34. the K-Replacement Origin of the Megacrystal Lower Caribou Creek Granodiorite and the Goat Canyon-Halifax Creeks Quartz Monzo

Total Page:16

File Type:pdf, Size:1020Kb

34. the K-Replacement Origin of the Megacrystal Lower Caribou Creek Granodiorite and the Goat Canyon-Halifax Creeks Quartz Monzo 1 ISSN 1526-5757 34. The K-replacement origin of the megacrystal Lower Caribou Creek granodiorite and the Goat Canyon-Halifax Creeks quartz monzonite --- modifications of a former tonalite and diorite stock, British Columbia, Canada Lorence G. Collins email: [email protected] February 8, 1999 Introduction About 25 km south of Nakusp and 1 km east of Burton, British Columbia, Canada, is a stock whose western half is the Lower Caribou Creek megacrystal granodiorite and whose eastern half is the Goat Canyon-Halifax Creeks fine- grained quartz monzonite (Fig. 1); Hyndman, 1968). Biotite-hornblende tonalite and diorite are additional facies that occur along the border of the stock. Zoned plagioclase in all these rocks indicates a shallow intrusion and relatively rapid crystallization. This stock was called to my attention by Donald Hyndman because the K-feldspar megacrysts in the granodiorite appeared to be orthoclase whereas the smaller K-feldspar crystals in the fine-grained quartz monzonite were microcline. Subsequently, he loaned me 19 thin sections from his Ph.D thesis study (Hyndman, 1968), and these sections provided a broad representation of the textural and compositional variations in both rock types. Because he indicated that the two granitic facies were gradational to each other, this stock offered an opportunity to study the field and textural relationships across the transitions between the rocks having the two kinds of K-feldspar. Following his loan of thin sections, I visited the area and obtained 44 additional samples (and thin sections) across transitions between the two rock types. Examinations of field relationships and both his and my thin sections provide the basis for the conclusions presented in this article. 2 Fig. 1. Geologic map of the stock consisting of the Lower Caribou Creek megacrystal granodiorite (rectangular block pattern; green), the Goat Canyon- Halifax Creeks quartz monzonite (v-pattern; blue), and biotite-hornblende tonalite and diorite border facies (random dash pattern; red); modified after Hyndman (1968 but omitting many other mapped rock types. The highway from Nakusp to Burton and forest roads extending into the map area is not shown. Hyndman's HQ- samples and areas A, B, and C, indicated by solid dots, are discussed in the text. Field relationships Before going to the stock near Nakusp, I had imagined from the distribution of rock types on the geologic map (Fig. 1) that the intrusion pattern would be that of a typical zoned pluton created by magmatic differentiation processes. That is, 3 the rim would be a more-mafic rock, the diorite, and progressively toward the center, the rocks would gradually become more felsic with the quartz monzonite first and finally the megacrystal granodiorite. This seemed logical although the map pattern showed an asymmetric distribution with the diorite primarily along the northeast, east, and southeast sides and the granodiorite on the west side (Fig. 1). I also pictured the contact between the fine-grained monzonite and the megacrystal granodiorite as being a gradual smooth transition, beginning approximately where Hyndman drew the separation line (Fig. 1). On the basis of these assumptions, I was surprised to discover when I arrived that the mapped distribution of the various rocks only existed in a broad sense. The transition westward from the fine- grained quartz monzonite to the megacrystal granodiorite was not a single gradual smooth transition but consisted of several gradual transitions, back and forth, between the two rock types before finally becoming mostly megacrystal granodiorite farther west. Moreover, in this transition interval, in both the megacrystal granodiorite and the quartz monzonite were small unmapped units of diorite. Such details were not essential to Hyndman's study of the larger area that he mapped and were impossible to delineate at the small scale of his map. Nevertheless, the discovery of this distribution of rock types meant that the diorite did not just form on the rims of the pluton but was also present farther into the middle and that a magmatic differentiation model for the origin of the pluton with gradual compositional changes to a more-felsic core was not entirely consistent. This conclusion was verified when I examined the contact relationships among diorite, fine-grained quartz monzonite, and megacrystal granodiorite in outcrops in area A (Fig. 1). In some places in the transition zone, the megacrystal granodiorite grades into fine-grained quartz monzonite within a few centimeters and then appears to penetrate into the diorite as an intrusive body (Fig. 2, Fig. 3, and Fig. 4). Some of the diorite contains angular disoriented blocks of diorite that vary from light green to dark green to black. The disoriented blocks indicate that the diorite has been strongly sheared, and the blocks have experienced different degrees of alteration to chlorite and epidote. Within the diorite mass, however, locally there are tiny isolated grains or small aggregate patches of pink K-feldspar that have no apparent physical connection to the main granodiorite mass in the sense of being transported there via magma. 