STUDY AREAS- HENRY MOUNTAINS REGION, UTAH DEPARTMENT OF THE INTERIOR DONALD PAUL MODEL, Secretary U. S. GEOLOGICAL SURVEY Dallas L. Peck, Director UNITED STATES GOVERNMENT PRINTING OFFICE: 1988 For sale by the Books and Open-File Reports Section U.S. Geological Survey Federal Center Box 25425 Denver, CO 80225 Library of Congress Cataloging in Publication Data Mineral resources of the Bull Mountain Wilderness Study Area, Garfield and Wayne Counties, Utah. (Mineral resources of wilderness study areas Henry Mountains Region, Utah ; ch. B) (Studies related to wilderness) (U.S. Geological Survey bulletin ; 1751) Bibliography: p. Supt. of Docs, no.: I 19.3:1751-8 1. Mines and mineral resources Utah Bull Mountain Wilderness. 2. Bull Mountain Wilderness (Utah) I. Dubiel, Russell F. II. Series. III. Series: Studies related to wilderness wilderness areas. IV. Series: U.S. Geological Survey bulletin ; 1751-B. QE75.B9 no. 1751-B 557.3s 87-600433 [TN24.U8] [553'.09792'52] [TN24.C6] STUDIES RELATED TO WILDERNESS Bureau of Land Management Wilderness Study Areas The Federal Land Policy and Management Act (Public Law 94-579, October 21, 1976) requires the U.S.
    [Show full text]
  • Scientific Assessment of Yellowstone National Park Winter Use March 2011
    Scientific Assessment of Yellowstone National Park Winter Use March 2011 Prepared in support of the Yellowstone National Park Winter Use Plan / Environmental Impact Statement 1 Executive Summary The purpose of this Science Advisory Team report is to summarize available scientific information in five topics related to the effects of snowmobile and snowcoach (oversnow vehicle (OSV)) use at Yellowstone National Park (YNP), and identify key findings for assessing the potential effects of OSV use, and propose future research to help address questions that cannot be resolved at present. These are some of the findings from this assessment. Air Quality Air pollution related to winter OSVs at the park has primarily been problematic at congested locations such as the entrance stations, rest areas, thermal feature parking lots, and at Old Faithful. Measurements have shown that pollutant concentrations drop off rapidly with distance from the road and that air quality generally improves to near regional concentrations overnight (Ray, 2008; Sive, 2003; Zhou, 2010). The air quality condition for CO and PM2.5 attributable to OSV traffic is currently well below the federal air quality standards at the congested areas near the west entrance and Old Faithful. Air quality conditions along most of the road segments are expected to be similar to the Old Faithful concentrations. At distances beyond 300-500 m from the roads, concentrations of CO, PM2.5, and organics would be expected to approach background concentrations. NO2 concentrations have been measured at concentrations at 20-80% of the standard by continuous monitors and for short periods at concentrations above 0.1 ppm.
    [Show full text]
  • Yellowstone National Park Resources and Issues: Geology
    The landscape of Yellowstone National Park is the result of many geological processes. Here, glacial erratics (foreground), ground moraines (midground), and Cutoff Mountain (background) appear near Junction Butte. Geology GEOLOGY The landscape of the Greater Yellowstone Ecosystem miles in diameter) is extremely hot but solid due to is the result various geological processes over the last immense pressure. The iron and nickel outer core 150 million years. Here, Earth’s crust has been com- (1,400 miles thick) is hot and molten. The mantle pressed, pulled apart, glaciated, eroded, and subjected (1,800 miles thick) is a dense, hot, semi-solid layer to volcanism. This geologic activity formed the moun- of rock. Above the mantle is the relatively thin crust, tains, canyons, plateaus, and hydrothermal features three to 48 miles thick, forming the continents and that define the natural wonder that is Yellowstone. ocean floors. While these mountains and canyons may appear In the key principles of Plate Tectonics, Earth’s to change very little during our lifetime, they are still crust and upper mantle (lithosphere) is divided into highly dynamic and variable. Some of Earth’s most active volcanic, hydrothermal (water + heat), and Yellowstone’s Geologic Signifcance earthquake systems make this national park a price- less treasure. In fact, Yellowstone was established as Yellowstone continues today as a natural geologic the world’s first national park primarily because of laboratory of active Earth processes. its extraordinary geysers, hot springs, mudpots and • One of the most geologically dynamic areas on Earth due to a shallow source of magma and resulting steam vents, as well as other wonders such as the volcanic activity.
    [Show full text]