4 Fig. 2. Chloritized and epidotized diorite, penetrated by fine-grained granitic rock which locally contains megacrysts of K-feldspar. Canadian penny provides a scale. Area A, Fig. 1. 5 Fig. 3. Megacrystal granodiorite (right side) has an irregular contact with a cataclastically deformed diorite, altered by chlorite and epidote (left side). Relatively unaltered and undeformed diorite at bottom of photo has a sharp contact with the granodiorite. Area A, Fig. 1. 6 Fig. 4. Close-up of contact of fine-grained quartz monzonite and megacrystal granodiorite with the deformed diorite. The close-up area is in the lower left near the black, less-sheared diorite (bottom of photo in Fig. 3). Canadian penny provides a scale. Area A, Fig. 1. Not all of the diorite is sheared, however. In the same outcrop, a sharp contact of the megacrystal granodiorite against relatively unaltered and unsheared black diorite can also be seen. See the lower part of Fig. 3. In other parts of the transition zone, the fine-grained quartz monzonite grades into megacrystal granodiorite gradually across several tens of meters. In this gradual transition, the randomly oriented K-feldspar megacrysts that first appear are only 0.5 to 1.0 cm long. Farther into the megacrystal granodiorite, the crystals may increase in size to 2-3 cm long (Fig. 5). 7 Fig. 5. Massive megacrystal granodiorite, showing random orientation of light pink K-feldspar megacrysts in a matrix of white plagioclase, gray quartz, and black biotite and hornblende. Canadian penny provides a scale. Area A, Fig. 1. In many places at area B on Fig. 1, in bulldozed road outcrops, the repeated gradual transitions, back and forth, between fine-grained quartz monzonite and megacrystal granodiorite are also found. Here also, diorite or tonalite is found adjacent to the fine-grained quartz monzonite. Contacts are usually relatively sharp, but in a few places are gradational. At area C on Fig. 1, similar transitions from fine-grained quartz monzonite to megacrystal granodiorite and/or to remnants of diorite and tonalite are also exposed. Here, also, contacts of the granitic rocks against the more mafic rocks tend to be relatively sharp. In a few places megacrysts of K-feldspar occur in the diorite and tonalite within 10 centimeters (or less) from the contact with the megacrystal granodiorite. 8 Thin section analyses and discussion of the Lower Caribou Creek megacrystal granodiorite Thin sections of the sheared diorite (Fig. 2, Fig. 3, and Fig. 4), show that portions of this rock are strongly granulated to become a cataclasite in which many of the grains are altered to chlorite and epidote. In the fine-grained quartz monzonite adjacent to the altered diorite (Fig. 2, Fig. 3, and Fig. 4), small microcline crystals (0.5 -3 mm wide) contain angular remnants of plagioclase which are in optical parallel orientation (Fig. 6). Fig. 6. Microcline (black, dark gray) enclosing irregular islands of albite-twinned plagioclase (light gray) in parallel optical orientation. Area A, Fig. 1. Where the K-feldspar megacrysts (0.5 to 1 cm) first appear (areas A and B, Fig. 1), the interior remnant islands of plagioclase no longer occur (as in Fig. 6), but tiny islands may remain along the K-feldspar borders in optical parallel continuity with the adjacent larger plagioclase crystal. Moreover, the K-feldspar may extend in veins into the adjacent plagioclase (Fig. 7, Fig. 8, and Fig. 9). 9 Fig. 7. Microcline (black), penetrating plagioclase (light gray) along veins and enclosing tiny islands of plagioclase (cream white; left of center) which are in optical parallel continuity with the adjacent plagioclase. Area A, Fig. 1. 10 Fig. 8. Microcline (black), penetrating plagioclase (light gray) along veins and enclosing tiny islands of plagioclase (cream white) which are in optical parallel continuity with the adjacent plagioclase. Area A, Fig. 1. 11 Fig. 9. Microcline (black), penetrating plagioclase (light cream) along veins and along albite-twin lamellae, leaving some lamellae projecting into the microcline. A portion of the plagioclase that is enclosed in the microcline is myrmekitic with tiny quartz ovules. Myrmekite also occurs in upper right. Area B, Fig. 1. The same textural relationships are found in the fine-grained quartz monzonite and megacrystal granodiorite at area C (Fig. 1) as in areas A and B, except that in area C in a few places megacrysts of microcline also occur bordering diorite or tonalite for the first 10 cm beyond the contact. Here, also, island remnants of optically parallel plagioclase occur in the microcline, and the microcline penetrates the adjacent plagioclase along veins (Fig. 10). Farther into the diorite or tonalite where K-feldspar megacrysts are absent, microcline is interstitial, bordered by myrmekite, and also penetrates broken plagioclase grains along veins or occurs in interiors of deformed plagioclase grains in irregular random islands.
Recommended publications
  • Hypersthene Syenite and Related Rocks of the Blue Ridge Region, Virginia1
    BULLETIN OF THE GEOLOGICAL SOCIETY OF AMERICA V o l. 27, pp. 193-234 June 1, 1916 HYPERSTHENE SYENITE AND RELATED ROCKS OF THE BLUE RIDGE REGION, VIRGINIA1 BY THOMAS L. WATSON AND JUSTUS H. CLINE (Presented before the Society December 29, 191k) CONTENTS Page Introduction.................................................................................................................. 194 Previous geologic work............................................................................................. 196 Quartz-bearing hypersthene-andesine syenite...................................................... 197 Distribution.......................................................................................................... 197 Megascopic character......................................................................................... 198 Microscopic character........................................................................................ 199 Chemical composition and classification...................................................... 202 Comparison with quartz monzonite.............................................................. 204 Origin and application of name............................................................. 204 Chemical composition................................................................................ 205 Comparison with akerite.................................................................................. 206 Comparison with syenite (andesine anorthosite) of Nelson County, Virginia.............................................................................................................
    [Show full text]
  • The Laccolith-Stock Controversy: New Results from the Southern Henry Mountains, Utah
    The laccolith-stock controversy: New results from the southern Henry Mountains, Utah MARIE D. JACKSON* Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, Maryland 21218 DAVID D. POLLARD Departments of Applied Earth Sciences and Geology, Stanford University, Stanford, California 94305 ABSTRACT rule out the possibility of a stock at depth. At Mesa, Fig. 1). Gilbert inferred that the central Mount Hillers, paleomagnetic vectors indi- intrusions underlying the large domes are Domes of sedimentary strata at Mount cate that tongue-shaped sills and thin lacco- floored, mushroom-shaped laccoliths (Fig. 3). Holmes, Mount Ellsworth, and Mount Hillers liths overlying the central intrusion were More recently, C. B. Hunt (1953) inferred that in the southern Henry Mountains record suc- emplaced horizontally and were rotated dur- the central intrusions in the Henry Mountains cessive stages in the growth of shallow (3 to 4 ing doming through about 80° of dip. This are cylindrical stocks, surrounded by zones of km deep) magma chambers. Whether the in- sequence of events is not consistent with the shattered host rock. He postulated a process in trusions under these domes are laccoliths or emplacement of a stock and subsequent or which a narrow stock is injected vertically up- stocks has been the subject of controversy. contemporaneous lateral growth of sills and ward and then pushes aside and domes the sed- According to G. K. Gilbert, the central intru- minor laccoliths. Growth in diameter of a imentary strata as it grows in diameter. After the sions are direct analogues of much smaller, stock from about 300 m at Mount Holmes to stock is emplaced, tongue-shaped sills and lacco- floored intrusions, exposed on the flanks of nearly 3 km at Mount Hillers, as Hunt sug- liths are injected radially from the discordant the domes, that grew from sills by lifting and gested, should have been accompanied by sides of the stock (Fig.
    [Show full text]
  • Geochemistry of the Catheart Mountain Porphyry Copper Deposit, Maine
    Maine Geological S urvey Studies in Maine Geology: Volume 4 1989 Geochemistry of the Catheart Mountain Porphyry Copper Deposit, Maine Robert A. Ayuso U.S. Geological Survey Reston, Virginia 22092 ABSTRACT The Ordovician Catheart Mountain pluton is the best example ofa porphyry copper system in the New England Appalachians. It intrudes the Ordovician Attean quartz monzonite in the Proterozoic Chain Lakes massif. The pluton consists of equigranular granodiorite intruded by porphyritic dikes of granite and granodiorite which contain up to 4% sulfides (pyrite, chalcopyrite, and molybdenite). The equigranular host rocks and the porphyritic dikes are generally chemically similar, showing scattered compositional variations which reflect changes imposed on the pluton during crystallization and hydrothermal alteration. Most rocks are hydrated, containing high C02 and high S. The most intensely altered parts of the pluton are potassic (up to 6.9 wt % KiO) and highly mineralized, especially with Cu (up to 3900 ppm), but also with Mo (up to 320 ppm). The host granodiorite and porphyritic dikes are depleted in Ca, Na, Fe2+ and Sr as a function of increasing Cu; the sulfide-rich rocks are enriched in Rb and they have high Fe3+/Fe2+, K/Na, and Rb/Sr values. Abundances and ratios of the highly-charged cations (e.g. Zr, Hf, Ta, and Th) in the Catheart Mountain pluton resemble those in the Devonian granodiorites in the northern Maine plutonic belt. Abundances and ratios of the highly-charged cations in the Sally Mountain pluton, a nearby body also containing Cu and Mo mineralization, differ significantly from those in the Catheart Mountain pluton suggesting that the two plutons are not comagmatic.
    [Show full text]
  • Petrographic Study of a Quartz Diorite Stock Near Superior, Pinal County, Arizona
    Petrographic study of a quartz diorite stock near Superior, Pinal County, Arizona Item Type text; Thesis-Reproduction (electronic); maps Authors Puckett, James Carl, 1940- Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 23/09/2021 23:40:37 Link to Item http://hdl.handle.net/10150/554062 PETROGRAPHIC STUDY OF A QUARTZ DIORITE STOCK NEAR SUPERIOR, PINAL COUNTY, ARIZONA by James Carl Puckett, Jr. A Thesis Submitted to the Faculty of the DEPARTMENT OF GEOLOGY In Partial Fulfillment of the Requirements For the Degree of MASTER OF SCIENCE In the Graduate College THE UNIVERSITY OF ARIZONA 1 9 7 0 STATEMENT BY AUTHOR This thesis has been submitted in partial fulfillment of re­ quirements for an advanced degree at The University of Arizona and is deposited in the University Library to be made available to borrowers under rules of the Library. Brief quotations from this thesis are allowable without special permission, provided that accurate acknowledgment of source is made. Requests for permission for extended quotation from or reproduction of this manuscript in whole or in part may be granted by the head of the major department or the Dean of the Graduate College when in his judg­ ment the proposed use of the material is in the interests of scholar­ ship. In all other instances, however, permission must be obtained from the author.
    [Show full text]
  • Geologic Section of the Black Range at Kingston, New Mexico
    BULLETIN 33 Geologic Section of the Black Range at Kingston, New Mexico BY FREDERICK J. KUELLMER Structure and stratigraphy of the Black Range, detailed petrology of igneous rocks, and general guides to ore exploration 1954 STATE BUREAU OF MINES AND MINERAL RESOURCES NEW MEXICO INSTITUTE OF MINING & TECHNOLOGY CAMPUS STATION SOCORRO, NEW MEXICO NEW MEXICO INSTITUTE OF MINING & TECHNOLOGY E. J. Workman, President STATE BUREAU OF MINES AND MINERAL RESOURCES Eugene Callaghan, Director THE REGENTS MEMBERS EX OFFICIO The Honorable Edwin L. Mechem ..............................Governor of New Mexico Tom Wiley ................................................ Superintendent of Public Instruction APPOINTED MEMBERS Robert W. Botts .............................................................................. Albuquerque Holm O. Bursum, Jr ................................................................................ Socorro Thomas M. Cramer ...............................................................................Carlsbad Frank C. DiLuzio .............................................................................Los Alamos A. A. Kemnitz ...........................................................................................Hobbs Contents Page ABSTRACT ......................................................... …………………………………… 1 INTRODUCTION ........................................................................................................3 ACKNOWLEDGMENTS .............................................................................................4
    [Show full text]
  • Part 629 – Glossary of Landform and Geologic Terms
    Title 430 – National Soil Survey Handbook Part 629 – Glossary of Landform and Geologic Terms Subpart A – General Information 629.0 Definition and Purpose This glossary provides the NCSS soil survey program, soil scientists, and natural resource specialists with landform, geologic, and related terms and their definitions to— (1) Improve soil landscape description with a standard, single source landform and geologic glossary. (2) Enhance geomorphic content and clarity of soil map unit descriptions by use of accurate, defined terms. (3) Establish consistent geomorphic term usage in soil science and the National Cooperative Soil Survey (NCSS). (4) Provide standard geomorphic definitions for databases and soil survey technical publications. (5) Train soil scientists and related professionals in soils as landscape and geomorphic entities. 629.1 Responsibilities This glossary serves as the official NCSS reference for landform, geologic, and related terms. The staff of the National Soil Survey Center, located in Lincoln, NE, is responsible for maintaining and updating this glossary. Soil Science Division staff and NCSS participants are encouraged to propose additions and changes to the glossary for use in pedon descriptions, soil map unit descriptions, and soil survey publications. The Glossary of Geology (GG, 2005) serves as a major source for many glossary terms. The American Geologic Institute (AGI) granted the USDA Natural Resources Conservation Service (formerly the Soil Conservation Service) permission (in letters dated September 11, 1985, and September 22, 1993) to use existing definitions. Sources of, and modifications to, original definitions are explained immediately below. 629.2 Definitions A. Reference Codes Sources from which definitions were taken, whole or in part, are identified by a code (e.g., GG) following each definition.
    [Show full text]
  • Oregon Geologic Digital Compilation Rules for Lithology Merge Information Entry
    State of Oregon Department of Geology and Mineral Industries Vicki S. McConnell, State Geologist OREGON GEOLOGIC DIGITAL COMPILATION RULES FOR LITHOLOGY MERGE INFORMATION ENTRY G E O L O G Y F A N O D T N M I E N M E T R R A A L P I E N D D U N S O T G R E I R E S O 1937 2006 Revisions: Feburary 2, 2005 January 1, 2006 NOTICE The Oregon Department of Geology and Mineral Industries is publishing this paper because the infor- mation furthers the mission of the Department. To facilitate timely distribution of the information, this report is published as received from the authors and has not been edited to our usual standards. Oregon Department of Geology and Mineral Industries Oregon Geologic Digital Compilation Published in conformance with ORS 516.030 For copies of this publication or other information about Oregon’s geology and natural resources, contact: Nature of the Northwest Information Center 800 NE Oregon Street #5 Portland, Oregon 97232 (971) 673-1555 http://www.naturenw.org Oregon Department of Geology and Mineral Industries - Oregon Geologic Digital Compilation i RULES FOR LITHOLOGY MERGE INFORMATION ENTRY The lithology merge unit contains 5 parts, separated by periods: Major characteristic.Lithology.Layering.Crystals/Grains.Engineering Lithology Merge Unit label (Lith_Mrg_U field in GIS polygon file): major_characteristic.LITHOLOGY.Layering.Crystals/Grains.Engineering major characteristic - lower case, places the unit into a general category .LITHOLOGY - in upper case, generally the compositional/common chemical lithologic name(s)
    [Show full text]
  • Chemical and Physical Controls for Base Met Al Deposition in the Cascade Range of Washington
    State of Washington Department of Natural Resources BERT L. COLE, Commissioner of Public Lands DIVISION OF MINES AND GEOLOGY MARSHALL T. HUNTTING, Supervisor Bulletin No. 58 CHEMICAL AND PHYSICAL CONTROLS FOR BASE MET AL DEPOSITION IN THE CASCADE RANGE OF WASHINGTON By ALAN ROBERT GRANT STATE PRINTING PLANT ~ OLYMPIA, WASHINCTON 1969 For safe by Department of Natural Resources, Olympia, Washington. Price $1.50 Errata sheet for Washington Division of Mines and Geology Bulletin 58, Chemical and Physical Controls for Base Metal Deeosition in the Cascade Range of Washington ( By Alan Robert Grant Errors noted in the p-inted text are listed below. The editors regret these and possibly other mistakes in editing. Page 12 Paragraph 5, line 2, "heliocpter" should read helicopter. 14 Paragraph 6, line 6, •programed" should read programmed. 15 Figure 2, 11 Ntesoic" in explanation should read Mesozoic. 19 Paragraph 4, line 7, "authochthonous" should read autochthonous. 22 Paragraph 6, line 4, "extension Ntesozoic 11 should read exten•ioo.o f 1l1e Mesozoic. 22 Paragraph 7, line 1, ''aforemention" should read aforementioned. 25 Paragraph 4, line 7, "Misch" should be changed to Vance. 25 Paragraph 7, line 7, "Totoosh, pluton" should read Totoosh pluton. 26 Paragraph 1, line 4, "classical" should read classic. 32 Paragraph 4, line 1, "alkaline" should be changed to acidic intrusive. 33 Paragraph 1, line 1, "alkaline" should be changed to acidic intrusive. 48 Une 3 of Figure 16 caption, "alkaline" should be changed to acidic intrusive~ 49 Paragraph 3, line 5, "Creasy" should read Creasey. 51 Paragraph 3, line 1, "Creasy II should read Creasey.
    [Show full text]
  • Kln Property Kln 1-4 Claims
    on the KLN PROPERTY KLN 1-4 CLAIMS VANCOUVER h4INING DMSION BRITISH COLUMBIA NTS 092N/SE/6E Latitude: 5 l”20’00” Longitude: 125” 30’ 15” Prepared for: Frank Onucki Vancouver, B.C. Brian D. Game, P.Geo July, 1997 Douglas G. Baker, BSc. SUMMARY The KLN 1-4 claim group consistsof four contiguousclaim blocks for a total of 80 units. Claims were stakedto envelopeknown mineralizationin the ruggedHoodoo Creek area, locatedapproximately 120 kilometresnorth of CampbellRiver, B.C. The 1996 explorationprogram focusedon prospectingand gathering logistical information necessaryto developa strategyfor future mapping,sampling and drilling. The property was stakedin March 1996by J.R. Deightonand F. Onucki. KLN l-4 cover mineralizationknown to Mr. Deighton and Mr. Onucki through assessmentreports and their personalknowledge of the region. The areaof the KLN l-4 claimswas first staked in the 1960’sby KenncoExploration Ltd. to cover a zoneof copper-molybdenum mineralization. Minimal work was conductedin 1968by Kennco andthe claims were allowed to lapse. In 1976,United Mineral Servicesrestaked the area. Again minimal work was conductedand the claims allowedto lapse. During 1987,the areaof the current claimswas stakedby United Pacific Gold Ltd. as part of the Hannahgroup. Previousassessment reports show significant, sporadicgeochemical results associated with limonitic stockworkveins, hostedprimarily in dikes and intrusions,probably part of a Tertiary intrusive - extrusivecomplex emplaced in the CoastPlutonic Complex. The KLN claims are underlainby rocks of the CoastPlutonic Complex, primarily made up of coarsecrystalline intrusive rocks of Jurassicthrough Cretaceousage varying in compositionfrom graniteto granodiorite,and are locally overlainby volcanic agglomerateand flows. The purposeof the 1996prospecting program was to perform property reconnaissanceto facilitate fbture exploration,and to locatereported high gradesilver mineralization reportedby property owners.
    [Show full text]
  • Description of Map Units
    GEOLOGIC MAP OF THE LATIR VOLCANIC FIELD AND ADJACENT AREAS, NORTHERN NEW MEXICO By Peter W. Lipman and John C. Reed, Jr. 1989 DESCRIPTION OF MAP UNITS [Ages for Tertiary igneous rocks are based on potassium-argon (K-Ar) and fission-track (F-T) determinations by H. H. Mehnert and C. W. Naeser (Lipman and others, 1986), except where otherwise noted. Dates on Proterozoic igneous rocks are uranium-lead (U-Pb) determinations on zircon by S. A. Bowring (Bowring and others, 1984, and oral commun., 1985). Volcanic and plutonic rock names are in accord with the IUGS classification system, except that a few volcanic names (such as quartz latite) are used as defined by Lipman (1975) following historic regional usage. The Tertiary igneous rocks, other than the peralkaline rhyolites associated with the Questa caldera, constitute a high-K subalkaline suite similar to those of other Tertiary volcanic fields in the southern Rocky Mountains, but the modifiers called for by some classification schemes have been dropped for brevity: thus, a unit is called andesite, rather than alkali andesite or high-K andesite. Because many units were mapped on the basis of compositional affinities, map symbols were selected to emphasize composition more than geographic identifier: thus, all andesite symbols start with Ta; all quartz latites with Tq, and so forth.] SURFICIAL DEPOSITS ds Mine dumps (Holocene)—In and adjacent to the inactive open pit operation of Union Molycorp. Consist of angular blocks and finer debris, mainly from the Sulphur Gulch pluton Qal Alluvium (Holocene)—Silt, sand, gravel, and peaty material in valley bottoms.
    [Show full text]
  • Porphyry Copper Mineralisation of Western Usa
    The Ishihara Symposium: Granites and Associated Metallogenesis PORPHYRY COPPER MINERALISATION OF WESTERN USA Allan J.R.White VIEPS, The University of Melbourne, Victoria 3010, Australia Porphyry copper deposits of western USA are very large low grade deposits dominated by disseminated Cu mineralisation but commonly with appreciable Mo and Au. Many deposits began as gold camps. Mineralisation is centred on, and mostly within, near surface quartz monzonite intrusions in which there is inner and deeper concentric Mo-rich shells. Mo shells are followed by Cu-rich shells, then pyrite and there may be an outermost Pb-Zn-Ag zone as in the country rock skarns of the Bingham deposit (John 1978). Cu-Mo mineralisation occurs within a “potassic” alteration zone characterised by secondary biotite (e.g. Moore 1978). Extensive outer sericitic (phyllic), argillic and propylitic alteration zones do not necessarily conform to the concentric pattern. Large scale bulk mining of a porphyry deposit was first carried out at Bingham. There is a belt of economic deposits extending from Butte Montana, through Bingham Utah, to Arizona where deposits are most abundant, and New Mexico. This review is based on visits to many deposits along the whole length of the belt and various petrological observations at Butte, Bingham, Bagdad, Miami-Globe and Sierrita. Most deposits are Laramide (approx. 70 Ma), a notable exception being Bingham (40 Ma). The Laramide belt is inboard up to 1200 km from the Pacific coast of the US where there are Recent to Mesozoic subduction related rocks. It is suggested that the Laramide igneous rocks were not formed as a result of subduction but as a result of rifting within the Precambrian basement.
    [Show full text]
  • Geology and Alteration at Northparkes Mines, NSW, Australia
    The Anatomy of an Alkalic Porphyry Cu-Au System: Geology and Alteration at Northparkes Mines, NSW, Australia Adam Pacey1,2,*, Jamie J. Wilkinson2,1, Jeneta Owens3, Darren Priest3, David R. Cooke4,5 and Ian L. Millar6 1Department of Earth Science and Engineering, Imperial College London, South Kensington, London, SW7 2AZ, United Kingdom 2Department of Earth Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD, United Kingdom 3NorthparKes Mines, PO Box 995, ParKes, New South Wales, 2870, Australia 4Centre for Ore Deposit and Earth Sciences (CODES), University of Tasmania, Hobart, Tasmania 7001, Australia 5Transforming the Mining Value Chain (TMVC), an Australia Research Council (ARC) Industrial Transformation Research Hub, University of Tasmania, Hobart, Tasmania 7001, Australia 6NERC Isotope Geosciences Laboratory, Keyworth, Nottingham, NG12 5GG, United Kingdom *Corresponding author: [email protected] Keywords Northparkes, Macquarie Arc, porphyry deposit, propylitic alteration, potassic alteration, hydrothermal alteration, copper, gold Abstract The Late Ordovician-Early Silurian (~455-435 Ma) Northparkes system is a group of silica-saturated, alkalic porphyry deposits and prospects which developed within the Macquarie Island Arc. The system is host to a spectacular and diverse range of rocks and alteration-mineralization textures that facilitate a detailed understanding of its evolution, in particular into the nature and controls of porphyry-related propylitic alteration. The first intrusive phase at Northparkes is a pre- to early-mineralization pluton that underlies all the deposits and varies in composition from a biotite quartz monzonite (BQM) to alkali feldspar granite (AFG). Prior to total crystallization, this pluton was intruded by a more primitive quartz monzonite (QMZ) that marks the onset of a fertile fractionation series.
    [Show full text]